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Abstract 
 
In fire risk, correct description of topographic and fuel properties is critical to improve fire 
danger assessment and fire behaviour modelling. Many rural areas are now scanned using 
LIDAR sensors. In some of these areas the information registered by the sensor includes not 
only the geometric characteristics of the Earth’s surface, given by the coordinates (x,y,z) of the 
LiDAR point cloud, but also the reflectance of the objects located on this surface, which is 
given by the backscattered intensity of echo reflection. The main objectives of this paper are to 
assess the performance of three land cover supervised classification methods of LiDAR data: 
Maximum Likelihood (ML), simple pixel hierarchical and object-oriented classification. In this 
way, three “bands” were computed from LiDAR data: the normalized height (nH), the height 
difference between the first and last echo (Hdiff) and the LiDAR intensity (I), which is the only 
spectral band of the feature space. Using data from training sites and the transformed divergence 
index, the separability of roads, buildings, high vegetation and low vegetation classes was 
evaluated. The comparison among these three classification methods was done using 
orthoimagery as reference data. The obtained results indicate that an evident superiority doesn't 
exist among the three methods.  
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1. Introduction  
 
1.1 Motivation 
 
Forest fires are one of the major challenges for natural resources management in many places in 
the world. Spain and Galicia are not an exception, being this autonomous community one of the 
most punished regions in Europe. Forest risk variables could be grouped into tree levels: 
topographic variables, fuel variables and variables related to human activity. Correct description 
of topographic and fuel properties is critical to improve fire danger assessment and fire 
behaviour modelling, since they guide both fire ignition and fire propagation, and fuel is the 
only vertex of “fire triangle” (fuel, oxygen and heat) that human action can modify directly. 
Moreover, in the proximity of buildings and infrastructures, there are more chances that fire was 
caused by higher human presence. The fact that most fires are caused by humans suggests that 
increased accessibility to forests will increase the possibilities of fire. Implicitly, actions around 
elements of special concern for humans are given priority, mainly because fire in the proximity 
of those places represents a risk to life. Because the safety of people and houses is a priority 
during fire extinction, prevention models should also consider this factor as a priority. 
 
In this sense, correct classification of roads, buildings, high vegetation and low vegetation is 
very important in the later extraction of those variables. Airborne Laser Scanning (ALS), also 
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known as LiDAR (Light Detection And Ranging) has shown a great potential in fast and 
accurate geographic data acquisition below canopy closure. This active remote sensing 
technique records not only the geometric characteristics of the Earth’s surface, but also the 
reflectance of the objects located on this surface. The backscattered intensity of reflection (also 
referred as intensity) is basically a function of the laser wavelength, which is typically in the 
near infrared (NIR) spectra region (0.7 - 1.5 µm for topographic applications), the range from 
sensor to the object and the composition and orientation of the object or surface. Because 
different materials have different reflectances, the intensity can be used for classifying land 
cover.  
 
Nowadays, because many rural areas are scanned using Lidar sensors is indispensable to know 
if it is possible to use this data alone to extract the forest risk variables. Thus, the main 
objectives of this paper are to assess the performance of three supervised classification methods 
of LiDAR intensity data: maximum likelihood classification, simple hierarchical pixel 
classification and object-oriented classification. In this context, three bands were computed 
from LiDAR data: the normalized height (nH) which contain the information about the height of 
the objects; the height difference between the first and last echo (Hdiff); and the LiDAR 
intensity which is a spectral band in the NIR region. Then, using data from training sites and the 
transformed divergence index, the separability of the input feature space was evaluated. Finally, 
the object identification was made using the three classification methods. The comparison 
among these three classification methods was done using orthoimagery as reference data. 
 
1.2 Related work 
 
In spite of the great majority of the LiDAR systems have the capacity to record the received 
signal intensity, the great part of the published work has been done in the filtering, classification 
and segmentation of the 3D point cloud (x,y,z) – the primary result of LiDAR system – based on 
the geometric characteristics of this cloud. What is of our knowledge, a few works have been 
using the variable intensity in the processing of the point cloud.  
 
Song et al. (2002) evaluated the possibility of using LiDAR intensity data for land-cover 
classification. The LiDAR point intensity has converted to a grid by using three different 
interpolation techniques. Using a transformed divergence method the separability of intensity 
data for four classes (asphalt roads, grass, house roofs and trees) has assessed. They conclude 
that LiDAR intensity can be used for land-cover classification and state if more features, such as 
DSM, and more processing, such as intensity normalization, are added better results could be 
reached and more classes identified. 
 
In Matikainen et al. (2003) the feasibility of using LiDAR data (intensity and geometry of 
LiDAR point cloud) for automatic building detection in the context of map updating is 
investigated. Using an object-oriented classification method the feature space formed by an 
nDSM and by an intensity image is classified in two classes: buildings and not-buildings. A 
similar approach has conducted by Brennan et al. (2006), but considering a larger number of 
information classes and segmentation levels. 
 
Charaniya et al. (2004) used a supervised parametric classification technique to classify roads, 
roofs, trees and grass. The feature space was formed by using LiDAR derived data (nDSM, 
intensity, height variation, difference of first and last echo) and the luminance of a grey scale 
aerial photo. Data fusion was made by using a classification algorithm based on the Gaussian 
mixture model and Expectation Maximisation. The obtained results allowed them to conclude 
that: i) the normalized height and height variation are important geometric features for the 
classification procedure; ii) the intensity and luminance (i.e. non-geometric features) are useful 
for separating the grass (low vegetation) from roads; iii) using the intensity as the only 
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non-geometric feature the overall classification was slightly worse, but the tree classification 
was improved. A similar work was conducted by Bartels et al. (2006) but adding also an 8-bit 
NIR aerial photo to the feature space and incorporating additional knowledge and considering 
contextual relationships among classes. 
 
Finally, in Höfle et al. (2007) the return amplitude of each eco (that is the intensity) is corrected 
in order to obtain a value that is proportional or equal to the surface reflectance. The intensity 
variations and systematic errors due to spherical loss, topographic and atmospheric effects are 
corrected by two independent methods: data and model-driven approaches. They conclude that 
both methods can achieve a significant reduction of local intensity variation within a regular 
neighbour to a 1/3.5 of the original variation and offsets between flight strips to 1/10. They 
pointed out that the need for normalized intensity values area justified for large data sets 
containing strong elevation differences. As the height variations in this study are very small we 
used the original uncorrected intensity values. 
 
2. Methodology  
 
2.1 Data and study area 
 
The study area (Figure 1) is located in the north of Galiza (Spain) and it is composed basically 
by a small residential zone and a forest zone, whose dominant species is Eucalyptus Globulus. 
In geomorphologic terms, in spite of the altitudes varying between 230 and 370m, the relief of 
the zone is quite accentuated.  
 

 
 

Figure 1: The location and shaded relief of the test area 
 
The LiDAR data were acquired in November 2004 with Optech’s ALTM 2033 (www.optech.ca) 
from a flight altitude of 1500m (ASL).The LiDAR sensor works with a laser wavelength of 
1064 nm and the beam divergence was set to 0.3 mrad. The pulsing frequency was 33 kHz, the 
scan frequency 50 Hz, and the scan angle ±10 degrees. The first and last return pulses were 
registered. The complete study area was flown in 18 strips and each strip was flown three times, 
which gave an average measuring density of about 4 points per square meter. 
 
2.2 Features, classes and separability 
 
In order to run image classification methods in the LiDAR data, these (intensity and the original 
and the filtered point cloud) have to be converted to a grid format. Take into account the pulse 
density (4pts/m2) the cell size chosen was 0.5m. In this way each one of the features used in the 
classification procedure was derived from the original and filtered LiDAR data by using the 
kriging interpolation method with linear variogram. The parameters chosen for the interpolation 
of each grid are given in table 1. However as it was indicated in (Gonçalves, 2006) for these 
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sampling densities and for this cell size the influence of the interpolation method is not 
important for the subsequent classification procedure. The kriging interpolator was chosen by 
the fact that it can produce a smooth topographic surface and in the case of intensity values it 
can remove some of its noise more effectively. 
 
2.2.1 Features 
 
For image classification purposes we identify three features to be used (see figure 2): 

• Normalized height (nH). This feature is obtained by subtracting the morphological 
filtered DTM from the original DSM. The DSM was interpolated from the first LiDAR 
return. The morphological adaptive filter used to obtain bare earth points from the 
LiDAR point cloud is described in (Gonçalves-Seco et al. 2007). The DTM was 
interpolated from these bare earth points corresponding to the last return LIDAR. This 
feature is created to exclude the influence of topography from the classification process 
and is useful to differentiate the high objects (high vegetation and buildings) from the 
low objects (low vegetation and roads). 

• Height difference between the first and last return (Hdiff). Depending on the laser and 
object characteristics the LIDAR shot can penetrate through the objects and 
backscattered to the sensor at different height levels of the objects. In the case of first 
and last pulse acquisition, some of the shot energy can be returned to the sensor from the 
top of the penetrable objects while another part of its energy continues her path until 
reaching the terrain where is backscattered to the sensor. In this study this feature is used 
to identify the high vegetation areas, and it acts as a measure of height texture. 

• Intensity (I): Since the laser unit of the LiDAR system uses light from the near infrared 
portion of the spectrum we use this feature to introduce spectral knowledge in the 
classification procedure. This is the only non-geometric information provided by the 
sensor and the intensity image is interpolated from the first LiDAR return. 

 
Table 1: Kriging interpolation parameters:  

 

Interpolated Grid Error 
variance 

Scale, Length, Anisotropy 
ratio, Anisotropy angle  

DSM (first and last echo) 8.76 2,1,2,125.7 
DIM 1.5 1,0,2,125.7 
DTM 8.76 2,1,2,125.7 

 
2.2.2 Classes 
 
In the context of fires in rural areas we can devise four information classes that they play a 
central role in the fire risk management: roads, buildings, high vegetation and low vegetation. In 
fact, beyond topographic variables estimated from DTM (for example the slope, the altitude and 
aspect which affects, respectively, the fire spread, the occurrence and fire behaviour and 
regulates temperature levels and relative humidity), in the proximity of roads and buildings, 
there are more chances that fire was caused by higher human presence. The fact that most fires 
are caused by humans suggests that increased accessibility to forests will increase the 
possibilities of fire. Implicitly, actions around elements of special concern for humans are given 
priority, mainly because fire in the proximity of those places represents a risk to life. Because 
the safety of people and houses is a priority during fire extinction, prevention models should 
also consider this factor as a priority (Gonçalves-Seco et al., 2007b). High and low vegetation 
can help to represent fuel properties at surface and crown level, such as dead and live fuel load, 
canopy cover and height, vertical and horizontal structure of the canopy, the quantity of biomass 
and fuel moisture content (Pyne et al., 1996). 
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2.2.3 Separability assessment 
 
In order to assess the signature separability in the feature space the transformed divergence 
method (TDI) was used. The TDI index between two classes i and j is derived from the 
likelihood ratio of any pair of classes and varies within in the interval [0,2] (Richards et al., 
2006):  
 
 8TDI 2 (1 )ijd

ij e−= × −       (1)  
where 

• { } { }1 1 1 1
r r

1 1T ( )( ) T ( )( )( )
2 2

t
ij i j j i i j i j i jd − − − −= − − + + − −C C C C C C m m m m  

• Ci , Cj, mi, and mj are the covariances and means for the classes i and j, respectively, 
• Tr is the trace function. 

 
The greater the value of TDI the greater is the signature separability based on this feature space 
and training data. In general a TDI value of 2.0 is considered to be indicator of perfect 
separability while a value of 0 indicates complete overlap between the signatures of the two 
classes. Values greater than 1.9 are considered good separability and values less than 1.7 are 
considered poor separability. 
 
2.3 Classification methods 
 
In general, image classification procedures can be categorized into supervised and unsupervised, 
depending on the presence of previous knowledge about the land cover types, and into 
parametric and nonparametric depending on the assumptions made about the multivariate 
normal distribution of the N-dimensional feature space. In the case of high resolution (HR) 
imagery data some authors (Brennan et al., 2006; Li et al., 2007) argue that is not practical to 
classify the image using traditional pixel-based classification methods, such as supervised 
parametric (e.g. maximum likelihood), because they have considerable difficulties to deal with 
the rich information content present in the HR 2-D data and they produce a characteristic and 
inconsistent salt-and-pepper classification. They purpose more advanced approaches such as 
object-oriented segmentation and classification techniques to overcome these problems. 
 
In the context of land cover classification of small footprint LiDAR data (i.e high resolution 
2½-D data) the maximum likelihood and object oriented methods are the more used. Because of 
this high spatial resolution of LiDAR data set we are interested to study also the performance of 
simple hierarchical classification when compared to the maximum likelihood and the more 
advanced object-oriented classifier. 
 
2.3.1 Maximum Likelihood 
 
The Maximum Likelihood Classifier (ML) is perhaps the most commonly used supervised 
parametric classifier because of its robustness and its easy availability in almost any image 
classification software package (Lu et al., 2007). Under the assumption of multivariate normal 
distribution of the classes examined a pixel x is classified by this method to belonging to the 
class wi if it minimizes the discriminate function gi(x) (that is, it has the maximum likelihood of 
correct assignment)  
 1( ) ( ) ( ) lnT

i i i i ig −= − − +x x m C x m C     (2) 
where mi and Ci are the mean vector and covariance matrix of the class under examination (wi) 
computed from the training data. 
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2.3.2 Simple hierarchical classification 
 
In this classification method we used binaries queries (or decisions) to place pixels into classes. 
Each query divides the pixels in a set of images into two classes based in an expression. Each 
new class can be divided into two more classes based on another expression. The algorithm used 
to build this classifier is given in figure 2 and has been implemented using MatLabTM language. 
Only three (par3,par4,par5) of the six classification parameters are computed from the intensity 
values of the training areas. The other three parameters are height thresholds and can be 
computed from the characteristic of LiDAR flight: par1 defines the minimum height of the high 
objects (buildings and trees); par2 defines the minimum height of penetrable objects; par6 
depends on LiDAR system and defines minimum height echo separation. 
 

 
Figure 2: Simple hierarchical classification algorithm.  

 
2.3.3 Object-oriented classification 
 
In object-oriented classification approaches image analysis is done in object space rather than 
pixel space and objects are used as the information carriers for further classification. Image 
segmentation is the main step that is used to convert an image into multiple objects. In 
eCognitionTM software object-oriented image analysis is performed into three steps: 
multiresolution segmentation, creation of general classes and classification rules. In the first step, 
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images segments are defined and calculated using a bottom-up region-merging segmentation. In 
his patented algorithm (version 4.02) the parameters that control image segmentation are: scale, 
color, smoothness and compactness. The scale parameter (Sc) is an abstract value to determine 
the maximum possible change of heterogeneity caused by fusing several objects. Color (C) is 
the most important criteria for creating meaningful objects and defines the contribution of 
spectral values to define homogeneity of each object. Smoothness describes the similarity 
between the image object borders and a perfect square. Compactness (Cl) describes the 
"closeness" of pixels clustered in an object by comparing it to a circle (Baatz et all, 2004). These 
image segments have to be calculated on several hierarchical levels in a “trial and error” process 
to result in final image segments to represent single objects of interest (Navulur, K., 2006). In 
the second step Class Hierarchy are build by creating and defining classes. In our case, we have 
used only one level for the multiresolution segmentation and the parameters used for this 
segmentation are given in table 2. The rules used for the class definition are the same that we 
have used for the decision tree of the simple hierarchical pixel classification method. 
 

Table 2: Image segmentation parameters.  
 

Layer weights nH = 10; I = 1; Hdiff = 1 
Scale and homogeneity criterion Sc=10; C=0.1; Cl=0.3; S = 0.7 

 
2.4 Classification accuracy assessment 
 
In order to assess the accuracy of the results obtained by the three classification methods a 
random sample of 770 points are generated and manually classified using an orthoimage of the 
test area. This sample is used to generate an error matrix for each classification method. From 
these error matrixes several measures are computed to describe the accuracy of land cover 
classification. As global measures we will use the overall accuracy (Pc) which gives the overall 
percentage of area correctly classified and the overall kappa statistic (k) which takes into 
account the whole confusion matrix including its off-diagonal elements. As local measures (i.e 
class accuracy) we will use the producer’s accuracy (PA) which gives the percentage of 
correctly classified pixels from the collected class samples, and the user’s accuracy (UA) which 
gives the percentage of pixels which were correctly assigned to one particular class.  
 
3. Results  
 
3.1 Separability of class signatures 
 
Table 3 shows the results obtained for the separability analysis of class signatures. The average 
separability is 1.96 which means that the four classes forming the feature space can, in principle, 
be correctly separated using the signatures computed from the training data. The minimum 
separability is between buildings and high vegetation. This means that the feature space is not 
enough to achieve a good separability between these two classes.  
 

Table 3: Separability measures using TDI. Class-1 = roads; Class-2 = buildings; Class-3 = high 
vegetation; Class-4 = low vegetation 

 
Name Class-1 Class-2 Class-3 
Class-2 2.000   
Class-3 2.000 1.764  
Class-4 2.000 2.000 2.000 
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3.2 Classification methods 
 
Figure 4 shows the training areas and the results of the three classification methods. Figure 4a 
(left) shows the training areas (in red) superimposed over the orthoimage that was used to 
classify manually the random sample. Note that the date of this orthoimage is previous to the 
date of LiDAR flight. Figure 4b, 4c and 4d shows, respectively the results obtained for the ML, 
simple hierarchical and object-oriented classifiers. For the simple hierarchical classifier the 
following values were used for the six parameters: 1.5,0.5,34,0,20,0. Although the three 
classifiers they produce correct and similar qualitative results, the object-oriented classifier 
gives visually better results in the labelling of the building and roads classes. 
 

 

 
 
Figure 4: Training areas and results of the classification methods. First row: training data (left) and results 

of ML classifier (right). Second row: results of the simple hierarchical (left) and object-oriented 
classifiers (right) 

 
3.3 Accuracy assessment 
 
The error matrix and some accuracy measures for the two classification methods are given in 
table 4. In this table the PA and UA accuracies also given for each class. The global measures 
such as Pc and k are also given. The global measures indicate that the object-oriented classifier 
is slightly better than the ML and simple hierarchical classifiers (better Pc and K values). 
However the PA for the building class is higher in ML classifier than in simple hierarchical and 
object-oriented classifiers. In any way, for the three classifiers, the user accuracy of the roads 
and building classes are not good as the user accuracy of high vegetation and low vegetation. 
 

Table 4. Error matrix and accuracy measures for the three classification methods. Legend: UA - user 
accuracy (%); PA - producer accuracy (%); Pc - overall accuracy; k – overall kappa statistic.  

 
 Maximum likelihood Simple hierarchical Object-oriented 
 1 2 3 4 UA 1 2 3 4 UA 1 2 3 4 UA 
1 20 1 00 55 26 22 6 5 50 27 18 2 0 15 51 
2 1 31 22 10 48 0 28 13 4 62 0 28 11 5 64 
3 0 0 414 9 98 0 0 421 10 98 0 0 424 11 97 
4 4 2 7 194 94 3 0 4 204 97 7 4 8 237 93 
PA 80 91 93 72  88 82 95 76  72 82 96 88  
 Pc = 85.6; K = 0.75 Pc = 87.7; K = 0.79 Pc = 91.8; K = 0.85 
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4. Conclusions and future work 
 
The obtained results indicate that it is possible to add to the traditional LiDAR point cloud 
classification (terrain and off-terrain points) a larger number of typical classes of these areas. 
The normalized height allowed the separation of the high objects from low. The LiDAR 
intensity allowed to unbundled the roads from the low object class and the height difference 
between the first and last echo allowed to isolate the objects that can be penetrated by the 
LiDAR shots (vegetation). 
 
The error matrix obtained for the classification methods shows that, in the context of the forest 
risk of rural areas, an evident superiority doesn't exist between the three methods. In these 
conditions, the method of simple hierarchical pixel classification can be used in bulky LiDAR 
point clouds for the extraction of the four classes pertinent for the subsequent generation of the 
fire risk variables. However some difficulties subsist in the separation of the high vegetation and 
building classes. The low user accuracy verified for the roads can be due to the fact that we have 
put in the same class the asphalted roads and non-asphalted roads. We could think that the 
consideration of one more class (non-asphalted roads or forest roads) will improve the results. 
However, the consideration of this class would also bring the additional problem of the 
separation between non-asphalted roads and low-vegetation class. 
 
The limitations of the three classifiers relates to misclassification of high vegetation and 
buildings, which are consistent with those of Brennan et al. (2006). Some others 
limitations/difficulties were found in the classification accuracy assessment. In fact, due to the 
high resolution of LiDAR data it is important that the resolution of the reference data will be 
much better than the LiDAR computed “images”. In case we use ortoimages as the reference 
data these images have to be true ortoimages, what are very difficult to achieve in forested 
environments. However, the use of stereoscopic images can be a solution to achieve a correct 
manual 3D-classification of the reference data.  
 
Finally, as future work, we can incorporate contextual knowledge into the classifiers to 
distinguish between buildings and high vegetation. In fact, we intended to use the shape and 
area parameters to identify isolated trees in a post classification step of the simple hierarchical 
pixel classifier.  
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