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Abstract 
ICESat/GLAS waveform data are used to estimate biomass and carbon on a 1.27 million km2 
study area, the Province of Québec, Canada, below treeline.  The same input data sets and 
sampling design are used in conjunction with four different predictive models to estimate total 
aboveground dry forest biomass and forest carbon.  The four models include nonstratified and 
stratified versions of a multiple linear model where either biomass or biomass  serves as the 
dependent variable.  The use of different models in Québec introduces differences in 
Provincial biomass estimates of up to 0.35 Gt (range 4.94±0.28 Gt to 5.29±0.36 Gt).  The 
results suggest that if different predictive models are used to estimate regional carbon stocks in 
different epochs, e.g., y2005, y2015, one might mistakenly infer an apparent aboveground 
carbon "change" of, in this case, 0.18 Gt, or approximately 7% of the aboveground carbon in 
Québec, due solely to the use of different predictive models.  These findings argue for model 
consistency in future, LiDAR-based carbon monitoring programs.  Regional biomass estimates 
from the four GLAS models are compared to ground estimates derived from an extensive 
network of 16,814 ground plots located in southern Québec.  Stratified models proved to be 
more accurate and precise than either of the two nonstratified models tested. 

 

1. Introduction 
 
The forestry LiDAR community, having demonstrated and continuing to improve the utility of 
airborne LiDAR systems for forest measurement and monitoring, now must consider doing so 
from space.  One civilian space LiDAR, the ICESat satellite (Ice, Cloud, and land Elevation 
Satellite) carrying the GLAS (Geosciences Laser Altimeter System) LiDAR, is currently in orbit.  
The U.S. may launch three additional space LiDAR systems over the next decade.  This report 
briefly describes these proposed space LiDARs, the configurations of which are all under 
discussion and subject to change. We also introduce two concerns associated with space and 
airborne LiDAR instruments that must be addressed by our community if we hope to effectively 
monitor global forest resources with lasers.  In order to monitor forest change at the regional, 
national, continental, or global scale, our estimates at time 1 (t1) and time 2 (t2) must be 
consistent.  Spurious changes may be noted or actual changes may be missed if our t1, t2 
estimates are not comparable.  Assuming the use of the same sampling design, inconsistencies 
may be introduced by the use of different predictive models at t1, t2, and/or they may be 
introduced by sensor changes over time which might result in systematic measurement 
differences.  The objective of this paper is to address the former, i.e., model consistency, 
providing one example of the degree to which the use of different predictive models impacts 
regional estimates of biomass and carbon.   

 
1.1. U.S. Space LiDARs – Current Thoughts 
 
The U.S. National Research Council (NRC), in a document known as the Decadal Survey (NRC 
2007), has identified seventeen space missions of paramount importance to the U.S. scientific 
community for monitoring the status and function of the biosphere.  The NRC suggests that 
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these seventeen missions be launched in the 2010 – 2020 timeframe.  Three of these Earth 
remote sensing missions incorporate space LiDARs capable of measuring forest structure.  
These missions include (1) ICESat II, a follow-on to the current ICESat satellite (Abshire et al. 
2005), designed to monitor ice sheet elevation changes; (2) DESDynI (Deformation, Ecosystem 
Structure, and Dynamics of Ice), primarily a solid Earth mission which couples an L-band 
RaDAR and LiDAR to map surface deformation; and (3) LIST (Laser Imaging for Surface 
Topography), a swath mapping LiDAR for global topography and hydrology.  All will be in 
near-polar orbits. 
 
The specific design of ICESat II and DESDynI is currently a topic of much discussion, so the 
descriptions below may not resemble the configurations that may ultimately reach orbit.  In 
addition, the launch of these three satellites is by no means assured given the prerequisite that 
the U.S. Congress must find the funds needed to build and operate this hardware.  However the 
Decadal Survey carries much weight at NASA, and the current expectation is that ICESat II will 
be launched somewhere in the 2015 timeframe in a flight configuration similar to the first 
ICESat, e.g., a single beam, waveform profiler with 50 m – 70 m footprints and an along-track 
post spacing of 140 m.  The 2015 launch date is notable in that the ICESat I/GLAS LiDAR, 
currently collecting data during ~33 day, spring and fall campaigns, is expected to last an 
additional 1½  to 3 years, with the 3rd and final laser due to fail sometime between the spring of 
2010 and the autumn of 2012.  This leaves an ICESat I – ICESat II observational hole of 3-5 
years if ICESat II launches in 2015. 
 
The DESDynI and LIST missions will fly later.  Expectations are that DESDynI will most 
likely be some sort of multi-beam LiDAR with ~25 m footprints and 25 m – 30 m post spacing, 
i.e., near-contiguous profiles along-track.  Across-track, parallel profiles will be kilometers 
apart, perhaps on the order of 2 – 5 km separating each of the 3 – 5 beams on the satellite.  
DESDynI is currently configured as a joint L-band RaDAR and multibeam LiDAR satellite, but 
many aspects of this mission are under consideration and are actively being investigated, 
including the need to physically tie the RaDAR to the LiDAR on the same platform, orbital 
repeat times, baseline issues regarding the RaDAR acquisitions, the RaDAR acquisition 
capabilities, e.g., SAR vs. InSAR, LiDAR beam spacing, number of beams, off-nadir pointing 
capabilities, and pulse width. LIST is currently configured as a swath mapper, collecting global 
wall-to-wall coverage over it's 5 year design life.  The footprint of the contiguous pulses will 
be on the order of 5 m.  Given LIST's late launch, most effort is going into research to address 
the ICESat II and DESDynI flight configurations. 

 
1.2. Using ICESat/GLAS to Measure Forests 
 
In the context of the current ICESat profiler and the possibility of an ICESat II follow-on, the 
forestry LiDAR community has entered a period where space-based LiDAR measurements are 
routinely collected globally and systematically, albeit with extended periods without space 
LiDAR measurements.  With this capability comes questions concerning how we might best 
use these satellite ranging observations to measure, and more importantly, monitor forest 
biomass and carbon resources at regional, national, continental, and global scales. 
 
Although the ICESat/GLAS LiDAR is not optimally configured for or operated as a vegetation 
assessment tool, these data have proved useful for biomass and carbon assessments across areas 
spanning hundreds of thousands of square kilometers.  Kimes et al (2008) and Boudreau et al. 
(2008) report results of studies that employ the ICESat/GLAS LiDAR to estimate forest volume, 
biomass, and carbon in south central Siberia (just north of Mongolia) and in Québec, Canada, 
respectively.   Kimes et al. (2008) uses 101,831 GLAS waveforms acquired along 55 orbits 
over a 10º x 12º, 811,414, km2 area just northwest of Lake Baikal to attribute 16 forest cover 
type – canopy density classes derived from MODIS (Moderate Resolution Imaging 
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Spectrometer) data.  Using field observations acquired on 51 GLAS pulses, they developed a 
sparse neural network relating GLAS waveform metrics to ground estimates of merchantable 
volume (Ranson et al. 2007).  If they constrain their data and use only those pulses acquired on 
slopes of 10º or less as characterized using SRTM topographic information, their regional 
estimate of merchantable volume, 73.85 x 106 ± 5.33 x 106 m3 (one standard error), is within 
1.1% of comparable ground estimates, 74.63 x 106 m3 (Shepashenko et al. 1998 per hectare 
estimate in conjunction with a percent forest cover estimate for the study area of 63% from an 
1990 Russian forest map, V.I. Kharuk, pers. comm.).  If GLAS pulses on all slopes are 
considered, the regional GLAS-based per hectare estimate of volume increases from 163.4 ± 
11.8 m3/ha to 171.9 ± 12.4 m3/ha, a 5.2% increase.  This apparent increase in area-based 
volume estimates suggests that steeper slopes broaden the waveform response, increasing 
apparent canopy height and inflating the volume estimates.  Slopes, as noted by Lefsky et al. 
(2005, 2007) and Rosette et al. (2008), negatively affect the height accuracy of the 
large-footprint GLAS waveform data, convolving forest canopy architecture with topography 
and increasing the vertical extent of the waveform. 
 
Boudreau et al. (2008) uses a multiphase sampling approach to relate GLAS waveform and 
SRTM topographic measurements to field estimates of total aboveground dry biomass in 
Québec, Canada.  They flew an airborne profiling LiDAR over existing ground plots and along 
GLAS orbital transects and developed two sets of equations.  The first set relates field biomass 
estimates to airborne LiDAR metrics; the second set relates airborne LiDAR estimates of 
biomass to GLAS waveform metrics.  They estimate that, on average, the forested areas of 
Québec south of treeline support 39.0 ± 2.2 t/ha of dry biomass.  Botkin and Simpson (1990) 
report an average value of 41.8 ± 10.1 t/ha for all of the North American boreal forest based on 
stratified ground measurements. 
 
These studies report the accuracy and precision of statistical approaches that may be used to 
conduct regional inventories using a space LiDAR.  Of interest in this paper, however is an 
assessment of the need for consistency in model selection when estimating regional biomass 
repeatedly over time.  The objective of this study is to quantify the degree to which model 
differences may affect regional estimates of biomass and carbon.  Four different models are 
used to estimate standing dry biomass and carbon for all of Québec below treeline, a area 
encompassing 1.27 million square kilometers.  In addition, results from the four models are 
compared to ground reference data to determine which of the models most closely estimates 
biomass in the southern half of the Province 

 
2. Methods  
 
The data sets and analysis procedures employed in this study are the same as those described in 
detail in Boudreau et al. (2008). This study incorporates the following data sets: 
(1) ICESat/GLAS LiDAR waveform data: 104,044 GLAS waveforms acquired along 97 orbits 
across all of Québec, acquisition L2a, autumn 2003. Spacing between adjacent near-N-S orbits 
are very variable but average 15.6 km.  
(2) Digital vegetation zone map of Québec: tessellates Québec into seven vegetation zones; 
from south to north: (2.1) Northern Temperate forest, (2.2) Mixedwood forest, (2.3) southern 
Boreal forest (commercial forest), (2.4) northern Boreal forest (noncommercial forest), (2.5) 
Taiga, (2.6) Treed Tundra, (2.7) Southern Arctic. The Southern Arctic, that vegetation zone 
whose southern border is identified as the Provincial tree line, was assumed to contain no forest 
biomass. 
(3) Landsat ETM+ land cover map: up to 24 land cover classes identified in each vegetation 
zone. Forests are identified as being conifer, hardwood, or mixedwood; 3 canopy density classes 
in each forest cover type. Data resampled to a 25 m grid. 
(4) SRTM digital elevation data: available up to 60º N latitude (the Provincial treeline tracks 
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around 58º - 59ºN). 90 m pixels. 3x3 window around each GLAS pulse used to characterize 
local topography. 
(5) Ministry of Natural Resources Québec (MNRQ) ground plots: 16,814 fixed area, 11.3 m 
radius, 400 m2, temporary sample plots located in the southern 3 vegetation zones south of the 
commercial forest line that bisects the Boreal vegetation zone. Total aboveground dry biomass 
calculated on each plot. 
(6) Profiling airborne LiDAR data (Nelson et al. 2003): flown over 295 MNRQ ground plots 
and over ~5000 km of GLAS orbits, summer 2005. The NIR profiler acquired sequential 
first/last returns on 0.40 m footprints at 0.12 m post spacing across ground plots and GLAS 
pulses. The profiling data are used to tie ground plot information to GLAS measurements. 
 
These six data sets are utilized within a multiphase sampling framework. The airborne profiler 
was flown over 295 ground plots. Ground estimates of biomass were regressed against the 
airborne profiler measurements in order to develop predictive regressions based on the airborne 
measurements. One nonstratified equation (R2 = 0.65) and a set of seven stratified ground-air 
equations (R2 range from 0.51 – 0.73, Boudreau et al. 2008) are developed based on the Landsat 
land cover strata. The ground-air equation(s) is(are) then used to calculate airborne laser-based 
estimates of biomass on 1325 GLAS pulses measured by the airborne profiler. 
  
Four different models are constructed (n=1325) to predict dry biomass as a function of GLAS 
waveform and SRTM topographic measurements. The four models follow: 
 
· linear, nonstratified:    
 bair, ns = -4.52 + 3.85* wGLAS - 6.59* fGLAS  - 0.75* rSRTM  (1) 

R2 = 0.60, RMSE = 32.0 t/ha; 
· linear, stratified:     
 bair,st =  2.37 + 3.63* wGLAS - 5.92* fGLAS  - 0.73* rSRTM  (2) 

R2 = 0.58, RMSE = 31.7 t/ha; 
· square root, nonstratified:   

nsairb ,  = 2.67 + 0.27* wGLAS - 0.83* fGLAS - 0.06* rSRTM  (3) 

 R2 = 0.59, RMSE = 2.40 hat / ; 
· square root, stratified:    
 nsairb ,  = 2.98 + 0.26* wGLAS - 0.65* fGLAS - 0.06* rSRTM  (4) 

 R2 = 0.53, RMSE = 2.55 hat / ; 
 

where bair, ns  = an airborne profiling estimate of biomass calculated using  
the nonstratified ground-air equation, 

 bair,st = an airborne profiling estimate of biomass calculated using 
the stratified ground-air equations, 

 wGLAS = vertical extent of the GLAS waveform, signal start to signal end, 
 fGLAS = the slope of the leading edge of the GLAS waveform; and 
 rSRTM = the range, in meters of the topographic difference found in a   
                         3x3 pixel SRTM window centered on an GLAS pulse. 
 
The variance inflation factors for all 4 models are less than 1.61; multicollinearity is not an issue 
(Myers 1989). The square-root transform is used in an attempt to control marked 
heteroskedasticity; the transform only marginally improved residual patterns. The square-root 
biomass values are back-transformed using the unbiased backtransformation technique reported 
by Gregoire et al. (2008). 
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In the context of this report, stratification refers to the development of equations, by cover type 
and vegetation zone, in the ground – air phase, not in the air – satellite phase.  In other words, 
the bair dependent variables in equations 2 and 4 above were calculated using stratified 
ground-air equations; the bair in equations 1 and 3 were calculated using a generic or 
nonstratified ground-air equation (Boudreau et al. 2008, his Table 2).  Attempts were made to 
develop stratified GLAS equations for the linear and square root models, but R2 decreased and 
RMSEs increased as the latitude of the vegetation zones increased and as the average height of 
the trees decreased.  Stratified GLAS equations in the Taiga and the Treed Tundra had R2  
values in the 0.1 – 0.2 range and were deemed unusable.  This finding is not unexpected given 
the ground height – GLAS height comparisons reported in the literature.  Sun et al. (2008) 
compares various GLAS height metrics to comparable airborne LiDAR estimates and reports 
RMSEs of 3 m – 5.5 m (his Table 2) in the temperate forests of the eastern U.S.  Rosette et al. 
(2008) report ground-GLAS height RMSEs of 2.86 m after correcting for topography.   Lefsky 
et al. (2005) report RMSEs associated with ground-GLAS maximum canopy height 
comparisons of ~4.5 m, and Lefsky et al. (2007), after correcting for local topography using 
trailing edge measures, illustrates an RMSE of 5m across diverse study sites in his Figure 3.  
Given this height scatter and the open, sparse, stunted coniferous nature of Québec's northern 
forests near treeline, one might conclude that GLAS does not have the measurement sensitivity 
to accurately measure high-latitude forests.  As a result, stratified GLAS equations were not 
employed in this study due to the lack of predictive power of some of the northern equations.  
This lack of sensitivity in short-stature forests also calls into question the accuracy of the 
GLAS-based biomass and carbon estimates near treeline. 
 
The stratified models, i.e., equations 2 and 4 above, were processed differently from the 
nonstratified models 1 and 3.  Every GLAS shot was assigned to one of the Landsat land cover 
classes based on the plurality of the land cover types in a 3 x 3 Landsat ETM window that 
surrounded a given GLAS pulse.  The nonstratified models were applied to all 104,044 GLAS 
shots collected over Québec regardless of the land cover identity of that GLAS pulse.  So 
GLAS pulses judged (by the Landsat classification) to have illuminated barren areas, rock, moss, 
herb, etc, could still contribute to Provincial biomass if nonzero heights were measured by 
GLAS.  In effect, in the nonstratified models, GLAS measurements trumped Landsat land 
cover identities, and a GLAS pulse could contribute to the biomass estimate even if the Landsat 
classification suggested that no forest biomass should exist on that spot illuminated by the 
GLAS pulse.  Just the opposite was true with respect to the stratified models.  Models 2 and 4 
were utilized only on those GLAS shots judged to be capable of supporting forest biomass.  In 
the case of the stratified models, then, specific cover types could never contain forest biomass 
regardless of what the GLAS pulses intercepting that cover type may have measured.  The net 
result of this processing rule is that the nonstratified models have higher biomass totals for the 
Province because they accumulate estimates across larger areas. 
 
The Ministry of Natural Resources Québec made available 16,814 temporary sample plots 
measured between 1998 and 2004.  The intensity and location of the MNRQ TSP multiyear 
measurement campaign is illustrated in Boudewyn et al. (2007), his Figure 1.   All plots are 
located south of the commercial forest line.  A small portion of these plots, ones more recently 
measured, are used to develop the models discussed above.  All 16,814 are used to validate the 
models. 
 
3.  Results 
 
Table 1 reports per hectare and total biomass estimates for the entire 1.27 million km2 Province 
of Québec south of treeline.  The models are ranked, largest to smallest in terms of total 
Provincial biomass, and, as one would expect due to processing rules, the nonstratified models 
report the largest Provincial biomass totals.   
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The exact same data are input into each model to calculate model coefficients.  Based on 
model differences alone, Provincial biomass and carbon estimates vary approximately 7% even 
under the ideal circumstance that all of the data input into the various models are identical.  No 
such ideal circumstance would exist if one were monitoring regional biomass over time since 
the input data would certainly change between t1 and t2.  The 7% difference amounts to, in 
Québec, a model-induced difference of 0.35 Gt of biomass, or 0.18 Gt of carbon assuming a 
conversion factor of 0.5 t C/1 t biomass (Gower et al. 1997; Houghton et al. 2000).  Given a 
current carbon credit price of ~15 euros per ton carbon, this scenario might result in an 
undeserved carbon penalty or an unearned carbon credit of up to 2.64 billion euros for Québec, 
depending on which model was used at t1 and which at t2.   
 
The results in Table 1 indicate that LiDAR-based biomass and carbon monitoring will require 
model consistency between measurement epochs or, alternatively, a post-processing statistical 
methodology that would equate current estimates with ones previously made using a different 
model or LiDAR sensor. 
 
Table 1. Provincial estimates of total above ground dry biomass on 1.27 million km2 south of tree line in 
Québec. Model estimates are ranked largest to smallest, top to bottom.  All standard errors calculated 
assuming simple random sampling, covariances are included, prediction error is not. 
 

        dry biomass estimates Prov. biomass totals 
 
model 

    mean   
     (t/ha) 

stan. err.   
   (t/ha) 

coef.var. 
    (%) 

    total 
     (Gt) 

stan. err. 
    (Gt) 

nonstratified, 
   square root    (3) 

    41.72     2.82       6.8      5.29      0.36 

nonstratified,    
   linear            
(1) 

    40.63     5.21     12.8      5.15      0.66 

stratified,            
   linear            
(2) 

    39.73     3.32       8.4      5.04      0.42 

stratified,            
   square root    (4) 

    38.94     2.17       5.6      4.94      0.28 

 
The accuracy and precision of the four models can be assessed, at least in the three southern 
vegetation zones, by comparing GLAS-based estimates to biomass estimates on the 16,814 
ground plots, accumulated across Landsat vegetation classes (Table 2).  All four models 
underestimated ground-based southern provincial estimates by amounts ranging from –7.3 to 
–12.4%.  Models (2) and (4), the stratified linear and stratified square route models, were, 
respectively, the most accurate and most precise at the regional level.  The ground reference 
information and the stratified GLAS model results are reported in Table 2, by forest cover type 
within vegetation zone, and for the entire southern portion of the Province.   
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4.  Discussion 
 
Within the next decade, the forestry LiDAR community can expect to have access to extensive 
data sets that will enable us to conduct regional and national assessments from space.  
Researchers have already demonstrated that, even with GLAS optimized for ice rather than 
vegetation measurements, analysts can develop comprehensive, extensive, timely estimates of 
forest biomass and carbon on areas encompassing hundreds of thousands to well over a million 
square kilometers.  The use of space-based laser altimetry, specifically GLAS waveform data, 
currently presents numerous challenges, e.g., large footprints that convolve forest canopy 
structure with topography in the presence of slope, an apparent insensitivity to small, sparse 
woodland heights, significant laser power changes over time, data collection epochs - late fall, 
early spring- tailored to ice studies but non-optimal from a vegetation measurement/monitoring 
standpoint, changing footprint shapes and orientations, and noncontiguous profiles.  But space 
LiDARs currently under design will mitigate many of these problems, though the slope issue is 
still outstanding as are questions concerning height sensitivity in low biomass situations near 
treeline. 
 
Monitoring changes to aboveground biomass and carbon stocks over time using air-borne or 
space LiDARs raises it's own set of issues, issues that will come to the forefront and call into 
question the validity of those laser-based estimates if we do not address them ahead of time.  If 
LiDAR surveys at time1 and time 2 are to be compared to assess, for instance, compliance with 
carbon agreements or to provide the quantitative estimates needed to purchase or sell carbon 
credits, then those t1 and t2 surveys must be consistent.  Consistency in this context involves 
the use of: 
  · the same ground-based allometry at t1 and t2 (if new plots are measured), 
  · the same statistical framework, e.g, design, sample size, number of phases, 
  · the same predictive models, 

· the same sensor, or a different sensor with the same flight configuration with respect to laser 
power, repetition rate, footprint size, pulse width. 

 
The good news is that many of these factors are in our control – the allometry, the statistical 
framework, model selection.  And if an analyst wants to update the allometry or 
improve/change her/his predictive models, she/he can do so and reprocess the old t1 data with 
the improved versions to insure comparability.  What is most likely not in our control is the 
sensor, i.e., the operational characteristics of the airborne or space LiDAR.  Airborne LiDAR 
technology is changing so rapidly that data providers commonly swap out their one or two year 
old scanners for newer, faster, improved versions.  And the satellite LiDARs discussed in this 
paper typically have design lives of ~5 years.  We can be fairly certain that most regional 
surveys done every five to ten years will be done with different sensors. 
 
The results presented in this paper provide one example of the effects of allowing one item on 
this consistency checklist to stray.  Provincial estimates changed ~7% due only to changes in 
model form and due to changes to the rules used to process the GLAS data.  The forestry 
LiDAR community should begin to address questions concerning consistency and calibration in 
order to develop procedural or statistical techniques to ensure comparability of LiDAR-based 
surveys done years apart.   These results provide an impetus to develop statistical procedures 
that can effectively draw equivalence between multitemporal, regional LiDAR-based biomass or 
carbon estimates that might not be directly comparable due, perhaps, to the use of different 
predictive models, different allometry, or changing LiDAR sensors in different measurement 
periods. 
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