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Abstract 
 
The Effective Plant Area Indices (PAIe) of Pinus koraiensis, Larix leptolepis and Quercus spp. were 
estimated by calculating the laser-intercepted rate through the forest canopy using LiDAR data. 
Initially, the Laser Interception Index (LII), which is related to the canopy gap fraction, was 
generated by extracting the LiDAR data reflected through the canopy using k-means statistics. The 
LiDAR-derived PAIe was then estimated by applying LII to the Beer-Lambert law. From a 
comparison of the LiDAR-derived to the field-derived PAIe, the coefficients of the determination by 
the tree species was 0.82, 0.71 and 0.54 for Pinus koraiensis, Larix leptolepis and Quercus spp., 
respectively. The change in accuracy according to the tree species was attributed to the density of 
leaves and understory, the interference by stems, the amount of leaves and the vertical number of 
branches in the forest stands. From field estimations at the time of the study, Pinus koraiensis had 
dense leaves and Larix leptolepis had dense branches, while Quercus spp. had no leaves or a few big 
branches. This can be explained by the estimation of the field-derived PAIe being influenced by the 
stem shadow and direct sunlight due to the few leaves and poor branches in the Quercus spp. stand 
surveyed, even though the estimation of the LiDAR-derived PAIe was hardly affected by them. 
 
Keywords: Leaf Area Index, Plant Area Index, LiDAR, Laser Interception Index, k-means 

clustering 
 
1. Introduction 
 
According to Jonckheere et al. (2004), there are several definitions for the LAI used in the field, 
which can be defined as the total one-sided area of leaf tissue per unit ground surface area 
(Watson, 1947). Schulze et al. (2005) suggested that the LAI could be determined by the sum of 
the projected leaf surface per soil area. On the other hand, Myneni et al. (1997) defined the LAI 
as the maximum projected leaf area per unit ground surface area. Such variously defined LAI 
can be derived from both the within and below canopy microclimate, control canopy water 
interception and radiation extinction, as well as water and carbon gas exchange (Bréda, 2003). 
Moreover, they provide information for biosphere modelling (Bonan, 1993) because they 
contain information on a number of relevant ecological process (Morsdorf et al., 2006). 
Therefore, the LAI can play a key role within biogeochemical cycles in an ecosystem. The 
various methods for obtaining the LAI can be classified into two categories; direct and indirect 
measurements (Bréda, 2003). Direct methods are destructive and exhaustive due to harvesting 
vegetation. Moreover, such methods are time-consuming and labour-intensive when the LAI is 
obtained from field measurements. Thereby, the direct methods are suitable for vegetation with 
small structures, but are difficult to apply to large areas or trees (Bréda, 2003). On the other 
hand, the LAI by indirect and non-destructive methods can be easily estimated using the 
radiative characteristics of sunlight, which is dispersed or penetrates through the vegetation area. 
With such methods, remote sensing techniques, using satellite imagery and aerial photography, 
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have been applied to derive this measurement. Many such approaches are based on passive 
optical sensor systems and regression models (Cohen et al., 2003) or radiative transfer 
modelling (Koetz et al., 2004). However, one serious problem with remote sensing using 
passive sensor systems is that they are unable to describe the canopy shape and structure, and 
the vertical distribution of leaves because they do not contain the elevation information by itself. 
Light Detection and Ranging (LiDAR), especially using an active sensor system, has recently 
been used to extract surface information, and can acquire highly accurate object shape 
characteristics using geo-registered 3D-points (Kwak et al., 2007). The LiDAR system can 
measure both vertical and horizontal forest structures, such as the tree heights, sub-canopy 
topographies and distributions in forested areas with high precision (Holmgren et al., 2003). 
Such characteristics can be used to extract forest information. Morsdorf et al., (2006) derived 
the LAI using fCover (fractional cover) and Riãno et al. (2004) obtained the LAI using the gap 
fraction distribution. Koetz et al. (2006) applied the LiDAR waveform model to generate the 
fCover and LAI from large footprint LiDAR data. However, it is difficult for large footprint 
LiDAR to extract forest information in small areas. The use of ground based laser scanners is 
limited by the topographical conditions of the study area as well as to small forest areas not 
broad forest areas. Barilotti et al. (2006) suggested an estimation of the LAI using the Laser 
Penetration Index (LPI) generated by the point density of LiDAR data, according to the 
penetration of a laser beam through the canopy of forested areas. However, the threshold value 
between the transmission and reflectance through the canopy cannot be applied to another forest 
stand, including fluctuant height understory, because the value was fixed to a height 1 m above 
the ground. 
 
For such an indirect LAI estimation, a common method in the field is to use an optical sensor to 
acquire photosynthetically active radiation (PAR) using an AccuPAR-80 Linear PAR/LAI 
Ceptometer of Decagon Devices, LAI-2000 or hemispherical photography below the canopy 
(Pocewicz et al., 2004). However, the values recorded with such instruments are not pure LAIs 
because clumping of the canopy components and the influence of individual tree stems and 
woody canopy components are not adjusted for (Pocewicz et al., 2004). The value recorded 
without the consideration of clumping of the canopy components is defined as the effective LAI 
(LAIe). Measurements that do not consider light interception by woody components are called 
the plant area index (PAI), and, if no adjustments are made for the clumping of canopy elements, 
the values measured by the instruments are referred to as the effective PAI (PAIe). Therefore, the 
values measured with optical sensors in forest areas is almost the PAIe (Pocewicz et al., 2004). 
 
Chen and Cihlar (1996) reported that the PAIe estimation was more effective in representing the 
vegetation indices than the LAI estimation because the PAIe could represent the sunlight 
interception well by the woody canopy elements and individual tree stems. Therefore, in this 
study, to approximate the LAI, the PAIe of Pinus koraiensis, Larix leptolepis and Quercus spp. 
were estimated by calculating the rate of laser-intercepted LiDAR points through the canopy 
using LiDAR data. In particular, for the approximate LAI, an attempt was made to estimate only 
the PAIe of the canopy part as classifying the LiDAR pulses reflected in forest stands into in- 
and below-canopy returns using the k-means clustering method.  
 
2. Study area 
 
The study areas were located in the Gwangneung Experimental Forest of the Korea Forest 
Research Institute (the upper left 127°7′30.72523″E, 37°48′0.42761″N and lower right 
127°11′59.17548″E, 37°41′59.31795″N), and Mt. Yumyeong (the upper left 127°28′45.76074″E, 
37°35′59.75109″N and lower right 127°30′6.98627″E, 37°35′6.27425″N), central South Korea.  
Situated from 160 to 573m above sea level, the study area is dominated by steep hills, with the 
main tree species being Pinus koraiensis (Korean Pine), Larix leptolepis (Japanese Larch) and 
Quercus spp. (Oaks), with approximately 1,017.36 ha selected for this study. In the study area, 
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the PAIe was measured from 39 plots (13 plots per tree species), and 36 plots (12 plots per tree 
species) were measured to assess the accuracy. These plots were selected in such a way that the 
composition of the tree species was homogeneous. 
  

 
Figure 1. Location of the study areas 

 
3. Acquisition of LiDAR data and ground data 
 
An Optech ALTM 3070 (a small footprint LiDAR system) was used to acquire the LiDAR data. 
The flight was performed on the 3rd April 2007. The study area was measured at an altitude of 
1,400m, with a sampling density of 5~10 points per square meter, with a radiometric resolution, 
scan frequency and scan width of 12bits, 70Hz and ±20°, respectively. The field survey was 
performed from the 1st to 4th April, 2008. The number of sample and test plots was 75 (25 plots 
per tree species). Each plot was 20m x 20m (400m2) in size, and the PAIe of the plots was 
measured indirectly using the gap fraction method with an LAI-2000 instrument. The PAIe was 
estimated using two LAI-2000 instruments, for the diffuse intensity above and below the canopy. 
One LAI-2000 used for above the canopy was set up with a 180° view cap on the top of the flux 
tower. The other LAI-2000 was installed for below-the canopy of the plots. The estimation 
below the canopy was carried out on the middle spots of each of four edge lines and in four 
directions from the centre of a square plot with a 180° view cap. The positions of the plots were 
acquired at breast height in the centre of each plot, using a GPS Pathfinder Pro XR 
manufactured by the Trimble Corporation. 
 

Table 1. Descriptive statistics of the field measurements 
 

Stand height(m) Canopy base height (m) Stand DBH(cm) Species Number
of plots Mean Std. Mean Std. Mean Std. 

Pinus 
koraiensis 25 15.6 2.3 6.8 2.3 32.7 5.5 

Larix 
leptolepis 25 16.4 2.7 6.5 2.0 28.7 4.6 

Quercus 
spp. 25 14.2 2.5 5.5 1.9 28.3 8.9 

 
4. Method 
 
4.1 Potential of using LiDAR for PAIe estimation 
 
The LiDAR system has the potential for obtaining geo-registered 3D-points; whereas, it is 
difficult to extract the 3 dimensional information of forested area using independent satellite 
imagery and aerial photography (Kwak et al., 2007). The Laser pulses emitted from the LiDAR 
system are similar to that of sunlight with respect to the reflectance or transmission through the 
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canopy. In addition, they are suitable for representing the PAIe because of the reflectance on the 
leaves and branches. Therefore, if stands have dense leaves and branches, the LiDAR points are 
mostly reflected in the canopy. On the other hand, LiDAR points are almost always transmitted 
to ground due to sparse leaves and branches.  
 
The Beer-Lambert Law has been used to estimate the PAIe in previous several studies (Pocewicz 
et al., 2004). The PAIe can be calculated using the Beer-Lambert Law, as shown in equation 1. 
 

sune kIIPAI /)/ln( 0−=       (1) 
 
where I and I0 are the incident and below-canopy radiation respectively, and ksun is the extinction 
coefficient for solar radiation. The PAIe can be estimated using I/I0, which is known as the gap 
fraction (Gsun), and is defined as the probability of a light beam passing through the canopy 
without collision (Gower et al., 1999). The gap fraction by solar radiation can be alternated with 
the ratio of the number of LiDAR returns transmitted through the canopy, to the total number 
emitted from the aircraft (GLiDAR). In equation 1, ksun can be calculated using equation 2 
(Campbell, 1986). 
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where θ is the zenith angle of the sun and x the leaf angle distribution parameter, which is the 
ratio of the length of the horizontal to the vertical axes of the spheroid, and can be measured as 
the ratio of the projected area of an average canopy element onto a horizontal plane to its 
projection onto a vertical plane (Campbell, 1986). Campbell (1986) suggested that an 
assumption of an ellipsoidal angle distribution for the canopy elements was most useful. Using 
such an investigation, x was determined to be 1 when the PAIe (Campbell labelled this LAI) was 
estimated in the study area and the angle distribution was assumed to be ellipsoidal. ksun can be 
simplified to equation 3.  
 

θcos
2
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In equation 3, ksun could be calculated using the solar zenith angle (θ) in the study area. However, 
for the PAIe using LiDAR data, the ksun value must be changed to the zenith angle of the emitted 
laser pulses from the aircraft (kLiDAR) rather than the solar zenith angle. In this study, the kLiDAR 
value was estimated using the laser zenith angle (θ) ±10°, which is the median value of the scan 
angle of every point data reflected in a stand. Therefore, the PAIe can be estimated from the ratio 
of the number of transmitted LiDAR returns and the laser zenith angle. 

  
4.2 Classification of LiDAR data using k-means statistics 
 
In order to calculate the gap fraction using LiDAR data (GLiDAR), the transmitted laser pulses need 
to be detected and classified. In particular, the LiDAR returns only intercepted by the canopy must 
be clustered to estimate the canopy PAIe only, which is far from the influence of stems among the 
woody elements, and approximates the LAI despite not including the woody elements of the 
canopy. Rianõ et al. (2004) attempted to test various clustering methods to classify the LiDAR 
data, such as a 3m fixed limit, minimum Euclidean distance clustering, k-means clustering and 
Expectation Maximization clustering. In this study, k-means statistics were used to classify 
LiDAR data and calculate the gap fraction. The k-means statistics is an algorithm used to classify 
or group attributes or features into k number of groups, and uses an iterative algorithm that 
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minimizes the sum of the distances (SOD) from each object to its cluster centroid, over all clusters 
(Equation 4).  

∑ −=
j

i
jiji nObjectCentroidSOD  ][  ......     (4) 

 
This algorithm moves objects between clusters until the sum can be decreased no further. This 
results in a set of clusters that are as compact and well-separated as possible (MATLAB, 2006). In 
this study, the number of clusters (k) was determined to be two as to classify LiDAR returns into 
in-canopy and below-canopy LiDAR returns with the z (height) value of points. The initial points 
of each cluster can be selected by the user when carrying out k-means clustering. However, in this 
study, a random selection of k observations from LiDAR point data was used, with 100 iterations 
calculated. Moreover, the cluster was treated as an error if it was too small, e.g., the percentage of 
laser pulses of a group had less than 1/(total number of clusters)2 (Rianõ et al., 2004). Thereby, the 
laser interception indices (LII) according to the tree species was generated using the LiDAR 
returns reflected through the canopy. 

 
4.3 Generation of Laser Interception Index 

 
Barilotti et al. (2006) suggested the use of the laser penetration index (LPI), with the point 
density of the ground returns and vegetation returns in the sample plots. All LiDAR points were 
divided into two classes; high (height ≥ 1m above ground), and low (height < 1m above ground) 
vegetation returns. However, in the case of various heights of the understory, the LPI was not 
flexible because the value used to distinguish the ground and high vegetation returns was fixed 
at a height 1m above the ground regardless of the characteristic of the forest stand. Therefore, 
the LII was calculated in order to apply flexible heights considering the characteristics of 
various forest stands, as shown in equation 5. 
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where Nin canopy returns is the number of LiDAR returns intercepted by the canopy, Nbelow canopy returns 
is the number of LiDAR returns transmitted through the canopy and Ntotal returns is the total 
number of LiDAR returns emitted from the aircraft. According to equation 5, the vegetation is 
dense if the value of LII is close to 1, but the vegetation is sparse if the value is close to 0. 
Incidentally, the LII is an opposite concept, which is related to the ground covered by the 
canopy, even when the LiDAR gap fraction (GLiDAR), which is the ratio of transmitted LiDAR 
returns to the total LiDAR returns, is need to calculate PAIe. Therefore, equation 5 must be 
changed into equation 6 in order to apply LII to the PAIe. 
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Finally, the PAIe can be estimated artificially by the tree species by substituting Gsun and ksun for 
GLiDAR and kLiDAR, respectively as shown in equation 7. 

 
)1ln(cos2 LIIPAI LiDARe −⋅−= θ       (7) 
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5. Result and discussion 
 
5.1 Classification of LiDAR data  
 
As a result of the classification of the LiDAR returns using k-means clustering, the LiDAR 
returns by the tree species were classified into two clusters as shown in figure 3, because the 
LiDAR returns for both Pinus koraiensis and Larix leptolepis were almost reflected in the 
canopy and ground due to the dense leaves and branches with rare understories. Quercus spp. 
could also be divided into two clusters due to the larger number of ground returns than above 
ground returns. Figure 3 shows the typical distribution of the LiDAR returns according to the 
species of tree. 
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(a) Pinus koraiensis          (b) Larix leptolepis           (c) Quercus spp. 
 

Figure 3. Distribution of the LiDAR returns and classification into two clusters by the tree species 
 

The LiDAR data was partitioned into two groups, and then GLiDAR was generated using Ncanopy, 
Nbelow canopy and Nall. Because few understories existed and abundant canopy in the plots for Pinus 
koraiensis, the LiDAR returns could be clearly clustered into two groups, without a middle 
point layer. However, some of the LiDAR pulses in the plots for Larix leptolepis and Quercus 
spp. were reflected in a middle point layer because there were some understories and no leaves 
when the field survey was carried out. Nevertheless, the results of k-means statistics with two 
centroids were acceptable because the threshold heights for classifying the in-canopy and 
below-canopy points were similar to the field-derived crown base heights, which were 6.5 and 
5.5m for Larix leptolepis and Quercus spp., respectively. In particular, the LiDAR returns in the 
plots for Quercus spp. were clustered well into two parts, even with abundant LiDAR returns on 
the ground and a few on the branches as a result of the species having few leaves. These 
classification results were used to estimate the LiDAR-derived LAI using GLiDAR. 
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5.2 Estimation of effective plant area index using LiDAR gap fraction 
 
Using the GLiDAR values, the LiDAR-derived PAIes, which mean the only canopy PAIes, were 
estimated by tree species. The PAIes of Pinus koraiensis were higher than those of Larix 
leptolepis and Quercus spp., because it is an evergreen needle tree with dense leaves. On the 
other hand, the PAIes of Larix leptolepis and Quercus spp. were relatively low because they had 
a few leaves and branches when the field survey was carried out, i.e. from 1st to 4th April. 
However, The PAIes of Larix leptolepis were much higher than those of Quercus spp.. This was 
attributed to the emitted LiDAR pulses being reflected on the many dense branches of Larix 
leptolepis, as shown in Figure 4.  

 

   
(a) Pinus koraiensis            (b) Larix leptolepis              (c) Quercus spp. 

 
Figure 4. Structure of the stands surveyed by tree species 

 
Linear regression analysis was carried out to determine the relationship between the 
LiDAR-derived and field-derived PAIe. The coefficient of determination (R2) and root mean 
square error (RMSE) were calculated to determine the accuracy of the estimated regression 
analysis (Table 2). 

 
Table 2. Accuracy of the regression function generated by LPI and LII 

 
Tree species Statistics Results 

Function 490.1)ln(629.0 +⋅−=
k

GPAI LiDAR
e  

R2 0.75 
Pinus koraiensis 

RMSE 0.40 

Function 694.1)ln(404.0 +⋅−=
k

GPAI LiDAR
e  

R2 0.89 
Larix leptolepis 

RMSE 0.42 

Function 983.0)ln(595.0 +⋅−=
k

GPAI LiDAR
e  

R2 0.65 
Quercus spp. 

RMSE 0.52 
 
As a result, the accuracy for Pinus koraiensis was the highest of the three tree species, because 
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the LiDAR returns were mostly reflected through the canopy and rarely onto the ground without 
a middle point layer, which is similar to the transmission of solar radiation, because the stands 
of Pinus koraiensis have dense leaves. A greater number of LiDAR returns reflected in the 
canopy can provide a better description of the canopy. On the other hand, Quercus spp. showed 
only a slight relationship between the estimates and ground truth data, which was attributed to 
Quercus spp. having no leaves and a few branches on the tree stems compared with Larix 
leptolepis. No leaves on branches caused some estimation errors due to direct sunlight being 
sensed into the LAI-2000 or the other instruments when the PAIe is measured. Therefore, 
Quercus spp. with no leaves and a few branches had fluctuating PAIes. The PAIe of Larix 
leptolepis was more stable because the abundant branches play the role of leaves.  

 
5.3 Accuracy assessment 
 
The PAIes estimated by regression analysis were evaluated using the field-derived PAIes in 36 
plots (12 plots by tree species) selected for verification. The accuracies for Pinus koraiensis, 
Larix leptolepis and Quercus spp. were 0.82, 0.71 and 0.54, respectively (Figure 5).  
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(a) Pinus koraiensis             (b) Larix leptolepis               (c) Quercus spp. 

 
Figure 5. Evaluation of the estimated LAI analysis by the tree species 

 
The estimated PAIes of Pinus koraiensis had the highest R2 of the three tree species. This is due 
to the right measurement without the direct sunlight because Pinus koraiensis had abundant 
leaves on the branches. Moreover, the predicted PAIe were mostly higher than the observed PAIes 
in the test plots. This was attributed to the different amounts of understory between the sample 
and test areas. Namely, the understory of the test plots might have been less than that in the 
sample area. The estimated PAIes for Larix leptolepis were relatively accurate due to the 
abundant branches, even though there were few leaves on the trees. The plenty branches 
decrease the estimation errors with LAI-2000 because they diffuse direct sunlight. Therefore, 
the accuracy for Quercus spp. was the lowest of the three tree species due mainly to the 
estimation errors with LAI-2000. The lack of leaves and the poor vertical distribution of the 
branches might have caused the poor results. When the PAIes were measured in the Quercus spp. 
stands, the direct sunlight penetrating through the canopy influenced the actual PAIes because 
LAI-2000 the recorded mixed value of the diffused radiation and direct sunlight in forested 
areas. Therefore, LAI-2000 has a weak point in that PAIes need to be measured around sunrise 
or sunset. During Summer or early Autumn, the accuracy of the regression function and its 
evaluation should increase due to the larger number of laser pulses reflected on the leaves as 
well as the diffusion of direct sunlight by the leaves through the canopy for Larix leptolepis and 
Quercus spp.. The PAIes estimation of trees without leaves, i.e. deciduous trees in late Autumn 
and early Spring, may be invalid from the point of view of evaluating the PAIes for trees with 
the best leaves. However, such research may be valuable because the change in the amount of 
leaves can be monitored according to season. 
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The kLiDAR derived using the LiDAR zenith angle and leaf angle distribution also plays an 
important role in assessing the accuracy. Indeed, each zenith angle of the LiDAR returns 
reflected in a forest stand has independent values because each LiDAR pulse is emitted from the 
respective angles due to the rotation of the sensor mounted in the LiDAR system. Therefore, the 
zenith angles of all the LiDAR returns of a target forest stand need to be detected and calculated 
for more accurate results when estimating the PAIe from LiDAR data. In addition, the leaf angle 
distribution should to be also applied with respect to the tree species, even though the leaf angle 
distribution in this study was assumed to have a value of 1, which suggests an ellipsoidal angle 
distribution. In future studies, three variables, the LII, laser zenith angle and leaf angle 
distribution must be considered for more reasonable and precise estimates of the PAIe using 
LiDAR data. 
 
6. Conclusion 
 
The LAI was estimated using the laser interception index for three tree species, Pinus koraiensis, 
Larix leptolepis and Quercus spp.. In the PAIes equation by the Beer-Lambert Law, the gap 
fraction (I/I0) for the sun was replaced by GLiDAR, which is the ratio of the number of below-canopy 
points to that of all returns in the sample plots. The GLiDAR was calculated by classifying the 
in-canopy and below-canopy points using k-means statistics. In the Beer-Lambert Law, the ksun 
extinction coefficient was calculated using the solar zenith angle and leaf angle distribution. 
However, instead of ksun, kLiDAR could be generated using the laser zenith angle (±10°, median 
value of every point in sample plots) and leaf angle distribution (x=1, meaning of ellipsoidal leaf 
angle distribution). As a result, the coefficient of determination between the observed and 
predicted PAIe for Pinus koraiensis, Larix leptolepis and Quercus spp. were 0.82, 0.71 and 0.54, 
respectively. When the PAIes are acquired in forest stands with few leaves and poor branches, such 
as deciduous trees in spring or winter, direct sunlight affects the estimation because the optical 
sensors, e.g. LAI-2000 and AccuPAR-80, measure the diffused radiation transmitted through the 
canopy. Therefore, the reason for the different PAIe with regard to tree species was that Larix 
leptolepis and Quercus spp. had no leaves, and Pinus koraiensis had abundant leaves. The 
accuracy for Larix leptolepis was higher than that of Quercus spp. which is because Larix 
leptolepis has more abundant branches that play a role of diffusing the direct sunlight, while 
Quercus spp. had a poor branch distribution vetically. Therefore, with Larix leptolepis and 
Quercus spp., more accurate results than those found in this study are expected if the study is 
performed in late spring when their shoots and leaves begin to appear. The kLiDAR derived using the 
LiDAR zenith angle and leaf angle distribution also plays a role in estimating the PAIe using 
LiDAR data. Even when fixed values for the laser zenith angle and leaf angle distribution are used, 
future investigations should consider the actual laser zenith angles of each point in the target forest 
stands and the leaf angle distribution according to the tree species. 
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