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Abstract 
 
The practicality of using an atmospheric differential absorption lidar (DIAL) such as ESA’s 
A-scope for measuring vegetation is explored. Monte-Carlo ray tracing is used to simulate full 
waveform lidar responses over explicitly represented 3D forest models with both short and long 
temporal pulses. Deconvolution and Gaussian decomposition are used to estimate tree top and 
ground positions over a range of forest ages and stand densities. The errors of the height 
estimates are precisely quantified by comparison with the 3D model height. It is shown that (at 
least with a 12.5cm range resolution) an instrument optimised for atmospheric CO2 
measurement can successfully measure forest height over reasonably flat ground. 
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1. Background 
 
Carbon flux models are essential for understanding the complex processes involved in the 
Earth’s climate (Woodward et al, 2004). These models need variables, such as biomass and leaf 
area index (LAI) at a range of scales and locations (Williams et al, 2005). Many areas are 
inaccessible and it would be prohibitively expensive to cover the world with airborne sensors. 
Space-borne remote sensing may be the solution. 
 
One of ESA’s six proposed Earth explorer missions, due for launch in 2012, is a space-borne full 
waveform lidar; the A-scope satellite (ESA, 2007). It will be optimised for measuring 
atmospheric CO2 by differential absorption lidar (DIAL) with two laser wavelengths, one which 
causes resonance in the CO2 molecule, one that does not. These will be close to either 1.65μm 
or 2.06μm. This paper investigates the ability of such an instrument to measure forest 
parameters. 
 
2. Simulation system 
 
Studies on estimating forest parameters from waveform lidar are promising; however positional 
uncertainty of remote measurements and the difficulty of field measurements make validation of 
real data difficult (Hyde et al, 2005). Computer simulations allow validation as the true 
parameters of the virtual forest are known. A Monte-Carlo ray tracer based upon the RAT library 
developed from “frat” (Lewis, 1999) was used to simulate a waveform lidar. 
  
Explicit geometric forest models, in which every needle is described were used for the 
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simulations. Their creation is described in Disney et al. (2006). In a change to the method of 
Disney et al. (2006) needles were allowed to transmit light; trusting in the accuracy of the 
Prospect model (Jacquemond and Baret, 1990) in the absence of reliable transmittance data. 
 
Using explicit 3D models is computationally expensive but avoids the assumption that canopies 
behave as turbid media; an assumption that ignores the heterogeneity of real trees. It is not clear 
how such an assumption would affect derived results, especially when derivation uses the same 
assumptions used to create the forest models (Widlowski et al, 2005). 
 
Simulations were run with a range resolution of 12.5cm, a wavelength of 2.06μm, a 30m ground 
footprint and with and without a temporal laser pulse (100ns is proposed for A-scope). The laser 
pulse shape is applied to each return before binning so that quantisation noise is not ignored. 
 
3. Realistic noise 
 
A real direct detection instrument will suffer from noise from photon statistics, background light 
and detector noise. Photon statistic noise, ns is modelled as Gaussian with a sigma of the square 
root of the number of photons measured in that bin. Background power, Pb, is given by the 
following equation (values used in this investigation are shown in brackets); 
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Where ρ is surface albedo (calculated from waveform), Eλ is solar energy in Wm-2sr-1nm-1 (0.67), 
TFOV is the field of view in radians (0.0002rads), Ar is the receiver telescope area in m-2 
(0.79m-2), ϑs is the solar incidence angle (30o), Tatm is the atmospheric transmission (0.8) and Δb 
is the bandwidth in nm (10nm). This is combined with detector noise and converted to detected 
photon count to get background and detector noise nb,d with the following; 
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Where QE is detector quantum efficiency (0.5), λ is wavelength in m (2.06μm), h is Planck’s 
constant in m2kgs-1, c is the speed of light in ms-1, F is the excess noise factor of the detector (2) 
and NEP is the noise equivalent power on the detector after amplification in W Hz-0.5 (assumed 
negligible). This is then multiplied by a random number between 0 and 1 and combined with the 
photon statistics, ns to get total noise by; 
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Different levels of noise were simulated by assuming that the signal (noiseless waveform) 
included a certain number of photons. Noise effects were added and the resultant waveform 
scaled from photon count to reflectance for analysis. Different random number seeds were used 
to fully investigate the effect of noise on inversions. As the noise is added based upon signal 
photons the wavelength is irrelevant. 2.06μm will need a more powerful laser to get the same 
photon count from a forest than at 1.064μm. Figures 1 to 5 used 1.064μm (they are for an 
optimised canopy lidar), though 2.06μm should behave in a similar fashion for the same signal 
level. 
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4. Derivation of parameters 
 
Two of the most important biophysical parameters for ecological models are biomass and leaf 
area index (LAI). These cannot be directly measured by lidar or any current remote instrument 
but can be related to tree height and canopy coverage through empirical relationships. More 
complex metrics combining height and canopy coverage with height (foliage profile) can be 
used to improve the accuracy of estimates (Lefsky et al, 1999). With any method tree height and 
canopy are the measurables needed to derive any parameters. 
 
For tree height to be measured the position of the tree top and ground must be distinguishable 
from the waveform. If the topography is negligible over the laser footprint tree height can be 
found directly. Topography complicates the matter. It may be possible to use multi-spectral lidar 
to extract ground position from topographically blurred waveforms. 
 
The tree top is the signal start above background noise in the absence of a pulse length. Taking it 
as the point at which the signal rises above the noise threshold will always lead to an 
underestimate. This contributes to the “well known underestimate of tree height by lidar” 
(Morsdorf et al. 2008). Data assimilation schemes such as the Kalman filter rely on unbiased 
observations (Williams et al, 2005). Tracking back through the waveform from the noise 
threshold to the mean noise level should provide an unbiased estimate. Figure 1 shows a 
histogram of the signal start position error with and without tracking back from the noise 
threshold. A negative error means a premature signal trigger; this was common in both methods. 

 
Figure 2 shows the mean and modal signal start position errors against signal photon count. The 
means are biased by some premature triggerings caused by noise. It is hoped that these can be 
removed by looking at their distance from the ground and rejecting unrealistic tree heights. No 
attempt was made to calculate the ground position in this experiment due to the calculation’s 
computational expense. The modal error does not display this bias and shows that both methods 
giving similar outputs for large photon numbers (small noise) and the tracking method’s 
superiority at low signal levels (high noise). 
 

    
 
 
 

 
The ground position is much harder to extract. The traditional method is to decompose the 
waveform into a set of Gaussians by non-linear regression (Hofton et al, 2000). It must then be 
decided which Gaussian corresponds to the ground. An appropriate threshold (either amplitude 
or energy contained in the Gaussian) must be chosen to avoid any Gaussians caused by multiple 
scattering, noise or the canopy. This threshold is dependent upon canopy cover and wavelength. 
In denser canopies the ground return will be weaker, requiring a lower threshold. In sparser 
canopies more subterranean multiple scattering may be recorded requiring a higher threshold. 
 

Figure 2. Mean and modal tree top 
error against number of signal photons 

for the two methods. 

Figure 1. Signal start error histogram for 7,000 
signal photons. The negative tail has been 

clipped for clarity. 
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An implementation of the Levenberg-Marquardt method was used to minimise the root mean 
square difference between the fitted Gaussians and original signal (Press et al, 1994). This 
method is unstable, the error being affected by waveform shape, canopy cover and noise. Figure 
3 shows one of the more successful attempts. 
 

 
Figure 3. Mean ground position error for 4,000 photons against canopy cover. Bars show standard 

deviation 
 
These methods perform reasonably well when the ground return contains significant energy and 
is distinguishable form the canopy return. In very dense canopies (>85% coverage) little signal 
reaches the ground and a proportion of the inversions will fail. The expected failure rate should 
be quantified to asses the method’s global use as this canopy cover is not uncommon for 
evergreen broadleaf forests (Hofton et al, 2002). An iterative method to choose an appropriate 
threshold based upon an estimation of canopy coverage may be necessary. 
 
Figure 4 shows the average energy contained in the nearest Gaussian to the ground, an indicator 
of how the threshold depends upon canopy cover. A failure is classed as a waveform without a 
Gaussian centred within (an arbitrary) 3m of the ground. The need for an iterative threshold 
selection is apparent. 
 

 
Figure 4. Fraction of waveform energy contained in nearest Gaussian to the ground. 

  
These errors combine to give the tree height error. The signal start error is insensitive to canopy 
cover, possibly due to the shape of conifers (there is no more foliage at the tree top for dense 
than for sparse canopies). Figure 5 shows mean tree height error against canopy cover. An 
overestimate is suggested due to too low a threshold being used to select the ground Gaussian 
(0.75% of total energy). 
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Figure 5. Mean tree height error against canopy cover. Bars show standard deviation. 

 
5. Pulse length 
 
All real lasers have a finite pulse length. This can range from short 6ns pulses such as ICESat’s 
GLAS up to 100ns for ESA’s proposed A-scope (for smaller linewidth). Any pulse length will 
blur the waveform, extending the signal start and merging ground and canopy returns. A 
Gaussian is a good approximation of the pulse shape. For 100ns pulses, corresponding to a 
Gaussian with a full width half maximum of 25m, this blurring is severe, obliterating any 
features (as shown in figure 6). If such an instrument is to be used for measuring vegetation 
some form of deconvolution is needed. 
 

 
Figure 6. Simulations of an ideal and 100ns pulsed waveform over a Sitka spruce forest. 

 
This can be done either by fitting functions with the known pulse width and shape to the 
waveform or a Fourier space deconvolution. As figure 6 shows, for long pulses there is little 
detail left to fit the function to. Any algorithm is more likely to fit a single larger amplitude 
Gaussian than the two Gaussians needed to de-blur. 
 
Gold’s iterative re-blurring deconvolution method (Jansson, 1997) was selected for its relative 
robustness to noise. This method is given by the equation; 
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Where i is the original waveform, s is the deconvolution function (normally the laser pulse) and 

)(ˆ ko is the kth estimate of the de-blurred waveform (initially taken as i). 
 
Again simulations offer the advantage over reality of precise error analysis. Simulations were 
run with and without a pulse length. Deconvolved waveforms were compared to the ideal, 
pulseless waveforms. 
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6. Noise 
 
Noise complicates the issue leading to wildly inaccurate products. We can be certain that there 
should not be any components of the waveform with a higher frequency than is contained in the 
laser pulse (Gurdev at al, 1993) and any such components can be taken as noise (which is high 
frequency). These can be removed by convolution with the laser pulse before deconvolution. 
 
The following method was found to give the best results when deconvolving noised waveforms; 

 
Noise statistics were calculated from a known empty portion (all signal more than 
70m above the maximum intensity return). 
Background noise was removed by subtracting a constant threshold, either the mean 
noise level plus three standard deviations or the maximum recorded noise level, 
whichever was greater. 
The waveform was smoothed with the laser pulse. 
The waveform was deconvolved with 6,000 iterations of Gold’s method using the 
laser pulse convolved with the smoothing function as the deconvolution function. 
 

Figure 7 shows that this gave an acceptable recreation of the ideal waveform for high noise 
levels (3,000 signal photons); an encouraging result. A waveform with clearly defined canopy 
and ground returns (without pulse length) was used for the initial investigation; it had a canopy 
coverage of 81% and a maximum tree height of 12.5m. This avoids the complications of trying 
to find low canopy or ground returns in the blurred waveforms. 
 

 
Figure 7, 3,000 signal photons, an acceptable recreation by deconvolution. 

 
The above deconvolution method was applied to simulated A-scope waveforms for different 
noise levels. Figure 8 shows the mean accuracy of the inversion of height against signal photon 
count for a three different sets of noise added to a single waveform. The instability of the 
ground position estimate is apparent. A clear improvement of tree top position estimate with 
increasing signal to noise ratio is shown. More checks may highlight failures, improving 
certainty in the results. Care must be taken to separate the effects of noise, canopy cover and 
tree height. 
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Figure 8. Tree height, tree top position and ground errors against signal photon count for a single 

waveform. 
 
7. Conclusions 
 
Tree height, top and ground position errors have been precisely quantified with simulated 
waveforms. A method for reducing tree top position bias has been tested and shown to perform 
well if at least 2,000 signal photons are measured (an easily achievable number). Some refining 
is needed to cope with the effect of varying canopy cover on ground position and premature 
triggering on tree top estimate. Above 3,000 photons errors are dominated by the algorithms. 
More robust algorithms may benefit from more signal photons (10,000 gives near perfect 
recreation of the ideal). This area needs more work before it can be considered operational. 
 
This method relies on a clear separation between ground and canopy (after deconvolution). If 
the variation in ground height across the footprint is greater than the ground to foliage 
separation that will not be the case. This limits the areas such an instrument could be used. 
Smaller footprints aggregated together to ensure a tree top is recorded may be a solution; a high 
pulse repetition rate to allow a continuous track would be preferable. A second waveband with 
spectral contrast between ground and canopy will allow distinction in topographically mixed 
signals. Both of these would require extra equipment to be included which is unlikely in 
A-scope for such a secondary capability. 
 
A-scope has a proposed laser wavelength of either 2.06μm or 1.65μm, neither of which has a 
strong reflectance from vegetation (the two wavelengths used in DIAL are too close to be of any 
advantage for vegetation). In this investigation noise levels were calculated by assuming a 
certain number of signal photons therefore wavelength had little impact upon this investigation. 
The choice of laser wavelength is likely to limit the maximum number of measurable photons. 
 
The possibility of using long pulse lidar for measuring forest parameters has been demonstrated, 
given sufficient range resolution. The effect of range resolution on inversion accuracy must be 
quantified as A-scope is unlikely to have such a fine resolution (12.5cm in this investigation). 
Few waveforms and inversions were available for this investigation due to the computational 
expense of Monte-Carlo ray tracing and deconvolution by Gold’s method. More samples are 
needed to fully test the methods under a range of conditions. The finer the range resolution the 
more information the deconvolution has and the more accurate the result is likely to be. This 
effect needs exploring. 
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