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Abstract  
 
We present a method and initial results for a model of the interaction of waveform lidar with a 
three-dimensional canopy representation. The model is developed from the FLIGHT radiative 
transfer model (North, 1996), based on Monte Carlo simulation of photon transport. Foliage is 
represented by structural properties of leaf area, leaf angle distribution (LAD), crown 
dimensions and fractional cover, and the optical properties of leaves, branch, shoot and ground 
components. Important characteristics of the model are that it can represent multiple scattering 
of light within the canopy and with the ground surface, simulate the return signal efficiently at 
multiple wavebands, and model the effects of topography. Spatial and temporal sampling 
characteristics of the lidar instrument are explicitly modelled. A sensitivity analysis gives 
expected effects of canopy parameters on the waveform, and indicates potential for retrieval of 
the canopy properties of fractional cover and leaf area, in addition to height.  
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1. Introduction  
 
Global datasets of land surface biophysical variables are required from remote sensing to drive 
land surface parameterisations coupled to atmospheric general circulation models, and to 
calculate the exchange of carbon, water, energy and momentum fluxes between the land and 
atmosphere (Sellers et al., 1996; North, 2002; Alton et al., 2007). By recording temporal return, 
light detection and ranging (lidar) offers a unique measurement directly related to vegetation 
canopy height. While hitherto mostly applied using airborne platforms at local scale, the 
Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud and land Elevation Satellite 
(ICESat) provides an opportunity to contribute to forest quantification and monitoring at 
regional and global scales (Schutz et al., 2005). Previous work supports the use of this data 
source for the estimation of canopy height and sub-canopy terrain, and, by correlation, further 
properties such as biomass (Lefsky et al., 2005; Harding and Carabajal, 2005; Rosette et al., 
2008a). There is also ongoing research in estimation of further parameters such as vegetation 
cover, stemwood volume and plant area index (PAI), and their vertical profile (Koetz et al., 
2006; Rosette et al., 2008b). 
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Figure 1: Example FLIGHT model output showing scene reflectance under solar illumination.   
 
Increasingly, physically-based radiative transfer models of vegetation canopies have been used 
to constrain retrieval of land surface biophysical parameters, either by direct inversion or use 
in algorithm development. For lidar, radiative transfer models have been developed originally 
for atmospheric simulation (Platt, 1981), and recently several models have been developed for 
vegetation canopies which treat the light interaction at various degrees of complexity (Govaerts 
and Verstraete, 1998; Ni-Meister et al., 2001; Kotchenova et al., 2003; Disney et al., 2006).  
 
In this work we aim to extend the three-dimensional radiative transfer model FLIGHT (North, 
1996) to model waveform lidar interaction at scales suitable for ICESat interpretation. The 
model is based on Monte Carlo solution of radiative transfer, and offers a consistent link from 
lidar-derived structure to full canopy optical response and vegetation photosynthesis (Barton 
and North, 2001; Alton et al., 2005). A further aim is to explore the theoretical potential of 
biophysical parameter retrieval from satellite waveform lidar. 
 
 
2. Method  
 
The Method is based on Monte Carlo evaluation of photon transport. Monte Carlo simulation is 
a versatile technique, which allows highly accurate estimation of light interception and 
bidirectional reflectance (Disney, et al., 2000). The technique requires sampling of the photon 
free-path within a canopy representation, and simulation of the scattering event at each 
interaction. By iteration we obtain accurate treatment of light interception and multiple 
scattering between foliage elements and the soil boundary. Overlapping crowns, and multiple 
scattering within and between different crowns and the ground surface are thus modelled. The 
particular challenge of modelling lidar interaction is the additional inclusion of time dependency 
of the response, governed by varying path length over multiple interactions forming the return, 
and the temporal spread of the incoming pulse. 
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Table 1: FLIGHT canopy input parameters 
 

Name Units Meaning Value 

PAI m2/m2 Plant area index (one sided) 3.0 
LAD - Leaf angle distribution Spherical 

Fc - Crown fractional coverage 0.7 
Fg - Fraction of green foliage 0.8 
Fb - Fraction of bark 0.2 
Exy m Ellipsoid horizontal radius 8.0 
Ez m Ellipsoid vertical eccentricity 8.0 
Dl m Leaf size diameter 0.05 

DBH m Trunk diameter at breast 
height 0.1 

Sr 0-1 Soil roughness 0 
Sy Deg Terrain slope (yz plane) 0 

Hmin, Hmax m Min/max height to crown 
start 15,20 

ρL - Leaf reflectance 0.4 
τL - Leaf transmittance 0.4 
ρS - Soil reflectance 0.15 
    

 
 

2.1 Canopy representation 
 
Foliage is approximated by structural parameters of area density, angular distribution, and size, 
and optical properties of reflectance and transmittance. The foliage is constrained to lie within 
geometric envelopes, defined by ellipsoidal or conical primitives. The locations of the crowns 
are normally generated statistically, parameterized by crown fractional cover, and canopy height 
range; however it is possible to define precise crown locations. Scene elements may also be 
explicitly represented by facets. Spectral reflectance and transmittance properties of the scene 
elements are also specified, normally approximated as bi-Lambertian. A list of parameters and 
typical values is given in Table 1. Figure 1 illustrates a typical canopy representation, output 
from the model under solar illumination conditions.  
 
2.2 Sensor model 
 
A generic description of a waveform lidar instrument is defined by parameters giving sensor 
location, beam energy, beam angular divergence and temporal spread. Both angular divergence 
and temporal spread are modelled as Gaussian. The set of parameters defining the lidar 
instrument are given in Table 2, with example values for GLAS used in the current study 
(Brenner et al., 2000). 
 
2.3 Evaluation of lidar waveform 
 
The original model (North, 1996) traced photon trajectories forwards from the source until 
absorption in the canopy or leaving the canopy boundary, when energy was accumulated in bins 
defined for each solid angle of exit. Subsequently the model was developed to sample paths 
from a given view direction to intercepted surfaces, and to accumulate the radiance contribution 
from these surfaces (Disney et al., 2000; Barton and North, 2002). The latter method is more  
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Table 2: Lidar sensor model  
 

Name Units Meaning Value 

(Px,Py,Pz) m Sensor position relative to 
scene centre (0,0,600000) 

θO, deg Sensor zenith angle 0 
φO deg Sensor azimuth angle 0 

sl ns Emitted RMS pulse width, 
assuming Gaussian (1sd) 5 

qT rad Half-width angle of beam 
divergence, Gaussian (1sd) 0.00011 

IFOV rad Detector IFOV 0.0004 
AT m2 Detector telescope area 0.709 

ΤRTstm - Roundtrip atmospheric trans. 0.8 (532nm) 0.9 (1024nm) 
Etrans mJ Total pulse energy 32 (532nm); 72 (1064nm) 
Δ t  ns Recording bin width 1 

 
 
appropriate for lidar calculation, as it is possible to efficiently estimate return for infinitesimal 
angles; this is necessary for lidar as viewing is made at the retro-reflection direction or 
‘hot-spot’, where the reflectance changes very significantly with small changes in view angle.  
 
The method proceeds by sampling n rays over the instrument IFOV. For each ray: 
 

(i) Find the intersection with the first surface facet (leaf/bark/soil) 
 

(ii) The facet illumination is calculated as the sum of direct and diffuse incoming light. 
The diffuse light term is calculated by recursive sampling of higher scattering orders. 
The radiance contribution is defined according to the standard rendering equation, 
depending on facet orientation with respect to illumination, and optical properties.  

 
(iii) For each facet and scattering order, both the radiance contribution and the total return 

path length to the sensor are calculated. The path length is equivalent to time of signal. 
For efficiency, ground-leaving radiance for unit incoming signal is initially recorded.  

 
(iv) The radiance is binned into m bins according to path length, whose width is defined by 

the sensor model temporal sampling. 
 
The final step accounts for detector characteristics and pulse width: 
 

(v) The radiance values are converted into absolute power (mW) recorded in each 
temporal bin, dependent on the sensor aperture AT, distance to  sensor Pz and 
atmospheric round-trip transmission ΤRTstm ,  The effect of pulse width is modelled by 
Gaussian convolution of the resultant output array, with amplitude dependent on 
emitted pulse energy Etrans. 

 
The estimation error decreases as n0.5. For results here we use a sampling of n=104, and obtain 
convergence after scattering order 8. 
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3. Results  
 
3.1 Comparison with FLIGHT reflectance 
 
The waveform was integrated over time and normalised by downwelling radiance to allow 
comparison with equivalent bidirectional reflectance factor (BRF) for the scenes generated by 
the original FLIGHT model. While some of the code is common between the original FLIGHT 
code and the lidar waveform model, the check is useful as the FLIGHT model BRF has been 
previously checked by intercomparison with other three-dimensional codes as part of the 
RAdiation Model Intercomparison (RAMI) project (Widlowski et al., 2007). The recent analysis 
within RAMI of six selected three-dimensional models showed dispersion within 1% over a 
large range of canopy descriptions.  
 
The surface reflectance is estimate from the lidar return as: 
 

ρsurf =
πErecR

2

EtransAtTRTatm

   (1) 

 
where Erec (pJ) is calculated as 

Erec = Li
i=1

m

∑ Δ t     (2) 

where energy is accumulated in m sample bins, where each sample bin i has accumulated power 
Li (mW), and the bins correspond to temporal increment Δ t  ns. 
 
Seventeen scenes were generated through independent variation of model parameters described 
in Table 3, with random spatial positioning of 200 crowns at 70% fractional cover. Figures 2 and 
3 show comparison at 532nm and 1064nm respectively. Error bars denote scene spatial variation 
at the scale of the lidar footprint. The results show unbiased estimate of reflectance by the 
waveform integration, though with scatter about the line. This is expected as the lidar spatial 
sampling is much smaller than the whole scene simulated by FLIGHT. 
 
3.2 Sensitivity analysis 
 
Figures 3-4 show example model runs and sensitivity to variation in plant area index (PAI) and 
ground slope (S). Table 3 shows full results of a sensitivity analysis of modelled output to 
variation in canopy parameters. Each parameter is varied individually from a ‘base case’, 
specified by the central value in each set in the table; the remaining parameters are specified in 
Tables 1-2. The lidar waveform return power is recorded, integrated over time and partitioned 
into total return (TR), canopy return (CR) and ground return (GR). Partition is estimated on the 
basis of position in the waveform. Variation is shown as a percentage deviation from the base 
case waveform returns.  

• Sensitivity to PAI is small in total return, with less than 2% variation for PAI from 2-5, 
from a base case PAI of 3, and a 17% reduction for PAI of 1. However the partitioned 
returns show much greater variation, with CR decreasing by over 50%, and a 
corresponding increase in GR over the same range. 

• Variation in leaf angle distribution (LAD) shows impact on total return (-11% to +20%), 
with a greater impact on CR. Leaf angle will affect both total interception by the canopy 
by varying projected leaf area, and also the orientation of surfaces with respect to the 
incoming beam. 

• Crown shape has a small impact on total return, with higher vertical and horizontal 
eccentricities decreasing the CR component relative to spherical crown return. 
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Figure 2: Bidirectional Reflectance Factor (BRF) simulated by FLIGHT vs BRF from time integration of 

modelled lidar waveform return at 532nm. 

 
Figure 3: BRF simulated by FLIGHT vs BRF from time integration of modelled lidar waveform return at 

1064nm. 
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Figure 4: Example model output showing sensitivity of waveform return to plant area index (PAI) 
variation from 1 to 5. 

 
Figure 5: Example model output showing waveform sensitivity to variation in terrain slope, from 0 to 20 

degrees. 
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Table 3: Sensitivity of waveform lidar return at 1064nm to variation in canopy parameters. Return is 
partitioned into total energy return (TR), canopy return (CR) and ground return (GR). Variation is shown 

as percentage deviation from the base case return. 
 

Parameter Value TR (%) CR (%) GR (%) 

     
 1 -17 -51 +54 
 2 -1.8 -14 +25 
PAI 3  - - - 
 4 +1.6 +5.1 -6.0 
 5 0 +5.2 -13 
     
 planophile +20 +33 -5.4 
LAD spherical - - - 
 erectophile -11 -19 +4.5 
     
 .5 -4.3 -6.2 0 
Ez/Exy 1 - - - 
 2 -4.7 -7.8 +1.8 
     
 .45 +10 +13 +2.7 
ρL .4 - - - 
 .35 -9.2 -13 -2.0 
     
 .45 +5.1 +5.8 +3.7 
τL .4 - - - 
 .35 -4.3 -4.9 -3.0 
     
 .2 +10 0 +32 
ρS .15 - - - 
 .1 -10 0 -31 
     
 
 
Analysis of the leaf optical properties shows sensitivity to canopy reflectance (RL),  

• with a slightly greater relative change in CR (13%) compared to input parameter (12%). 
Sensitivity to multiple scattering is illustrated by the effect of increasing leaf 
transmittance, and by the increase in GR. 

• Variation in soil boundary reflectance (RS) shows direct sensitivity of GR, with impact 
on total return corresponding to area fraction in scene. 

 
3.3 Evaluation of indices for canopy parameter retrieval 
 
While total absolute lidar return is relatively insensitive to vegetation cover, relative to the 
various perturbing parameters, the differential response of vegetation and ground components 
suggests use of metrics based on these. However, while reliable separation of a canopy and 
ground component is frequently problematic, for example in steeply sloping terrain or very 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 197

dense canopies, there are some instances where separate canopy and ground waveforms can be 
identified. For example Rosette et al. (submitted) explored use of ratio of canopy to total 
waveform area in correlation with canopy cover in a mixed temperate forest, where separation 
of ground from canopy was based on Gaussian decomposition of the return pulse. Figure shows 
an example of a normalised index regressed against the vertically projected plant area index 
(VPAI). The waveform index (WI) is defined as  
 

WI = (CR-GR)/(CR+GR)     (3) 
 
The figure shows the index is sensitive to VPAI (R2=0.87) while relatively insensitive to 
perturbing factors such as variation in leaf and soil optical properties. Such a normalised index 
would also be insensitive to absolute calibration of the return radiance. 

 
Figure 6: Vertically projected plant area index (PAI) vs index derived from waveform lidar, separated into 

canopy return (CR) and ground return (GR). 
 

4. Discussion  
 
We have presented a Monte Carlo radiative transfer model of waveform lidar for 
three-dimensional vegetation canopies, within the framework of the FLIGHT model (North 
1996). Good agreement is found between the integrated waveform energy and directly derived 
BRFs from FLIGHT. A sensitivity analysis shows information content in the waveform signal 
related to canopy cover variation and perturbing factors such as plant area index (PAI) and 
optical properties. Further research is recommended to accurately model atmospheric scattering 
and absorption, and to test the model against a wider range of canopies. 
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