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Abstract  
 
In continuous cover forest systems, canopy gaps are created by management activities with an 
aim of encouraging natural regeneration and of increasing structural heterogeneity. Canopy gaps 
are difficult to map from the ground and LiDAR may provide a means to accurately assess gap 
distribution, allowing more effective monitoring. This paper presents a new approach to gap 
delineation, based on identifying gaps directly from the point cloud and avoiding the need for 
interpolation of returns to a canopy height model (with associated errors). Areas of canopy are 
identified through local maxima identification, filtering and clustering of the point cloud, and 
gaps are then identified and delineated in a GIS environment.  
 
When compared to field mapped gap outlines, the algorithm has an overall accuracy of 88% for 
data with a high LiDAR point density and accuracy up to 77% for lower density data. The 
method provides an increase in producer’s accuracy, of on average 8%, over a method based on 
the use of a canopy height model. Results indicate that LiDAR data can be used to accurately 
delineate gaps in managed forests, potentially allowing more accurate and spatially explicit 
modelling of understorey light conditions. 
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1. Introduction  
 
The distribution, shape and extent of gaps in forest canopies can influence a range of ecological 
factors including the understorey light regime and vegetation, microclimate and soil moisture 
(Page and Cameron 2006) as well as influencing other considerations such as the aesthetic appeal 
of the stand. Continuous cover forestry (CCF) is a management approach that maintains a forest 
cover over time, by the selective felling of single or small patches of trees, and aims to produce a 
more diverse forest structure (Mason and Kerr 2004). Canopy gaps within CCF forests result from 
both management activities and natural disturbances such as windthrow and allow the occurrence 
of natural regeneration in the understorey, reducing the need for re-planting.  Monitoring such 
stands presents new challenges, as detailed and spatially explicit information is needed on a more 
frequent time-scale than for traditional clear-cut systems. 
Airborne laser scanning provides high resolution information on vertical and horizontal aspects of 
forest structure and may allow the study and monitoring of fine-scale spatial structural 
heterogeneity of stands in the process of conversion to CCF, through the identification and 
delineation of canopy gaps. By examining the spatial distribution and characteristics of canopy 
gaps, indices of spatial structure can be developed with direct relevance to important ecological 
parameters, whilst the gap distribution itself is useful in predicting understorey conditions. 
This paper examines the use of discrete return, small footprint LiDAR data for the delineation of 
canopy gaps (mainly resulting from management) in Sitka spruce (Picea sitchensis) plantations. 
A new approach, delineating gaps directly from the LiDAR point cloud, is developed and 
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compared to previous approaches based on the use of a canopy height model (CHM). The 
accuracy of delineations is assessed against independent field measurements.  
 

2. Background 
 
A canopy gap can be viewed as a lowering of the surrounding forest canopy below a certain 
height threshold. Information on the height of the canopy surface can therefore aid the 
identification of gaps. A number of studies have examined the potential of surface models 
derived from digital photogrammetric techniques for identifying canopy openings (Nuske et al. 
2007; Betts et al. 2005; Nakashizuka et al. 1995). Small-footprint discrete return LiDAR 
sensors have been widely used to derive locations, heights and crown sizes of individual trees 
(Falkowski et al. 2006; Koukoulas and Blackburn 2005; Suárez et al. 2005). However, very 
little explicit consideration has been given to delineation of canopy gaps from LiDAR data.   
 
The assumption that mapping canopy gaps using LiDAR is straightforward (Nuske et al. 2007) 
has not been tested. Koukoulas and Blackburn (2004) mapped canopy gaps from LiDAR data of 
deciduous woodland, with the aim of describing gap spatial structure and within-gap vegetation 
types. A CHM was generated from the raw data and a fixed height threshold (four metres) was 
used to define a gap. Morphological shrinking functions were then applied to isolate individual 
gaps. However, by applying a 'hard' height threshold to delineate gaps, the algorithms used do 
not lend themselves to applications in uneven-aged stands likely to result from CCF. A recent 
study by Zhang (2007) examined the use of LiDAR for delineating gaps in mangrove forests. 
The fixed height threshold method of Koukoulas and Blackburn (2004) was compared to a 
mathematical morphology based method, using opening and closing operations, in which the 
threshold height was determined as a ratio of whole gap height.  However, neither study 
undertook a formal accuracy assessment of the gap delineations or any comparison to field data. 
In Koukoulas and Blackburn (2004) field measurements were not felt to be comparable and 
delineations from aerial photographs too inaccurate. Zhang (2007) compared LiDAR 
delineations to a slope grid generated from the canopy model but not to field data. Further work 
is therefore needed to assess the potential of LiDAR data for accurate gap delineation, including 
comparison to appropriate field data.  
 
Acquisition parameters such as scanning angle and point density could have considerable 
impact on the accuracy of gap delineations. A number of studies have considered the influence 
of flight altitude (Morsdorf et al. 2008; Goodwin et al. 2006; Næsset 2004) and scan angle 
(Morsdorf et al. 2008; Ahokas et al. 2005) on the retrieval of biophysical properties, including 
individual tree height and crown width.  Maximum scan angle (from nadir) is likely to 
influence the range of angles at which LiDAR pulses interact with the canopy and ground, the 
spacing of pulses (across track) and the distance that laser pulses travel through the forest 
canopy. As large scan angles can result in areas of shadow where the pulses do not penetrate 
adjacent tree crowns, this seems likely to have a significant influence on the delineation of 
canopy gaps. Point density is also likely to influence accuracy, as at low point density the 
canopy drip-line of trees (defined below) may be frequently missed. Although the influence of 
point density and scanning angle on the accuracy of gap delineations is not explicitly 
investigated in this paper, at lower densities or in areas of shadow, the averaging involved in 
interpolation of point data to CHMs is likely to compound these problems and reduce the 
precision of delineations. The process of producing a CHM also leads to the loss of data from 
different levels in the canopy, preserving just lidar returns from the surface, leading to a further 
reduction in the information available for gap delineation. This paper therefore develops an 
alternative approach, avoiding the use of a CHM and instead delineating gaps directly from the 
point cloud.  
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3. Data collection and pre-processing 
 
3.1 Study sites 
 
The three study sites are located in Sitka spruce (Picea sitchensis) plantations in the UK. 
Aberfoyle, Scotland is the site of a CCF trial area. Two one hectare plots were used for field 
measurements, one in a stand in the early stages of transformation (AbP1) and the other in a 
traditionally managed plantation that had been lightly thinned (AbP2). Clocaenog Forest in 
North Wales is also a CCF trial area, managed by the University of Wales, Bangor. One plot 
(CLG1) is a thinned control plot, whilst the other (CLG4) has been managed as a uniform 
shelterwood since 2004. The final study site is Glasfynydd Forest in South Wales. This is the 
site of a Forest Research thinning experiment. Plots were established in 50 year old stands and 
thinned (in 2002 and 2005) to 69% (plot GLT) and 60% (plot GHT) of their original basal area. 
The plots exhibit a range of canopy gap sizes and distributions due to their management history.  
 
3.2 LiDAR and field data 
 
Airborne campaigns were carried out over all three sites in summer 2006. Discrete return LiDAR 
data (first and last returns) for Glasfynydd and Clocaenog were collected by the NERC Airborne 
Research and Survey Facility at an average point density of 1.2 returns per m2 with a maximum 
scan half-angle of 20 degrees. Data for Aberfoyle was acquired by the Environment Agency at a 
much higher point density (11.4 returns per m2) and a maximum scan half-angle of 10 degrees.  
A gap can be viewed as a ‘hole’ in the forest canopy caused by the loss or removal of one or 
multiple trees, thereby excluding small gaps within tree crowns or between neighbouring trees.  
To allow the comparison of field and LiDAR data, a more complete definition is needed. For the 
purposes of this study, a gap boundary is defined by a line at ground level (the drip-line) located 
vertically beneath the inner most point reached by the foliage of a tree crown at any level, at that 
point on the gap perimeter, as suggested by Brokaw (1982). A gap must have a minimum area of 
5m2  and must extend down to at least ten metres from ground level (closure occurs when 
regeneration reaches an average height of ten metres). 
A detailed ground survey of all plots was carried out in September 2005 for Aberfoyle and 
summer 2006 for the Welsh sites. Full data sets including tree positions and dimensions were 
available for Clocaenog and Glasfynydd and these were up-dated by re-measuring a subset of 
trees. A 50m by 50m subplot was established in each plot and the boundaries of all canopy gaps 
(fitting the study definition) were surveyed. As it was not possible to survey every point along 
the canopy drip-line of gap boundaries, the resulting field-mapped boundaries were to some 
degree generalised. A Total Station survey, from a GPS baseline, was used to record points 
located directly below the drip-line wherever significant changes in the orientation of the gap 
boundary occurred. Several points were recorded per tree crown. Gap boundaries were mapped 
for all plots except CLG1. 
 
3.3 LiDAR pre-processing 
 
Pre-processing of LiDAR data was carried out using FUSION (McGaughey 2007). A digital 
terrain model was generated from the last return data by filtering to leave bare earth points, 
using an iterative process adapted from Kraus and Pfeifer (1998). A gridded DTM was 
generated from these points with a cell size of 2m. The accuracy of the DTM was assessed 
against height measurements obtained during the GPS and total station survey, resulting in an 
average RMSE of 1.1m. This error falls within the vertical accuracy levels of the GPS positions 
so the absolute accuracy of the DTM could not be assessed further. To determine the degree to 
which the DTM represented variation in the ground surface (a factor perhaps more important to 
this study than absolute height), the relationships between total station surveyed points and the 
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heights extracted for the same locations from the DTMs were examined, giving a strong linear 
relationship (R2 of 0.93-0.99, P<0.001) and suggesting that the DTM accurately represented 
variation in the ground surface within the plots. The corresponding value of the DTM was then 
subtracted from the first return point data to convert from elevation to height above ground. 
 
A canopy height model (cell size of one metre for the Welsh sites and 0.5 metres for Aberfoyle) 
was generated from the first returns, also within FUSION. The highest first return (from the 
point cloud, converted to height above ground) was assigned to each grid cell, with missing 
values interpolated by averaging of neighbouring values. The use of a TIN to generate the CHM 
was also investigated but produced poorer results in this study. Heights derived from the final 
CHM were compared against field measured tree heights (from 2007) for plot CLG1, resulting 
in a correlation co-efficient of 0.95 (P<0.001) and a mean error of -1.55m.  
 
4. Methodology 
 
Two methods were used to delineate gaps from the first return LiDAR data. In the first, a 
relative height threshold of 66% of local tree height was applied to the CHM. This threshold 
was found to correspond to the canopy drip-line through manual measurements of the point 
clouds of 45 individual trees located in open areas or on gap edges. A surface representing the 
top of the canopy was first generated by applying a moving window (with a radius of 5.5 
metres) and taking the maximum value in the window to represent the maximum local tree 
height for the centre pixel. This filter size was selected as large enough not to cause the resulting 
canopy top raster to fall into small gaps between trees whilst preserving the spatial variation in 
tree heights within the stand. Pixels in the original CHM were then classified as gaps if they had 
heights lower than 66% of the local height of the canopy top raster. All pixels in the CHM with 
a height of less than 10 m were also included in the gap class to account for those in the centre 
of large gaps. 
 
The alternative method delineates gaps directly from the LiDAR point cloud without 
interpolation to a CHM. As many gaps contain large areas of shadow with few LiDAR returns, 
the algorithm focuses on the identification and delineation of areas of canopy, with gaps being 
found subsequently by default. The algorithm is composed of a number of stages including the 
identification of local maxima (as points higher than their neighbours), filtering to remove 
returns from below the canopy drip-line (less than 66% of local tree height), clustering of lower 
canopy returns into separate clusters around each identified maxima (limited by a radius 
corresponding to the maximum tree crown size) and merger and delineation of clustered points 
to retrieve gap delineations. The initial stages (identifying local maxima and clustering of 
returns) are similar to the approach taken by Tiede et al. (2005) to assign point data to individual 
tree crowns, but the clustering method differs by first filtering the point cloud to leave only 
returns from above the canopy drip-line. Figure 1 shows the full point-based processing scheme.                
 
Following filtering and clustering, the locations and cluster memberships of the points are 
processed in a GIS environment to produce vector gap outlines. Any points that have not been 
assigned to a cluster are removed at this stage. First, a buffer (of fixed radius) is applied to the 
points, and those points with the corresponding cluster memberships (associated with the same 
maxima) are merged into a single polygon. Any ‘holes’ fully enclosed within a cluster polygon 
are removed leaving polygons representing tree crowns. The areas of test plots representing 
gaps (i.e. all areas not included in the canopy polygons) are then retrieved. The gap polygons are 
then dilated to reconstruct full gap extent. The point density of the data determines the optimum 
distances for buffers to merge points, with the radius of buffers approximately equal to the 
distance between adjacent scan lines in the along-track direction (the direction in which the 
largest point spacing was present). A small buffer remains surrounding the clustered canopy 
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points (i.e. the gaps are not dilated by the full buffer distance), as such points are unlikely to be 
located precisely on the canopy edge. All specified parameters for each plot are presented in 
Table 1 and vary according to the LiDAR point density. The clustering radius (R) can be 
estimated as approximately double the average along-track spacing of LiDAR returns. The 
search radius, S, used for maxima location can be estimated from field data (or in the absence of 
such data, from optical or lidar intensity images) so as to be slightly larger than the average 
crown diameter. 
 

 
 

Figure 1: Point-based processing scheme for delineation of gaps from LiDAR data.  
 
 

Table 1: Final parameters selected for point-based processing of each plot. 
 

Plot Number of 
neighbours (X) 

Search radius 
(S) 

Cluster radius 
(R) 

Buffer distance  Distance gaps 
dilated  

AbP1 
AbP2 
GLT 
GHT 
CLG1 
CLG4 

100 
100 
20 
20 
20 
20 

3 m 
3 m 
3 m 
3 m 
3 m 
3 m 

1 m 
1 m 
2 m 
2 m 
2 m 
3 m 

0.5 m 
0.5 m 
1 m 
1 m 
1 m 

1.5 m 

0.25 m 
0.25 m 
0.5 m 
0.5 m 
0.5 m 
1 m 
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Before assessing accuracy against field data, any gaps identified as having an area of less than 5 
m2 were removed. In the case of the CHM-based method of gap delineation, accuracy was 
assessed by a pixel based comparison (confusion matrix) of the classified raster with a raster of 
the field mapped gap distributions for sub-plots of AberP1, CLG4, GHT and GLT. AberP2 was 
excluded from the assessment due to difficulties in accurately co-registering the field and 
LiDAR data. For the point based method, a confusion matrix was calculated directly from the 
vector delineations. The total area of canopy gap identified in each sub-plot using both methods 
was also compared with the overall area delineated in the field. A separate assessment of the 
accuracy of the maxima identification stage for the point-based method was also carried out for 
plots where tree positions were available (either field mapped or obtained visually from the 
CHM). A maxima was considered to correspond to a field mapped tree if it lay within a 2m 
radius of the field position (the average crown radius for the stands).  
 
5. Results 
 
Table 2 shows the correspondence between identified maxima (from the point-based method) 
and field mapped tree positions. Good levels of accuracy were achieved for all plots, with the 
majority of trees identified. Some commission errors occurred, but this is unlikely to have a 
significant effect on the performance of the algorithm as a whole. 
 
Table 2: Accuracy of maxima identified from LiDAR first return point data compared to field measured 

tree positions (except for AbP1, where ‘field’ positions were manually identified from the CHM). 
 

Plot Producer’s accuracy (%) User’s accuracy (%) 
CLG1 85.7 75.2 
CLG4 88.0 79.0 
GLT 73.2 68.0 
GHT 86.2 69.7 
AbP1 94.8 83.8 
Mean 85.6 75.1 

 
Figure 2 shows an example of the results of the clustering stage of the algorithm for two plots, 
one with a high point density (AbP1) and the other with much lower point density (CLG4). In 
general the points form compact clusters around field mapped tree positions, although there are 
some instances in which clusters also include parts of neighbouring crowns.  
 
The final gap delineations using this method for the same two plots are shown in Figure 3. The 
majority of gap areas are correctly identified in both cases but greater errors can be seen for the 
plot with lower density LiDAR data. This was confirmed by the results of the formal accuracy 
assessment, as presented in Table 3. The corresponding results for the CHM-based method are 
also included. Overall accuracy was slightly higher for all plots using the point-based method (an 
increase of 3.7% on average), whilst the producer’s accuracy of the gap class was considerably 
improved in most cases (average increase of 8.3%). Table 4 compares the total derived gap area in 
each sub-plot to that mapped in the field. It can be seen that both the CHM and point-based 
methods generally under-estimate gap area. The point-based approach usually retrieves a greater 
gap area than the CHM-based method and the results are also more consistent between plots. 
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Figure 2: Examples of the results of the clustering stage of the point-based algorithm for plots CLG4 and 

AbP1. Locations of local maxima used as seeds and the locations of trees (field mapped for CLG4, 
visually identified for AbP1) are also shown. Colours are randomly assigned to clusters. 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 414

 
 

Figure 3: Results of the point-based gap delineation algorithm for plots AbP1 (a.) and CLG4 (b.). 
 
 

Table 3: Confusion matrix results for a comparison of field mapped canopy gaps to point and CHM 
–based LiDAR delineations. The producer’s and user’s accuracies are those of the ‘gap’ class. 

 
Plot Method Overall 

accuracy (%) 
Producer’s 

accuracy (%) 
User’s accuracy 

(%) 
Kappa 

co-efficient 
AbP1 Point-based 87.8 74.9 82.7 0.70 

 CHM-based 85.2 79.7 73.1 0.66 
CLG4 Point-based 77.2 69.3 72.5 0.52 

 CHM-based 70.7 62.6 62.8 0.39 
GHT Point-based 72.8 61.4 70.9 0.43 

 CHM-based 71.6 47.6 76.8 0.39 
GLT Point-based 74.8 46.7 81.0 0.43 

 CHM-based 70.6 29.3 89.2 0.31 
Mean Point-based 78.2 63.1 76.8 0.52 

 CHM-based 74.5 54.8 75.5 0.44 
 

Table 4: Comparison of the total gap area identified within sub-plots by field mapping and LiDAR 
delineation using the point and CHM –based methods. 

 
Plot Method Field mapped 

gap area (m2) 
LiDAR derived 
gap area (m2) 

Error (%) 

AbP1 Point-based 750 679 -9.5 
 CHM-based  817 9.0 

CLG4 Point-based 1016 972 -4.3 
 CHM-based  997 -1.9 

GHT Point-based 1080 935 -13.5 
 CHM-based  671 -37.9 

GLT Point-based 957 552 -42.3 
 CHM-based  316 -66.9 

RMSE Point-based   22.8 
 CHM-based   38.7  

a. b. 
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6. Discussion and Conclusions 
 
Both methods provide accurate gap delineations when applied to LiDAR data collected with a 
high point density. However, when lower point density data is used, the method based on an 
interpolated CHM can result in significant errors, probably due to the low number of returns 
located in canopy gaps and resulting interpolation errors. In these circumstances, the accuracy 
of gap retrieval can be improved by the use of methods based on the LiDAR point cloud, 
although the point-based method does require the careful selection of appropriate parameters for 
each data set. These can be estimated from basic field data (or the examination of optical 
imagery) and from the along-track point spacing of the LiDAR data, as described in the 
methodology.  
 
It is not possible to compare the accuracy of the developed algorithm to those used in other 
studies of LiDAR gap delineation (Zhang 2007; Koukoulas and Blackburn 2004) as these 
studies did not attempt to assess the accuracy of resulting delineations. However, the results 
compare reasonably with those of Nuske et al. (2007) who used colour, texture and height 
information from aerial photographs to delineate gaps in Beech stands with a recall of 57-79% 
and a precision of 68-77% when compared to manual delineations. Whilst field and LiDAR 
delineations were felt to be generally comparable in this study, allowing the assessment of 
accuracy, the approach did have limitations. Errors in the GPS baselines used for the field 
survey led to error in registration of the field and LiDAR data for some plots. As only a limited 
number of points on the gap boundaries could be surveyed, the field boundaries are unavoidably 
generalised and some smaller gaps may have been missed altogether. These factors could 
account for a significant proportion of the remaining error in the delineations, suggesting ‘true’ 
accuracy may be higher than that reported.  
 
LiDAR data can allow the accurate delineation of canopy gaps in stands in the process of 
transformation to CCF systems, although the influence of scan angle on results is yet to be 
determined. The resulting gap distributions may be used to develop indices of spatial structure 
that allow the monitoring of such stands but further work is needed to assess the usefulness of 
such indices and to integrate the spatially explicit gap information into models of understorey 
light levels.  
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