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Abstract 
 
The Weibull distribution is one of the most frequently used functions in forestry to fit diameter 
or height distributions. However, estimating the location parameter of the Weibull distribution 
frequently causes numerical problems because it is highly correlated with the scale and shape 
parameters. The location parameter is therefore usually fixed to a certain value. We propose to 
use the reversed generalized extreme value distribution (RGE) to overcome this limitation. The 
RGE is a reparametrization of the Weibull distribution that allows estimation of the location 
parameter. We apply the RGE in the context of a generalized linear model (GLM). In the GLM, 
the tree diameter is assumed to be the RGE distributed response. It is estimated using area-based 
methods (vegetation height metrics). While visual comparison reveals a good conformity of the 
RGE with observed diameter distributions, the smallest diameter (location parameter) is in 
tendency underestimated by the RGE. For the distribution means, the RMSE is 2.12 cm with a 
bias of 0.29 cm. 
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1. Introduction 
 
Several studies proved that small footprint airborne laser scanner data (ALS) can be used for 
estimating forest parameters either using single tree detection algorithms (e.g., Persson et al. 
2002, Peuhkurinen et al. 2007) or area-based (also referred to as plot-wise) approaches (e.g., 
Nilsson 1996, Magnussen & Boudewyn 1998, Næsset 2002). Due to their robustness, the latter 
are used in Scandinavia on operational scales since several years (Næsset 2004). Area based 
approaches usually provide plot level estimates such as total volume, basal area or mean height. 
However, for predicting timber assortments, the diameter distribution of a forest stand is needed 
as an important parameter. 
 
Generally, non-parametric (e.g., Maltamo & Kangas 1998) and parametric (e.g., Hafley & 
Schreuder 1977) methods can be used to model diameter distributions. Aim of parametric 
methods is to estimate the parameters of a distribution function. Due to the possibility of using 
biological interpretable parameters, parametric methods enjoy a high popularity. The Weibull 
distribution is an often-used function to model diameter distributions (e.g., Bailey & Dell 1973, 
Nagel & Biging 1995, Cao 2004). Several authors also used ALS to estimate the parameters of 
Weibull distributions (e.g., Gobakken & Næsset 2004, Mehtätalo et al. 2007). 
 
In managed forests, it frequently occurs that the smallest diameter on sample plots with large 
trees is larger than zero or the smallest measured tree (calliper limit). However, while the 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 267

Weibull distribution has a location parameter, its estimation causes numerical instability since 
the scale and the shape parameter are highly correlated with it. The location parameter is 
therefore usually fixed to a certain value (e.g., Breidenbach et al. 2008, Gobakken & Næsset 
2004, Cao 2004). The probability of the occurrence (density) of small trees will then be 
overestimated. 
 
In this paper we describe the use of the generalized extreme value distribution (Johnson et al. 
1995), which is provided by (Rigby & Stasinopoulos 2005) as the reversed generalized extreme 
value distribution (RGE). It is a reparametrization of the three-parameter Weibull distribution 
and can be used to estimate also the location parameter. We applied a generalized linear model 
(GLM, Nelder & Wedderburn 1972) with the diameter as the RGE distributed response. The 
parameters of the RGE distribution are estimated using plot-wise vegetation height metrics 
derived from small footprint, low density ALS data. Due to the plot design, a combination of 
several truncated RGE distributions was used. 
 
2. Material and Methods 
 
2.1 Study area 
 
The tree species composition of the 50 km² study site is a managed forest, dominated by 
Norway spruce (Picea abies L. Karst.) with a 70% proportion by area, beech (Fagus sylvatica 
L.) with 11% and silver fir (Abies alba Mill.) with 10%. More details on the forest structure are 
given in Table 1. 
 

Table 1: Forest characteristics of the study site 
 

 Minimum Median Mean Maximum 
Stem number [ha-1] 22.1 397.8 497.3 2829 
Stem volume [m3 ha-1] 7.2 412.7 413.2 1193 
Basal area [m2 ha-1] 1.8 36.8 36.8 81.9 
Basal area mean diameter [cm] 7.5 35 35.8 68.8 
Mean height [m] 5.1 25 24.6 40.7 

 
 
2.1.1 Plot establishment 
 
In 2002, a permanent sample-plot inventory was carried out on a 100 m (easting) by 200 m 
(northing) grid. Trees with a diameter at breast height (dbh) of at least 7 cm were measured on 
concentric sample plots with a maximum diameter of 12 m. To increase the efficiency of the 
inventory, trees with a dbh <30 cm were sampled on plots with smaller radii. This results in four 
possible plot sizes of 2, 3, 6 and 12 m, where trees with a minimum dbh of 7, 10, 15 and 30 cm 
are measured. 
 
2.1.2 Laser data 
 
The laser scan data were collected with an Optech ALTM 1225 laser scanner in winter 
2003/2004, i.e. about one year after the inventory took place. A flight altitude of approx. 900 m 
above ground yielded an average distance of 1 m between scan points on the ground. The first 
as well as the last pulse data were automatically classified by the data provider into vegetation- 
and ground points (reflection from terrain surface). 
 
A digital terrain model (DTM) with one meter pixel spacing was computed from the ground 
returns using the average height of returns if several reflections were located within one pixel 
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and bilinear interpolation if no return was within the pixel. The value of the respective DTM 
pixel was subtracted from the first pulse vegetation raw data to obtain vegetation heights. 
Vegetation height metrics (e.g., percentiles and mean) were derived for every sample plot 
(Næsset 2002). 
 
2.2 Parameter estimation 
 
The reversed generalized extreme value distribution (RGE) is obtained from the generalized 
extreme value distribution (Johnson et al. 1995, p.76) by replacing y with -y and ξ  by -ξ  
(Rigby & Stasinopoulos 2005). It has the density  
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If a is the location, b the scale and c the shape parameter, the density of the Weibull distribution 
is denoted  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−⎟
⎠
⎞

⎜
⎝
⎛ −

=
− cc

b
ay

b
ay

b
ccbayf exp),,|(

1

     (2) 

for 0, >cb . 
 
The RGE is a reparametrization of the Weibull distribution in that 
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The parameters of the RGE distribution were estimated using plot-wise derived vegetation 
height metrics from ALS raw data. The equation ),,|( γθξyf  was therefore extended to 

),,|( iiiiyf γθξ . 
 
Due to the concentric sample plot design, we constructed four censored RGE distributions for 
every possible plot radii by  
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where U and L are the upper and lower bounds of the diameters for the concentric sample plot 
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with radius R, respectively. This resulted in the functions g2, g3, g6, g12. 
 
The likelihood function for the parameter estimation is therefore  
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The parameters are bound to the predictor variables with link functions h: 
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where x are the predictor variables, β  are the coefficients. The identity is the link function for 
ξ  and the natural logarithm is the link function for θ  as well as γ . 
 
The likelihood function was maximized using the Nelder-Mead algorithm implemented in the 
function optim (Venables & Ripley 2002), within an R environment (R Development Core Team 
2007) 
 
On average, 12 trees were measured on a sample plot. The predicted distribution can therefore 
not be compared with observations from one sample plot. Therefore, the observations from plots 
similar with respect to the explanatory variables are aggregated to what we will call vegetation 
height quartile classes for the remainder of the text. Then, the predicted RGE distribution can be 
compared with the histogram of the observations. 
 
3. Results 
 
The first and third quartile (Qu1 and Qu3) of the vegetation height were selected as predictor 
variables for all parameters. Their interaction term (Qu1 * Qu3) was considered as predictor 
variable for the ξ  and θ  parameters. 
 
The parameters of the RGE distribution can be predicted by  

iξ  = 4.15 + -1.20 Qu1i + 1.93 Qu3i + 0.02 Qu1i Qu3i 

iθ  = 0.97 + -0.03 Qu1i + 0.11 Qu3i + -0.001 Qu1i Qu3i    (6) 

iγ  = -0.31 + 0.03 Qu1i + -0.05 Qu3i 
 
 
Compared with a Weibull distribution (location parameter fixed at the calliper limit) directly 
fitted to the observations, the RGE distribution matches well to the observed diameter 
distributions (Figure ). The smallest estimated diameter of the RGE distribution is usually above 
the calliper limit and especially for plots with large trees, larger than for the Weibull distribution. 
However, compared with the actual observations, the size of the smallest diameter is still 
underestimated (Figure ). 
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Figure 1: Probability density distribution of observed DBH (histogram) and predicted RGE distributions 
(solid graph) for the 9 most densely populated laser-derived vegetation height quartile classes. The dashed 
curve marks the Weibull distribution which has been directly fitted to the observations. Qu1 denotes the 
class width of the first quartile (m) and Qu3 the class width of the third quartile (m). Plots and trees 
represent the number of sample plots and trees in the corresponding plot strata. 
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Figure 2: Smallest predicted DBH using the RGE and Weibull distribution and smallest observed DBH 
(solid line = 1:1 line). 
 
The means of the RGE and the observed distribution was computed for the 20 most densely 
populated quartile classes (containing at least 3 Plots). As the good conformity of the predicted 
distribution with the observed distribution supposes, the difference between the mean of the 
RGE distribution and the mean of the observations is rather small (Figure 3). The RMSE is 2.12 
cm with a bias of 0.29 cm. 
 

15 20 25 30 35 40 45 50

15
20

25
30

35
40

45
50

Predicted mean DBH (cm)

O
bs

er
ve

d 
m

ea
n 

D
BH

 (c
m

)

 
Figure 3: Observed versus predicted mean DBH for the 20 most densely populated quartile classes 
(circles) and 1:1 line (solid line). 
 
4. Discussion 
 
Numerical problems may occur while estimating the location parameter of the Weibull 
distribution (e.g., Gobakken & Næsset 2004) because the parameters are highly correlated. 
Therefore, the location parameter is usually fixed to zero or some other value (e.g., Cao 2004). 
The reversed generalized extreme value distribution (RGE), as described by Rigby & 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 272

Stasinopoulos (2005), is a reparametrization of the Weibull distribution. Since the location 
parameter of the Weibull distribution is obtained from a combination of the three parameters of 
the RGE distribution that are not strongly correlated, it can be estimated. 
 
The proposed RGE distribution can be used to estimate diameter distributions. For the 
prediction of assortments, information about tree heights (for a solution see for example 
Mehtätalo et al. 2007) and tree species are also required. In this study, we assumed the 
observations to be independent of one another. Another topic of future research will be how 
spatial autocorrelation affects the statistical models. Standard errors of the coefficients will also 
need to be computed. To do so, derivations of the log-likelihood function can be used to 
compute the Fisher information matrix. The inversion of the Fisher information is the 
covariance matrix of the parameters. 
 
The GLM used here is the state of the art method to fit conditional distributions. It allows the 
prediction of parameters, also if reference data stem from small sample plots. Consequently, 
potential multimodal distributions are not likely to occur since small patches of forest are 
relatively homogenous. 
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