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Abstract 
 
Site Quality (site productivity) information underpins many aspects of radiata pine plantation 
management in South Australia. The criterion of Site Quality is volume production at age 10 and 
is directly assessed by means of plot based and ocular assessments. Trials examining the use of 
LiDAR for Site Quality assessment were commenced in 2002. LiDAR data was captured using 
three different LiDAR systems in 2002, 2006, 2007 and 169 field plots were measured across 9 
sites. A study was carried out to investigate the effect of LiDAR data capture parameters 
Campaign and Site on the regression relationships between forest and LiDAR variables. The 
study found that the factor Campaign had a significant effect on volume prediction models while 
a possible Site effect was detected for one Site. Predominant height prediction models were 
unaffected. Introducing Campaign and Site parameters in volume prediction models reduced 
Root Mean Square Error by up to 25.5%. Predominant height and volume prediction models 
explained 95.3% and 95.2% of the variance respectively. Campaign effects were not due to 
scanning angle, flying altitude or point density effects but appear to reflect differences in LiDAR 
systems and drought effects. Calibration protocols and modelling strategies are therefore needed 
for general application.     
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1. Introduction 
 
Site Quality (site productivity) information underpins many aspects of radiata pine plantation 
management in South Australia. The productivity criterion used is total volume production to 
small end diameter underbark 10 cm, at or near age 10 y (Lewis et al., 1976). The Site Quality 
assessment method, in use since 1949, relies on objective (plot based) and subjective (ocular) 
assessments before any commercial thinning takes place. It results in a map showing seven Site 
Quality classes at a resolution of 0.1 ha (Figure 5).  
 
The literature describes many examples of LiDAR estimation of stand volume (Maclean and 
Krabill, 1986; Nelson et al., 1988 and many others). Recognising that Site Quality assessment is a 
problem of assessing spatial variation in stand volume, studies were commenced in 2002 to test 
the feasibility of LiDAR based Site Quality assessment. The methodological framework adopted 
was the area based or height distribution method (Næsset, 2002). At the core of this method is the 
development of regression relationships between forest and LiDAR variables at the plot level.  
 
Field data collection for calibration of prediction models constitutes a necessary and costly step in 
the method. The site and forest-type dependency of forest-LiDAR relationships has been the subject 
of several studies (Næsset et al., 2005; Lefsky et al., 2005; and others). These studies found that 
many forest–LiDAR relationships held across a broad range of sites and forest types when identical 
LiDAR instruments and comparable data collection parameters were applied. Changes in LiDAR 
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systems and flight parameters may change the relationships between forest and LiDAR variables 
(Holmgren et al., 2003, Lovell et al., 2005; Chasmer et al., 2006 and others). 
 
The data for this study were collected in 2002, 2006 and 2007. Each trial contributed new sites 
and soil types. Each trial made use of a different LiDAR system. The objective of this study was 
to detect, describe and incorporate any “Site” and “Campaign” effects in the regression 
relationships between forest and LiDAR variables. The structurally homogenous, even aged, 
plantations of radiata pine comprising the study sites were particularly suited to the pursuit of this 
objective. As used in this text “Site” refers to the complex of soil, genetics, climate, silviculture 
and “Campaign” to the complex of LiDAR system and data capture parameters including 
seasonal effects.  

2. Data and materials 

2.1 Study sites 
 
Figure 1 shows the location and rainfall at the nine study sites in the South East of South 
Australia. Because preferred assessment age would be between 8 and 10 plantations were selected 
in age range 7-11 (see Table 1). Sites were also selected so as to represent the main soil groups. In 
total 1756.2 ha of plantations were included in the study. All plantations were unthinned at time of 
data capture except for 100 metre wide Fuel Management Zones (FMZ) at the edges of some 
compartments in sites SP, MH, HO and DR. 
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Figure 1: Study sites established in 2002, 2006 and 2007 in the South East of South Australia 

 

2.2 Calibration plots 
 
A total of 169 rectangular (20x25m) calibration plots were measured in 2002, 2006 and 2007. Plot 
locations were purposively selected so as to sample the full range of the Site Qualities and soil 
groups found on site. The grouping of soils followed Leech (1978) who identified 7 soil groups, 
each producing different growth patterns (Table 1 list soil groups in order of importance). At Site 
DR seven plots were located in the thinned FMZ. Plot corners were located by surveying along 
compartment boundaries and tree rows using measurement tape. Plantation boundaries had been 
surveyed by theodolite or differential GPS, with sub metre precision.  
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Table 1: Site specifics and measurement dates 
 

Site SP DR AE MH BR RC HL HO GH 

Area (ha) 210.9 377.4 51.5 239.0 83.6 170.6 151.4 250.5 221.3 

Soil Groups(*) C, B C, E, B C, E B D, E E, C C, E C, D, E C, E 

Measured 04/2002 04/2006 05/2006 05/2006 08/2007 07/2007 08/2007 05/2007 07/2007

Plantation age 10 9, 10 10 7, 9, 11 10 10 10 9,10 9 

* B: Caroline sand; C: Other sand; D: Tantanoola flinty sand; E: Loamy sand and Terra Rossa 
 
 
Table 2 shows that the number of plots measured per Site was poorly balanced with no replication 
of Sites across Campaigns.  
 
 

Table 2: Number of plots measured by Campaign and Site  
 

Campaign     Site      

 SP DR AE MH BR RC HL HO GH Total 

2002 28 0 0 0 0 0 0 0 0 28 

2006 0 47 7 25 0 0 0 0 0 79 

2007 0 0 0 0 9 13 8 17 15 62 

 
 
Diameter at breast height and predominant height (PDH) were measured in the plots. In South 
Australia PDH is defined as average height of the 75 tallest trees per ha, restricted so that trees are 
evenly spaced in each quadrant of the plot. PDH was estimated as the average height of the 4 trees 
with largest diameter in each plot quadrant, increased by a constant of 0.45m to convert from 
largest to tallest (based on unpublished analysis).  
 
Stand volume was predicted using a model fitted to stand volume data collected from Permanent 
Sample Plots (PSP) across the State. Some 372 measurements in stands aged 4-20 years old were 
used to calibrate a form-factor model predicting under-bark volume to small-end diameter 10cm 
underbark (V10) with basal area, stocking, PDH and age as predictor variables.  Figure 2 shows 
the range of PDH and V10 by Site. 
 

2.3 LiDAR data and pre-processing 
 
A different LiDAR system was used in each of the campaigns, as summarised in Table 3. 
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Table 3: LiDAR system details and flight parameters of three campaigns 
 

 2002 2006 2007 

System Optech ALTM 3025 Leica ALS 50 Optech ALTM 3100 

Date 7th July 2002 9th April 2006 20th July 2007 

Flying altitude (m) 1,100 1,040 1,100 

Pulse repetition rate (Hz) 25,000 73,200 33,000 

Max scanning angle (dgrs) 15.0 13.5 12.5 

Pulse density ( m-2) 0.5-2.1 1.2-9.5 2.3-3.2 

Returns per pulse First and last echo Up to four echoes  Up to four echoes  

 
Data were captured at comparable flying heights and scanning angles. Point densities varied due 
to pulse repetition rates, number of fly-overs by the aircraft, scanner properties and data 
processing by the supplier. During Campaign 2006 higher point densities of up to 9.5 m-2 were 
recorded in narrow bands at the edges of flight strips, due to overlapping of strips as well as 
scanning mirror deceleration effects. Several calibration plots were located in those bands.  
 
LiDAR returns were classified as ground or non-ground points by the supplier. The ground points 
provided the basis for the construction of a Digital Terrain Model (DTM) using an ESRI ArcGIS 
implementation of Delaunay triangulation. The height of LiDAR points above ground level was 
calculated as the difference between a point’s z value and the z value of its projection on the 
DTM. 

3. Methods 
 
Ordinary Least Squares regression (OLS) is commonly used to calibrate prediction models in 
LiDAR applications. One of the base assumptions in OLS is that prediction errors are 
independent and normally distributed. In the presence of grouping structures in the data set, each 
with slightly different relationships between response and predictor variables, this assumption 
may be violated leading to biased estimates of the significance of predictor variables. Grouped 
data sets are a common occurrence in forest mensuration (for example multiple measurements on 
a single tree, remeasures of a permanent plot). Several strategies have been proposed to address 
the problem: data culling to minimise data grouping (Vanclay, 1994), stratifying data and fitting 
separate models to different strata (Næsset, 2002), introducing new explanatory variables 
including the use of dummy variables (Næsset et al., 2005), 2-stage modelling coupled with 
Generalised Least Squares techniques (Ferguson and Leech, 1978) and Mixed Effect Modelling 
(Gregoire et al., 1995; Breidenbach et al., 2007). Mixed-effects models are primarily used to 
describe relationships between a response variable and some covariates in data that are grouped 
according to one or more classification factors. The term mixed effects refers to the distinction 
between fixed effects (effects associated with an entire population or with certain repeatable 
levels of an explanatory variable) and random effects (localised effects associated with individual 
experimental units drawn at random from a population and regarded as additional terms, to 
account for correlation among observations within the same group), (Pinheiro and Bates, 2000). 
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Fixed and random effect variables have different roles: fixed effect variables explain variation 
while random effect variables help organise unexplained variation (Robinson, 2008). 
 
Models were developed in two stages. In the first stage single predictor variable models were 
fitted for PDH and V10, using OLS. Model residuals were analysed by Campaign and Site to 
reveal any structures indicative of grouping of the data. In the second stage one, two and 
three-predictor variable models were fitted, with incorporation of Campaign and Site effects, 
either as dummy variables in OLS models or as fixed or random effects in linear mixed effect 
(LME) models. 
 
A range of LiDAR predictor variables were considered, describing different aspects of the 
distribution of laser heights in the calibration plots. To minimise the impact of differences in 
LiDAR system capabilities only the first return (i.e. first recorded echo) data were used. All first 
return data were used regardless of classification (ground or vegetation points) or pulse type 
(single or multiple return pulses). Variables included: 
• mean height (mh), mean quadratic height (mqh), standard deviation of heights (sdh) 
• maximum height (hmax), average of the maximum height in each plot quadrant (hmax4) 
• percentile heights of the ordered cumulative height distribution (h0, h10,…,h90) 
• proportion of ground returns (propg), proportion of returns in height frequency distribution 

classes (d0, d10,…, d90).  
Most of these variables have been proposed in other studies. Additional predictor variables 
considered in the models were age, LiDAR point density and scanning angle. 
 
To identify the most effective predictor variables a combinatorial screening approach was adopted 
whereby models were fitted to all possible combinations of the predictor variables mentioned above. 
Logarithmic transformations or quadratic forms of the variables were considered. The criterion for 
selecting the preferred one, two and three-variable models was the Akaike Information Criterion 
(AIC) – following Gregoire et al. (1995) - with the added constraint that each explanatory variable 
had to be significant at p<0.05. Root Mean Square Error (RMSE) was used as a measure of the 
precision of model predictions. 
 
In OLS regression the dummy variables were used to distinguish Campaign and Site subgroups in 
the data set. Hypotheses of difference in slope and/or intercept dummy variables were compared.  
 
In LME models Campaign was introduced as a fixed effect because of the low number of levels of 
the variable and its specific nature. Site was introduced as a random effect for reasons explained 
later. Several possible assumptions regarding the random effects were tested: (1) variable 
intercept but constant slope, (2) variable slope but constant intercept or (3) variable intercept and 
slope. Models with the same fixed effects but different random effect assumptions were compared 
using likelihood-ratio tests.  
 
Analysis was performed using R statistical software (R-Development-Core-team, 2007).  
 
Volume prediction models were used to generate volume surfaces which were then converted to 
Site Quality maps using volume to Site Quality conversion tables. LiDAR Site Quality maps were 
compared with conventional Site Quality maps using an error matrix approach. Because of space 
constraints the results of this analysis could not be reported here. However an example of a 
LiDAR and conventional Site Quality map was presented for illustrative purposes.    

4. Results 

4.1 Models without Site and Campaign effects 
 
Single variable OLS models for PDH and V10 were fitted to the whole data set and residuals were 
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examined. The best predictor for PDH (lowest AIC) was hmax4 (the mean of the highest returns in 
each of the four plot quadrants). This was interesting because hmax4 was the variable that most 
closely matched the way PDH was measured in the field. There was no evidence of curvature in the 
relationship. The best single predictor variable for V10 was mqh (mean quadratic height of first 
returns, including ground returns). This is a somewhat similar result to that obtained by Nelson et al. 
(2007) in loblolly pine plantations in the south eastern United States. The PDH and V10 models 
explained 95.3% and 91.1% of the variance in the data. Figure 2 shows the fitted models. 
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Figure 2: Single variable OLS models for PDH and V10 

 
The PDH model residuals were indifferent to the factor Campaign and evidence of Site effects 
was weak. The V10 model residuals however were strongly correlated with the factor Campaign. 
There were also significant differences at the Site level but those mostly mirrored Campaign 
trends, with the notable exception of Site MH (see Figure 3, left). Further analysis showed that the 
residuals of the models were not significantly correlated with scanning angle or LiDAR point 
density. Furthermore, plots located in the thinned FMZ of Site DR did not produce different 
residual patterns compared to unthinned plots and were therefore left in the data set (in fact this 
confirms the efficiency of the variable mqh as a predictor of volume).  
 
It was concluded that Campaign, and possibly Site effects, were affecting volume-LiDAR 
relationships, suggesting that models in Figure 2 could be improved. 
 

4.2 Models incorporating Site and Campaign effects 
 
Comparison of AIC and likelihood ratio tests showed that Site and Campaign effects were not 
significant in PDH models and no further analysis was carried out of those models. 
 
Dummy variables for Campaign and Site were introduced into a single variable OLS volume 
model. Table 4 shows 3 variants of this model. Models with Campaign dependent slope or 
Campaign dependent intercept and slope had a lower AIC indicating that a model structure 
consisting of parallel lines best fit the data. C_2006, C_2007 and S_MH are dummy variables that 
take the value of 1 when Campaign is equal to 2006 or 2007, or Site is equal to “MH”. Otherwise 
they have a value of zero. 
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Table 4: Ordinary Least Squares volume prediction models incorporating Campaign and/or Site effects  
 

Model Parameters (standard error) RMSE  AIC
1 V10 = 22.91 + 1.209 mqh 

           (3.50)   (0.029) 18.4  1472

2 V10 = -2.36 + 1.300 mqh + 8.49 C_2006 + 30.77 C_2007 
          (4.14)    (0.025)        (3.22)                  (3.46) 

14.4  1388

3 V10 = 0.10 + 1.301 mqh + 28.25 C_2007 + 15.89 S_MH 13.7  1372
           (3.32)  (0.024)         (2.51)                    (3.18)  

 
Model 2 showed significant differences between all three Campaigns at p=95%. Model 3 
expressed that without the data for Site “MH”, the difference between Campaign 2002 and 2006 
was no longer significant. While the variable S_MH indicated a possible Site effect, its 
significance had to be questioned given the limitations of the data set (such as no replication of 
Sites across Campaigns). There was no evidence of Site effects in Campaign 2007 despite the 
important soil differences between Sites (See Table 1). Analysis showed that the distribution of 
the Campaign 2007 model residuals was not correlated with Soil Groups.  
 
Campaign and mqh were introduced into LME models as fixed effects. Site was introduced as a 
random effect because the OLS result for Site “MH” is difficult to rationalise against a range of 
anticipated effects from other Sites and the ill-balanced distribution of the data (see Table 2). 
Analysis of model fit parameters and log likelihood parameters showed that random effects were 
most effectively modelled as random intercepts (parallel lines). Table 5 shows three variants of 
the model. RMSE are provided both for global and localised (Best Linear Unbiased Predictors - 
BLUP) predictions.  
 
Figure 3 shows the marked improvement of the distribution of residuals of models including 
Campaign and Site effects (OLS Model 3 and LME Model 2) compared to the model without 
these effects.  
 
 
Table 5: Linear Mixed Effect volume prediction models incorporating Campaign and/or Site effects. 
 
Model  Effects  RMSE AIC
   fixed (standard error) random global local 
1  V10 = 18.10 + 1.293 mqh Site 19.3 13.7 1405
            (5.27)    (0.024)   
2  V10 =  -2.26 + 1.299 mqh + 8.78 C_2006 + 30.90

C_2007 Site 14.5 13.7 1382

             (6.20)  (0.024)         (6.37)
(6.18)    

3  V10 = 4.01 + 1.300 mqh + 24.59 C_2007  Site 14.8 13.7 1388
           (4.36)  (0.024)          (4.39)    
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 Figure 3: Residuals of OLS and LME volume prediction models grouped by Campaign and Site 
 
Likelihood ratio tests comparing the LME models with their corresponding OLS form were all 
significant at the 95% probability level. Model 2 was the model with the lowest AIC, and 
interestingly the variable C_2006 was not significant at 95%. According to this model therefore 
the difference between the Campaign 2002 and 2006 effects was not as important as indicated by 
corresponding OLS model 2. Given the data and the Campaign circumstances (rainfall in 
preceding year, see Discussion) the LME inference seems the more plausible one. 
   
Incorporating Campaign and Site effects in prediction models reduced RMSE by up to 25.5%. 
Analysis not reported here showed that the inclusion of additional LiDAR variables failed to 
improve model fit and that Campaign and Site effects remained significant. OLS model 3 
explained 95.2% of the variance, LME model 1 (BLUP) explained 95.1%. 
 
Site Quality maps were compiled using LME, Model 1 and were compared with conventional Site 
Quality maps. An example is shown in Figure 4 and clearly demonstrates the potential of LiDAR 
as an alternative basis for Site Quality assessment.   

5. Discussion 
 
Significant Campaign effects were observed in the relationship between mqh and plot V10. No such 
effects were observed in the relationship between hmax4 and plot PDH. This indicated that 
Campaign effects affected the shape but not the range (minimum, maximum) of the distribution of 
LiDAR first returns heights observed in a plot. Differences in flying height, scanning angle and point 
density were rejected as possible explanations of these effects. There simply were no significant 
differences in flying height between Campaigns and there was no correlation whatsoever between 
scanning angle or point density and the model residuals of OLS, Model 1. The observations in this 
study were mostly consistent with the findings of Chasmer et al. (2006) who reported greater canopy 
penetration rates as laser pulse energy increased. However, that study considered all pulse echoes 
(up to four) rather than just the first echoes used in this study. A more plausible hypothesis perhaps 
was that the severe drought in the year leading up to Campaign 2007 reduced plantation leaf area 
and hence the relationship between mqh and plot V10. Linder et al. (1987) found that in a period of 
drought radiata pine responds by producing shorter needles, as well as shedding significantly more 
older needles earlier in the summer. The rainfall in the 12 months preceding Campaign 2007 data 
capture was 554 mm while it was 762 and 707 mm in the year leading up to Campaign 2002 and 
2006 respectively. Nelson et al. (2000) offered a similar explanation in a study in Costa Rica. 
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Figure 4: LiDAR and conventional Site Quality maps for Site DR, 9 year old plantation. Calibration plots 

are shown in a colour indicating field measured Site Quality. 
 

The only evidence of a possible Site effect was observed in Site MH. It has been well documented 
that soil and climate differences may lead to site specific relationships between stand height and 
stand volume (Lewis et al., 1976; Skovsgaard and Vanclay, 2007). However, given the isolated 
occurrence of a Site effect in this study, given that there was no replication of comparable Site 
conditions in the study and given the ill-balanced distribution of data, treating Site as a random 
effect in a mixed effect model seemed a more prudent path for prediction.  
 
Mixed effect modelling may also provide advantages where a model needs to be applied outside 
the model’s domain (where Site is unknown) or when the number of dummy variables becomes 
unmanageable. The inclusion of LiDAR variables additional to mqh into the prediction models 
did not significantly improve the models. This is consistent with the findings of Nelson et al. 
(2007).    
 
The objective of Site Quality assessment is to make site-specific, spatially explicit estimates of 
forest productivity. The Campaign and Site effects detected in this study can therefore not be 
ignored. Calibration data collection protocols need to be developed that produce the field data 
necessary to detect and quantify these effects. Alternative sampling strategies such as random, 
systematic and purposive sampling need to be compared to identify the strategy that best fits the 
purpose of the data, which is to fit a calibration model of known structure. Modelling techniques 
need to be adopted that allow for Campaign and Site effects to be expressed and make efficient 
use of calibration data collected in the past. Planned research aims to address these questions. 

6. Conclusion 
 
The study has produced evidence that Campaign and possibly Site effects influence the 
relationships between stand and LiDAR variables in young age radiate pine plantations. Of the 
two effects Campaign is by far the more important one; volume relationships were significantly 
affected while predominant height relationships were not. These effects were successfully 
incorporated in volume prediction models using Ordinary Least Squares and Mixed Effect 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 48

modelling techniques resulting in reductions of RMSE by up to 25.5%. Hypotheses as to the 
cause of the effects were presented. The evidence indicates that Site and Campaign effects cannot 
be ignored in the calibration of LiDAR prediction models for Site Quality assessment and should 
be considered in field data collection protocols and modelling techniques. Research needs were 
highlighted. 
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