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Abstract  
 
Precise description of forest 3D structure at plot level is required for sustainable ecosystem 
management. However, a detailed structure description from traditional field measurements is 
tedious. We propose an innovative method to quantify in 3D the spatial distribution of forest 
structure from terrestrial lidar data. The method rests on the hypothesis that the normalized 
number of laser returns within a given volume element is proportional to the density of 
vegetation material inside this volume. The developed model is based on analysis made inside 
Svoxels (spherical voxels) to compute a spatialized vegetation density index. The model was 
tested on two different scans of the same plot. The resulting vegetation density index well 
represents the vegetation structure as observed within the lidar point cloud. Quantitative 
analyses confirmed a global consistency of the results within and between scans. However, we 
observed a slight bias in the computed density indexes. It might be mainly explained by 
occlusions, which cause 1) a slight decrease of the density index with distance and 2) local 
differences in density index between scans. Future work will focus on improving our algorithm 
and correcting biases. These results are promising for the development of quantitative measures 
of the 3D forest structure. 
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1. Introduction  
 
Precise description of 3D structure of forests is useful for timber resource monitoring, 
ecosystem management and preservation, or improved understanding on ecosystem functioning. 
However the spatial complexity of forests makes structure measurement very difficult, 
particularly since structure is not a satisfyingly defined feature (Fleck et al. 2007). A complete 
3D plot description is not conceivable using traditional field inventory methods. The recent 
development of terrestrial lidars allows to acquire very detailed 3D data on forest structure. It 
opens up new opportunities to derive metrics closely linked to forest structure and to reduce 
time and costly field measurements (Hopkinson et al. 2004). 
 
Terrestrial lidars were originally developed for civil engineering (see Lichti et al. (2002) for 
examples of systems and applications). Recent studies expanded their use on tree or stand 
structure measurements. Most of them focused on estimating traditional field-based forest 
parameters. Hopkinson et al. (2004) first demonstrated that it is possible to locate and identify 
individual trees with high precision and to measure total tree height and diameter at breath 
height (dbh). Tree heights were however underestimated of about 1.5 m when compared with 
field validation data. This was mostly due to low sampling density at the upper canopy level 
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caused by occlusion effects of the signal and a suboptimal survey protocol. Results for mean 
dbh differed by only 1 cm from tape measurements. Similar results were obtained by other 
authors for both height and dbh measurements using semi-automatic data extraction methods 
(Watt and Donoghue 2005; Fleck et al. 2007; Wezyk et al. 2007). Other forest parameters such 
as stem density, total basal area, gross and merchantable timber volume were also estimated 
from terrestrial lidar data with a good agreement when compared with traditional field 
measurements (e.g. volume estimations within 7 % of the traditional field estimations 
(Hopkinson et al. 2004)). Other efforts dealt with automatic tree location and height, dbh, stand 
basal area or timber volume estimations (Aschoff et al. 2004; Bienert et al. 2007; Király and 
Brolly 2007; Wezyk et al. 2007).  
 
The very high sampling rate of terrestrial laser systems allows to generate detailed 3D canopy 
models therefore opening up the possibility to analyze fine scale stand structure, foliage 
distribution, canopy light transfer or leaf area indices that are important to understand and 
model forest function and dynamic. However few studies have demonstrated the interest of such 
systems for ascertaining parameters beyond those from the traditional inventories. As an 
exception, Fleck et al. (2007) proposed a method to quantify canopy projection far much precise 
than the 8-point canopy projection from a ground operator used in traditional inventories. As 
other non-traditional measures, Danson et al. (2007) proposed a method to estimate canopy 
directional gap fraction and Van der Zande et al. (2006) an approach for vegetation profile 
reconstruction. Studies using terrestrial lidar show much opportunity for developing new 
methods for forest canopy metrics that will take full advantage of terrestrial lidar datasets. One 
of the main issues will be to solve the problem of the distance-dependent varying point density 
from the lidar returns. 
 
This paper introduces an innovative approach to analyze the vegetation structure from 3D point 
clouds acquired with terrestrial lidar. The method quantifies the 3D spatial distribution of forest 
canopy material in volume elements (~dm level). It makes available operational calculations 
linking the 3D point cloud recorded by a terrestrial lidar with the spatial distribution of the 
vegetation. This study was also performed considering the link between airborne lidar and field 
data with the aim of improving information extraction from airborne lidar data on forested areas. 
Indeed airborne lidars proved capable to estimate the spatial distribution of forest parameters 
such as height, crown area, timber volume or biomass at both tree or stand level (Lim et al. 
2003). However these airborne estimates require local calibration through acquisition of field 
data. 
 
2. Method 
 
2.1 Study area and field data  
 
The main study site is part of a National Environmental Observatory (ORE Draix) located in the 
southern part of the French Alps. It is part of the Haute-Bléone state forest, mainly composed of 
black pine (Pinus nigra) planted in the 1880’s to protect against soil erosion. Most of the stands 
are even-aged and mature. Elevations range from 802 to 1263 m. Traditional field inventory was 
conducted during December 2007 within circular plots of 15 m and 9 m radius. Within the plot 
the following characteristics were measured for all the trees with dbh > 7 cm: dbh, total and 
timber heights, crown base height, crown diameter and tree position. For the purpose of that 
study, we focused on a 15 m circular plot having a tree density of 66 stems/ha and located on a flat 
area. 
 
2.2 Data acquisition with the terrestrial lidar  
 
Terrestrial lidar surveys were made on March 2008 using an ILRIS-3D system (Optech Inc, 
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Toronto, Canada). The system measures the laser returns within a window 40° wide in both 
horizontal and vertical directions. The laser emits and measures light at 1,500 nm. Point density 
of each scan is controlled by the operator. The system can register the intensity and distance for 
either the first or the last backscattered signal. In our study, we selected primarily the last returns 
considering that they would provide a better statistical representation of the vegetation 
distribution compared with first returns. However, first and last returns were recorded at some 
particular system base stations (i.e. system location) for comparison and quality assessment. The 
ILRIS-3D base stations were selected outside the plot at varying distance from the plot centre 
and separated by an angle of about 120° relating to the plot center. Artificial targets (polystyrene 
spheres with 8 cm diameter) were distributed within the plot and measured using differential 
GPS and total station to improve the alignment (co-registration) and the georegistration of the 
scans acquired from different base stations. 
 
2.3. Method developed for quantifying the spatial distribution of vegetative elements  
 
The objective of this study was to develop an algorithm to calculate vegetation density from 
lidar returns visible in the form of point clouds. The point density needs to be locally 
transformed into density of vegetation components. We used a statistical approach 
hypothesizing that the interception rate is related to the vegetation density. Such an approach 
was preferred to a formal physical-based model (e.g. Beer-Lambert law) because of the 
heterogeneity of distribution of canopy components and also because of the relatively small 
footprint of the laser beam compared to vegetation elements size. Estimation of density index 
throughout a scene involved first dividing the plot-space into constant volume elements (voxels). 
For each voxel, we calculated (1) the number of lidar points within the voxel and (2) the number 
of laser beams entering the voxel. The density index of each voxel is given by the ratio (1) / (2). 
Our method has two spatial characteristics: a regularly spaced grid of voxel centers and the use 
of spherical voxels.  
 
2.3.1. Regular 3D grid and spherical voxels 
 
Voxel centers were arranged on a 3D grid regularly distributed along x, y and z axes. The grid 
was georeferenced in the Lambert III conformal conic coordinate system and was used to 
process each scan of a same plot. Computations from all scans of the plot could therefore be 
compared and integrated. Before processing each scan, the Lambert III grid is changed into the 
Cartesian system of the scan. The transformation model is computed using (1) The Lambert III 
coordinates of target centers, measured on the field (total station + DGPS), and (2) the Cartesian 
coordinates of the targets, measured on each scan by fitting a spherical shape on its 
corresponding point clouds. The 3D Reshaper ® software was used for that purpose. A 
minimum of 4 spheres was required for computing the transformation model.  
 
Data acquisition with the terrestrial lidar follows a spherical geometry. We therefore adopted a 
spherical geometry to simplify computations on the resulting point cloud from lidar 
measurements. Lidar position was taken as the origin of the spherical system. The space 
illuminated by the lidar was already divided into voxels. Therefore each voxel center was 
associated with a spherical coordinate (r, θ, φ) and bounded with the following conditions: 

1. 4 angles: θmin = θ - dθ, θmax = θ + dθ, φmin = φ - dφ and φmax = φ + dφ, 
2. 2 distances: rmin = r - dr, rmax = r + dr, 

with dr set to half the grid resolution. This new volume is referred to as the spherical voxel or 
Svoxel (Figure 1). We set dθ and dφ to ensure a constant volume of Svoxels (V = R3, with R the 
3d resolution of the grid). The resulting Svoxels have the following properties: 

1. Distortion of a Svoxel compared to the reference voxel is proportional to r (cf. figure 1), 
2. Distortion of a Svoxel increases when angles θ and φ increase, 
3. Svoxels are not strictly contiguous. Small overlaps or gaps can occur which are more 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 328

important for larger values of θ and φ, 
4. For a given center point, the Svoxels generated from different base station locations will 

not strictly overlap due to slight changes in shape and orientation. The highest 
differences will occur when comparing Svoxels from scan with a 45° (modulo 90°) 
difference between viewing angles. 

 
Even with these properties, differences between voxels and Svoxels remain small and it is thus 
assumed that they are not detrimental to precise density index computation. 
 

A  b  
 

Figure 1: Shape of a Svoxel at 1 m (a) and at 3 m (b) for 50 cm grid resolution. 
   

2.3.2 Algorithm to calculate density index of the grid points 
 
The following algorithm was implemented to calculate the density index of each Svoxel in the 
lidar scanning field of view: 

1. Generation of a 3D regularly spaced grid in Lambert III at a resolution R, 
2. Projection of the grid in the sensor Cartesian system, 
3. Switch scan point cloud and grid into spherical system, 
4. For each point of the grid : 

1. Computation of the theoretical number of laser beams (Ntheorical) entering the Svoxel 
based on the point density selected for the scan. This number decreases with 
distance to the sensor due to the scanning geometry.  

2. Evaluation of the number of laser beams intercepted before the targeted Svoxel 
(Nbefore: points satisfying the 4 angles equation with a distance lower than rmin). The 
difference between Ntheorical and Nbefore represents the number of beams reaching the 
Svoxel. 

3. Identification of the number of returns inside the targeted Svoxel (Ninside: points 
satisfying the 4 angles and 2 distances equations). 

4. Computation of the vegetation density index D, such as:  
 

D = Ninside / (Ntheorical - Nbefore)*100     (1) 
 
If Ntheorical - Nbefore = 0, a no-data value is assigned. If Ntheorical - Nbefore is lower than a 
given threshold Ts, results are considered as non-significant because too few beams 
are available to assess Svoxel density. Output of results in Lambert III. 

5. Steps 2 to 5 can be reapplied to other scans of a same plot acquired from other base 
stations. 

 
2.4 Data analysis and validation  
 
For this preliminary study the algorithm was applied on 2 out of the 8 scans available for the 
plot. Scan density was set to 6.24 mm (resp. 7.02 mm) at 15 m for scan 1 (resp. scan 2) and the 
last returns were recorded. Three Svoxel resolutions were selected: 0.25, 0.5 and 1 m. Results 
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were first evaluated from a preliminary visual assessment where Svoxels with a positive and 
significant density index were visualized on the lidar 3D point clouds of selected trees. 
Preliminary tests allowed us to adopt a value of 50for the threshold defined for non-significant 
values (Ts).  
 
Then two sets of procedures were realized:  

1. In order to evaluate the result consistency inside a given scan, several stand crowns 
located at various distances from the base station 1 were extracted and the distribution 
of positive and significant density indices were analyzed. Results on four black pines 
and one Spanish fir (Abies pinsapo) were compared (cf. Fig 2). 

2. Density index values obtained from two different base stations were also compared to 
evaluate the consistency of the results between different scans. This preliminary 
analysis defined if results from multiple scans can be compared and merged. 

 
 

1
2 5

3
4s

Base station

Viewing 
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2 5

3
4s

Base station

Viewing 
direction

 
 

Figure 2: The tree crowns selected for analysis are shown on the 3D point cloud obtained from the system 
position 1 and viewed from the top. Crowns represent black pine (1, 2, 3 and 5) and Spanish fir (4). 

 
3. Results and discussion 
 
3.1 Visual analysis 
 
The method gave visually consistent results. Figure 3 compares the point cloud from the 
original scan and the values of the density index for Svoxels on a vertical slice of a black pine 
crown. The tree shape is well described by Svoxels with density index values apparently 
reasonable: highest density values are logically located along the trunk and close to large 
branches regardless of the Svoxel size. Tree outline description quality is getting coarser when 
Svoxel size increases. However decreasing the Svoxels size increases the rate of non-described 
areas (no-data Svoxels) of the crown due to occlusions (i.e. mutual shading) particularly at the 
back part of the tree. Therefore researches have to be conducted to define the Svoxel size 
providing the optimal description of the vegetation structure. The optimal Svoxel size is 
expected to vary with the stand structure (density, tree dimensions and tree arrangement). 
Furthermore the number of beams generated by the lidar should be high enough to allow enough 
intercepted beams by the tree structures of the scene. While the point density at each Svoxel 
varies greatly according to the scanning parameters and the occlusion effects between canopy 
elements, the computed density indexes are relatively homogeneous within the crowns. The link 
between spatial distribution of canopy components and density index of Svoxels follows the 
general density patterns expected for these conifers. However, a slight dissymmetry remains 
between density index of Svoxels of the crown facing the scanner system and those on the back 
part of the tree. This may be explained by a heterogeneous spatial distribution of vegetation 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 330

elements. The occlusion of some vegetation elements may bias the density index values (Fig. 4). 
At tree level, underestimation and overestimation effects do not offset each other inducing a 
slight underestimation towards the back of the crown (Fig. 3). 

 

Figure 3: Density index were computed for the three grid dimension (0.25, 0.5, 1m). Density index are 
superimposed on their corresponding Svoxel centre on the lidar 3D point cloud. Results are given for a slice 

cut through a tree in the scan direction (a). Density index were separated into 4 classes using quartiles. 
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Figure 4: Effect of occlusion on the density index: (a) When Trunk B in the Svoxel is hit by 3 beams out of 
9 it leads to a density index of 33 %. (b) When Trunk A external to the Svoxel is hit by 3 incoming beams 
but does not mask another canopy element in the Svoxel, the density index becomes 50 %. (c) When Trunk 

A masks trunk B and no other vegetation components is hit in the Svoxel, the density index is 0 %. 

 
3.2 Comparative analysis of different tree crowns in a same scan 
 
Results for the five selected trees are summarized in table 1. The number of Svoxels with a 
positive and significant density index gives an indication of the number of Svoxels used for 
computing each mean tree density index. It varies significantly from one tree to another and 
cannot be simply related to distance from the lidar system. This number depends on Svoxel size, 
tree size, distance from the sensor and occlusion patterns. As for the mean density values, we 
expected similar values for a same species. Although values were relatively similar for the 4 
black pine trees (table 1), their mean density index varied respectively from 10 to 13.4 %, 9.8 to 
12.8 % and 8.3 to 14.6 % for the 25 cm, 50 cm and 1 m Svoxel resolutions respectively. Since 
only few trees were analyzed this could be due to natural tree heterogeneity. However, further 
tests on more trees are required to validate if a bias could originate from occlusion effects, 
similarly as what was observed for the density index in front and towards the back of individual 
crowns. In such case density index would decrease with the amount of obstacles in the path of 
the light beams. This trend can be observed from our dataset for all Svoxel resolutions but not 
very clearly (table 1). For instance when comparing results for black pine 3 and 5, tree mean 
index is clearly affected by the vegetation present between the lidar system and the observed 
tree: black pine 3, is less affected by occlusions (see figure 2) than black pine 5 and has a higher 
density index (table 1). We hypothesize that occlusions of the incident beams might be the main 
contributor to this bias. The anomalies related to the distance probably result from (1) a decrease 
of the sampling density with distance to the lidar system and (2) a change in the spatial 
distribution of the laser beams entering the Svoxels. Occlusions transform the regular sampling 
pattern into an irregular. In heterogeneous middles, this transformation may biased the density 
index computation. Additional analyses are necessary to evaluate the incidence of this bias on 
the quality of vegetation characterization. Combining scans acquired from various base stations 
will allow to quantify and partly correct this bias. 
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Table 1: For each tree crown density index mean and standard deviation were computed for 3 grid 

resolutions: 25, 50 and 100 cm. The theoretical entering beam number gives an indication of the crown 
distance from the lidar system. 

 
Svoxel 

resolution 
 Spanish fir 

4s 
Black Pine 

1 
Black Pine 

2 
Black Pine 

3 
Black Pine 

5 
Distance   15 m 21 m 33 m 39 m  39m  

Number of Svoxel with significant 
positive value inside the crown 

3455 7328 1172 1558 457 

Mean Ntheorical 1821 585 285 212 214 
Mean density index 14.2 12.9 13.4 11.4 10.0 

25 cm 

(standard deviation) (15.1) (14.0) (14.8) (13.1) (13.2) 
Number of Svoxel with significant 
positive value inside the crown 

705 1859 777 566 349 

Mean Ntheorical 7199 2317 1103 840 829 
Mean density index 15.9 12.8 11.3 10.5 9.8 

50 cm 

(standard deviation) (15.7) (12.8) (12.1) (11.5) (12.8) 
Number of Svoxel with significant 
positive value inside the crown 

136 396 244 136 116 

Mean Ntheorical 28405 9271 4380 3354 3288 
Mean density index 17.8 14.6 11.0 10.8 8.3 

1 m 

(standard deviation) (18.4) (14.0) (11.3) (11.7) (9.6) 
 

 
Histograms of the density index values allow to compare the distribution for the 5 selected 
crowns for the three grid resolutions. Figure 5 presents the histogram for a Svoxel grid 
resolution of 50 cm. The histograms are comparable for all the pines. For the Spanish fir a slight 
difference can be noticed on figure 5 and was observed at all the 3 resolutions: density index 
frequencies are higher than those from the pines for densities ranging from 20 to 50. 
Consequently standard deviations were similar for all the black pine crowns and were higher for 
the Spanish fir (table 1). A higher foliage density for this species could explain this result, even 
if the density index computation bias is likely to contribute to this difference. This open up the 
possibility to classify species using density index distribution.  
 
3.3 Comparison of density index for two scans 
 
Table 2 recaps the results of the comparison of the 2 studied scans for two grid resolutions (0.5 
and 1 m). The total number of Svoxels was calculated for a grid including the circular plot. After 
merging two scans from different base stations we noticed that the no-data values represented 
only about 12 % of the total number of Svoxels in the plot for all grid resolutions. The Svoxel 
centers, for which a significant density index value was computed from both scans, are only 
about 55 % of the total number of Svoxels of the grid. This low value is explained by the fact 
that only the bottom part of the plot was scanned in the second scan. The significant differences 
in the magnitude for the “Mean density index difference” and the “Mean difference for positive 
and significant density index values” are explained by a high number of Svoxels located in 
vegetation gaps. These Svoxels, with a null index value, are consistent between scans. Large 
differences in density index values are observed inside the vegetation elements. For the 50 cm 
grid resolution about 15 % of the density index values differ from less than 1 % and 45 % from 
less than 5 % but 20 % of the Svoxels have index values with a difference higher than 20 %. 
Part of these differences can be explained by (1) the difference between the Svoxel shapes 
observed from two points of view and (2) by the type of vegetation material hit by the laser 
beams. For example trunks or large branches can be sources of differences since they are not 
seen at the same place according to the base station location (back part of them, relative to view 
point, is occluded). Some differences may also be related to the potential bias we previously 
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mentioned. All these hypotheses will have to be verified. Merging results from various scans is 
expected to improve the reliability of the density index. Lastly, we observed from the results 
that mean differences decrease with resolution while standard deviation increase. This tends to 
confirm the influence of large wooded elements present in the Svoxel on density index value 
differences. Actually, when grid resolution is getting coarser the proportion of large wooded 
elements inside the Svoxel decreases thus reducing the mean difference. 

 
Figure 5: Histograms of density index values (positive and significant) for 5 tree crowns and for a Svoxel 

resolution of 50 cm. 

 
 
Table 2: Results of comparison between density index values computed for two scans. 

Svoxel 
resolution 

Total number 
of Svoxel in 

the grid 

Mean difference of density indices 
(SD) [Number of Svoxels] 

 

Mean difference for positive and 
significant density index values 

(SD) [Number of Svoxels] 
1 m 58499 -1.4 (6.4) [432175] -4.1 (11.5) [698] 

50 cm 467999 -0.7 (5.4) [208531] -3.1 (16.1) [2266] 
 
 
4. Conclusion  
 
We proposed an innovative method to quantify spatial distribution in 3D of forest structure from 
terrestrial laser scanner data. The method rests on the hypothesis that the amount of laser beam 
returns inside a Svoxel (volume element defined in the lidar spherical coordinate system) is 
proportional to the density of vegetation material included inside this Svoxel. First results appeared 
very promising despite a persisting bias resulting from occlusions. While the density indexes 
globally confirm our hypotheses, some adjustments are required to improve further the 
interrelationship between the lidar returns and the amount of forest components in the Svoxels. 
Future work will focus on improving our algorithm, refining calculations, and correcting biases. 
In-depth analysis of scans acquired in both first and last pulse modes and multi-scan comparisons 
and combinations at different grid resolutions also need to be tested out. Our analysis was an 
essential prerequisite for developing a method aiming at merging the different scans acquired on a 
same plot. This study was realized considering the prospect of establishing a link between airborne 
lidar data and field data with the aim of improving information extraction from airborne lidar data on 
forested areas. These results are very promising for the development of quantitative measures of the 
3D forest structure that will meet the actual information needs in the fields related to forest ecology 
and management.  
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