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Abstract 
 
The goal of this study was to use airborne LIDAR (Light Detection and Ranging) to evaluate 
percent canopy cover (PCC) and leaf area index (LAI) in loblolly pine forests of the 
southeastern United States, in order to address forest management and ecological concerns. 
More specific objectives were to: (1) Develop scanning LIDAR methods to estimate PCC and 
LAI over primarily coniferous forests; and (2) investigate whether a LIDAR and normalized 
difference vegetation index (NDVI) data fusion through linear regression improve estimates of 
these forest canopy characteristics. Scanning LIDAR data was used to derive local scale PCC 
estimates through use of the height bin method; then TreeVaW, a LIDAR software application, 
was used to locate individual trees to derive an estimate of plot-level PCC. A canopy height 
model (CHM) was used to determine tree heights per plot. QuickBird multispectral imagery was 
used to calculate NDVI. LIDAR- and NDVI-derived estimates of plot-level PCC and LAI were 
compared to field observations for 43 plots over 47 km2. Linear regression analysis resulted in 
LIDAR-only models explaining 84% and 78% of the variability associated with PCC and LAI, 
respectively; it is concluded that LIDAR alone can be used to estimate these canopy parameters.  
 
Keywords: LIDAR, leaf area index, percent canopy cover, forest inventory 
 
1. Introduction 
 
Leaf area index (LAI) and percent canopy cover (PCC) are important biophysical and 
ecophysical factors in addressing forest management issues such as fuel models and forest 
inventory, and ecological concerns including carbon sequestration and climate change. LAI is 
defined as one-sided leaf area per unit ground surface area (Chapin et al. 2002), while PCC is 
defined as the percent of a forest area occupied by the vertical projections of tree leaves (Avery 
and Burkhart 1994). LAI is especially important to ecological processes such as photosynthesis 
and net primary production (Coops et al. 2004), while PCC, also called canopy cover, is 
important in assessing canopy structure. PCC has grown in importance as a result of the needs 
to quantify the global woody biomass, quantify global carbon stocks and globally assess the 
condition of ecosystems (Hansen et al. 2002). Determining this information through remote 
sensing methods is an efficient and effective way to model such processes.  
 
Field, or in situ, measurements of LAI and canopy cover are necessary to validate remotely 
sensed values. Direct methods of estimating LAI include destructive sampling of the forest 
canopy, leaf litterfall collection and vertical point-quadrant sampling (Duranton et al. 2001). 
Indirect methods, less time-consuming than direct methods, range from employing a spherical 
densiometer, which is dependent on human intuition and level of experience (Englund et al. 
2000), to plant canopy analyzers such as the Li-COR LAI-2000, to hemispherical photography 
(Riaño et al. 2004). This study employs hemispherical photography analysis because it is a 
precise and less time-consuming data collection process; however, it has been shown to 
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underestimate field values of LAI (Mussche et al. 2001; Merilo et al. 2004; Jonckheere et al. 
2005). 
 
Previous studies have related multispectral imagery to forest canopy characteristics. Landsat 
ETM+ satellite data can be used to accurately predict LAI for coniferous forests by direct 
plot-level correlation and geostatistical analysis (Berterretche et al. 2005). Another study 
(Schlerf and Atzberger 2006) examined the use of hyperspectral remote sensing data to predict 
LAI, with an R2 value of 0.73 relative to ground measurements. The normalized difference 
vegetation index (NDVI) calculated from Landsat TM data has been used, either singly or in 
combination with other indices, to estimate LAI (Curran et al. 1992; Pocewicz et al. 2004) as 
can other vegetation indices (Baret and Guyot 1991). 
 
LIDAR remote sensing has become more widely used and accepted in ecological and forest 
inventory studies in recent years (Nelson et al. 1984; Means et al. 2000; Lefsky et al. 2002; 
Reutebuch et al. 2005). Small-footprint laser scanners have been successfully used to predict 
mean tree height, with one regression explaining 83% of the variability in ground-truth mean 
tree height (Naesset and Bjerknes 2001; Naesset 2004). Waveform LIDAR has been shown to 
predict 75% of the variability in LAI in Douglas-fir and western hemlock forests (Lefsky et al. 
1999). Airborne scanning LIDAR has also been shown to be accurate in estimating biophysical 
parameters of forest stands (Popescu et al. 2004), and to be an excellent predictor of 
hemispherical photography-estimated LAI and PCC (Riaño et al. 2004). Scanning LIDAR was 
also found to have a strong correlation with hemispherical photo-estimated LAI (Lovell et al. 
2003). Most recently, Morsdorf et al. (2006) used small-footprint airborne laser scanning data to 
predict fractional canopy cover and LAI, with R2 values of 0.73 and 0.69, respectively. 
 
Percent canopy cover can be found at the plot or stand level by examining tree locations and 
crown dimensions. Crown radius models have been used to accurately estimate non-overlapping 
canopy cover. Gill et al. (2000) used ordinary least-squares linear regression equations to 
calibrate canopy cover values derived from forest inventory data; their model had an R2 value of 
0.67. Roberts et al. (2005) estimated individual tree leaf area through linear regression between 
ground data and LIDAR-derived estimates of tree height and crown dimensions, finding that 
leaf area was consistently underestimated. A LIDAR-derived canopy height model (CHM) can 
be processed to accurately identify individual trees and their heights in forest or rangeland, as 
shown in studies, some using the local maximum focal filtering software program TreeVaW 
(Popescu et al. 2002; Popescu and Wynne 2004; Koch et al. 2006). 
 
This study attempts to relate scanning LIDAR data to in situ LAI and PCC values through 
simple linear regression with NDVI. LIDAR height bins, the products of a LIDAR processing 
technique that breaks the vertical forest structure into viewable “slices,” are utilized as an 
innovative method of calculating PCC and LAI (Popescu and Zhao 2008). Theoretically, the 
combination of LIDAR-estimated canopy characteristics such as height and PCC with 
vegetation indices will result in an accurate predictor of LAI and PCC. 
 
The goal of this study was to develop a use of LIDAR in evaluating percent canopy cover and 
leaf area index of primarily pine and mixed pine-hardwood forests typical of the southeastern 
United States. Specific objectives were to:  

(1) Develop scanning LIDAR methods to estimate PCC and LAI over primarily  
      pine forests in East Texas; and 
(2) use multiple linear regressions to predict PCC and LAI using LIDAR and NDVI. 
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2. Study Site and Data Collection 
 
2.1 Study Area 
 
The study area is located in the southern United States (30°42’N, 95°23’W), in East Texas. It 
includes a portion of the Sam Houston National Forest, characterized by deciduous and pine 
stands with an urban interface and an area of 47.45km2. The study area is composed of 
28.08km2 (59.17%) of pine forest (primarily loblolly pine, Pinus taeda), 10.84km2 (22.84%) of 
deciduous forest, and 8.54km2 (17.99%) of non-forested areas including urban areas, 
agricultural fields, etc. The average diameter at breast height (DBH) is 31cm, average tree 
height is 20m, average crown diameter is 5.9m and the average height to crown base is 11.8m. A 
mean elevation of 85m, with a minimum of 62m and a maximum of 105m, and gentle slopes 
characterize the topography of the study area. 
 
The ground reference data were collected between May 2004 to July 2004 by photographing 
canopy characteristics on 53 evenly distributed circular plots of which 35 covered 404.7m2 (0.1 
acre) and 18 covered 40.5m2 (0.01 acre). The 18 smaller plots were in areas of young pine 
plantations, with little variation of tree height or crown width. A hemispherical photograph of 
the forest canopy was taken from the center of each plot and each plot was mapped by recording 
GPS coordinates for the plot center. 
 
2.2 Hemispherical Photographs for Ground Reference Data 
 
A hemispherical photograph of the forest canopy was taken from the center of each plot at 1.5m 
above ground level (resolution of 3264×2448 pixels) using a horizontally-leveled Nikon 
CoolPix 8700 digital camera and a FC-E9 fisheye lens. Ten plot photographs contained sun 
glare and other non-uniformities due to various light conditions at the photograph cell and 
proximity of clearings to the plots, and were removed from the analysis. Of the remaining 43 
plots, 35 plots were in loblolly pine forest, 5 plots were in hardwood stands, and 4 plots were in 
mixed forest. Thus the results of this study will be most applicable to loblolly pine forest. The 
photographs were analyzed for plot-level PCC and LAI using HemiView Canopy Analysis 
Software (©Delta-T Devices Ltd., UK).  
 
LAI was estimated by HemiView algorithms to be half of the total leaf area per unit ground 
surface area, based on the ellipsoidal leaf angle distribution. The HemiView calculation of LAI 
(LAIobs) is based on Beer’s Law: 

 

( ) ( )( )obsLAIKeG ×−= θθ              (1) 
 
where G is gap fraction and K(θ) is the extinction coefficient at zenith angle θ (range computed 
for the canopy during processing). HemiView measures gap fraction values directly from the 
hemispherical photo, then finds the values for the extinction coefficient and LAI that best fit for 
an ellipsoidally distributed theoretical canopy, then applies those values in subsequent 
calculations. HemiView-calculated LAI is termed “effective LAI” as it does not account for 
non-random distribution of foliage, possibly underestimating actual LAI. 
 
In HemiView, PCC is defined as the vertically projected canopy area per unit ground area. It is 
calculated as follows assuming the canopy has an ellipsoidal leaf angle distribution: 

 
( )( )[ ] 1001 0, ×−= ×− obsLAIxK

obs ePCC                         (2) 
 
where K(x,0) is the extinction coefficient for a zenith angle of zero and x is the ellipsoidal leaf 
angle distribution parameter, defined as the ratio between the semihorizontal and semivertical 
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axes of an ideal ellipsoid. 
 
2.3 LIDAR Data 
 
LIDAR data for the study area was collected in March 2004, during the leaf-off season, from an 
average of 1000m above ground level by M7 Visual Intelligence of Houston, Texas. The LIDAR 
system (Leica ALS40 Airborne Laser Scanner. Atlanta, GA, USA) records first and last returns 
per laser pulse and has horizontal and vertical accuracies of 20-30cm and 15cm, respectively. 
The LIDAR system provided a 10° swath from nadir for a total scan angle of 20°, resulting in a 
point density of 2.6 points/m2 (distance between laser points is thus 0.62m). The average swath 
width was 350m, with 19 north-south flight lines and 28 east-west flight lines. LIDAR point 
elevations were interpolated to form a digital surface model with a spatial resolution of 0.5m, 
with only the highest laser hits per 0.5m x 0.5m cells being used in the interpolation to better 
characterize the top canopy surface using techniques described by Popescu and Wynne (2004). 
The CHM, a three-dimensional model of vegetation height with a resolution of 0.5m, was 
created by subtracting ground elevation from the digital surface model. The CHM was 
interpolated to a cell size of 2.5m prior to any calculations. 
 
Though the LIDAR data was collected during the leaf-off season, this was not expected to 
adversely impact the PCC and LAI estimates. The majority of the study area plots (34) were 
pine stands, thus retaining foliage during the leaf-off season. However, scanning LIDAR pulses 
would still be returned from large and small branches on hardwood and mixed stands during the 
leaf-off season; the pulses “lost” due to the lack of leaves would be negligible (Nelson 2006). 

 
2.4 NDVI Values from a QuickBird Image 
 
Multispectral, orthorectified QuickBird imagery (leaf-off, 2004; DigitalGlobe. Longmont, CO, 
USA) was available for the study area as well with a resolution of 2.5m. These data were used 
to calculate NDVI as defined by Baret and Guyot (1991): 

 

( )
( )RNIR

RNIRNDVI
+
−

=              (3) 

 
where NIR is the near-infrared reflectance value and R the red reflectance value for a given 
pixel. 
 
 
3. Methods 
 
3.1 Percent Canopy Cover Estimates from LIDAR Data 
 
Three distinct methods were employed to derive PCC from LIDAR data: two involving the use 
of height bins and one that determines tree locations from the CHM. Height bins are the 
products of an original LIDAR processing technique that breaks the vertical forest structure into 
viewable “slices;” this technique is an emerging method of using LIDAR data in forest 
inventory (Popescu and Zhao 2008). Height bins are created by subdividing normalized laser 
point returns into intervals defined by a range of heights. Laser points in each height interval are 
normalized to percentages by the total number of points above the projected ground area of each 
pixel. Percentages of laser canopy hits are considered to be especially appropriate for LIDAR 
estimation of canopy properties (Riaño et al. 2004). For this study, eleven height bins were 
generated through software developments described by Popescu and Zhao (2008), with height 
ranges of 0-0.5m, 0.5-1.0m, 1.0-1.5m, 1.5-2.0m, 2.0-5.0m, 5.0-10m, 10-15m, 15-20m, 20-25m, 
25-30m, and >30m. These height bins were generated as a multiband image of the predefined 
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height intervals and 2.5m × 2.5m pixel dimensions. 
 
Two estimates of PCC were derived from the bins. The first method assumes that the crowns of 
interest belong to trees with a height of over 2.0m; a sum of the seven uppermost height bins 
(HB5 through HB11) is used to model PCC: 

 

∑=−

11

5
115, nlidar HBPCC              (4) 

 
where HBn is a height bin image band of number n. 
 
The second method assumes that any laser point that is returned from on or near the ground, i.e. 
HB1, was from a pulse that did not encounter a canopy obstruction. Therefore, the equation used 
to derive PCC is as follows: 

 

11, 0.1 HBPCClidar −=              (5) 
 
where notation is the same as in Equation 4. 
 
The third method of deriving PCC from LIDAR data was performed at the plot level only. 
Individual trees were located and their crowns measured on the LIDAR-derived CHM through 
automated processing with TreeVaW software. TreeVaW is an IDL-executable program 
(Interactive Data Language, ©2006, ITT Industries Inc., USA) that uses a continuously varying 
filter window to detect tree locations, tree heights and crown radii, with algorithms described in 
Popescu and Wynne (2004) and Popescu et al. (2004). In summary, TreeVaW software identifies 
single trees using an adaptive technique for local maximum focal filtering, operating on the 
assumption that laser values of high elevation in a spatial neighborhood represent the highest 
part of a tree crown. 
 
TreeVaW was used to identify individual tree locations and crown size for each field plot. The 
total projected crown area for each plot is (Acrown) calculated; TreeVaW-derived PCC is: 

 

plot

crown
trvw A

A
PCC =              (6) 

 
where Aplot is the total plot area.  
 
3.2 Statistical Analysis of Predictions 
 
SAS software (SAS Institute, Inc., Cary, NC, USA) was used to relate various LIDAR-derived 
variables and NDVI variables to plot-level observed values of PCC and LAI. Least-squares 
estimates of PCC and LAI were fitted to linear regression models for eight different datasets, 
including varying combinations of the independent variables. Stepwise selection was employed 
in each regression to determine the variables remaining in each model. Variables retained in 
each regression were significant at the 0.05 level. 
 
Finally, two simple linear regressions were performed to directly compare observed PCC and 
LAI (PCCobs and LAIobs) with LIDAR-derived PCC using Height Bins 5-11 (xPCClidar,5-11). These 
regressions were performed using Microsoft Excel software (Microsoft Corporation, Redmond, 
WA, USA), in order to determine how well a single LIDAR-derived parameter could predict 
both PCC and LAI. 
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4. Results and Discussion 
 
4.1 Results 
 
LIDAR-estimated PCC variables using Height Bins 5-11 are present in the models with the 
greater coefficients of determination, while the models incorporating TreeVaW-derived PCC 
values have the lowest coefficients of determination. The model with the highest R2 value for 
PCC used LIDAR-estimated PCC (Height Bins 5-11), NDVI variables and CHM variables; this 
model had an R2 value of 0.86 as well as a low RMSE value (9%). However, a PCC model 
using only LIDAR-derived variables had an R2 value of 0.84 and an identical RMSE value. It 
can be concluded that the NDVI variables are relatively unimportant in predicting PCC when 
compared to LIDAR-derived variables. The model selected to predict PCC is thus: 

 

chmchmPCClidarpred xXxPCC 01.001.093.001.0 115, −++= − .         (7) 
 
 
Where PCCpred is the predicted value of PCC, xPCClidar,5-11 is the mean of LIDAR-derived PCC 
using Height Bins 5-11, Xchm is the maximum value of the CHM and xchm is the mean value of 
the CHM.  
 
The strongest LAI model was found using the first regression method with LIDAR-derived 
(Height Bins 5-11) variables only; this model has an R2 value of 0.78 and a comparatively low 
RMSE value. The prediction models incorporating both LIDAR and NDVI variables in general 
have higher coefficients of determination than those using only LIDAR-derived values, but by 
such as small range as to be negligible. Thus, LIDAR variables can be used without NDVI 
information to predict PCC and LAI. The model selected to predict LAI is: 

 

115,47.305.0 −+= PCClidarpred xLAI             (8) 
 
Where LAIpred is the predicted value of LAI and xPCClidar,5-11 is the mean of LIDAR-derived PCC 
using Height Bins 5-11. 
 
When plotting LAIpred against observed values of LAI (LAIobs), a square root transformation was 
applied to LAIobs to compensate for a slightly curvilinear relationship (Figure 1a); the 
transformation found a linear relationship with a high coefficient of determination (R2 = 0.85). 
The coefficient of determination for the untransformed variable (LAIobs) was calculated as well 
and found to be 0.75. The regression results for PCCpred and LAIpred compare well to other 
studies. Riaño et al. (2004) attained coefficients of determination of approximately 0.75 for 
PCC and approximately 0.90 for LAI and concluded that LIDAR was an excellent measure of 
both. Scanning LIDAR was found to have a strong correlation with hemispherical 
photo-estimated LAI in the study of Lovell et al. (2003), returning R2 values between 0.77 and 
0.98. 
 
When comparing observed field values to the selected model-predicted values (Figure 1a), it is 
seen that LIDAR-derived estimates slightly overestimate both PCC and LAI. This is consistent 
with the aforementioned studies and is possibly influenced by the small number of plots with 
low LAI values. Another possible source of error is that LIDAR data was collected during the 
leaf-off season while ground-reference data was collected during the leaf-on season. The 
majority of ground plots, 34 plots out of the total 43, were in pine plantations or pine stands and 
thus the majority of trees would have retained their needles for both the LIDAR and field data 
collections.  
 
The simple linear regression results between observed PCC and LAI (PCCobs and LAIobs) and 
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LIDAR-derived PCC using Height Bins 5-11 (xPCClidar,5-11) are promising, with r2 values of 0.80 
and 0.85 and RMSE values of 9.29% and 7.86% for PCCobs and SQRT(LAIobs), respectively. A 
square root transformation was again used to correct a curvilinear LAIobs relationship to a linear 
relationship with LIDAR-derived PCC values (Figure 1b). The equations describing these 
LIDAR-predicted canopy characteristics (PCCpred_lidar and LAI pred_lidar) are: 

 

42.195.0 115,_ += −PCClidarlidarpred xPCC            (9) 
 

[ ]2
115,_ 45.002.0 += −PCClidarlidarpred xLAI               (10) 

 
4.2 Discussion 
 
LIDAR-predicted PCC and LAI are comparable in accuracy to the selected regression models. 
These models are even preferable in the long term because of their simplicity. It is interesting to 
note that the TreeVaW-derived PCC was removed through stepwise selection and thus not 
present in the final regression model, though TreeVaW software has performed well in related 
studies (Popescu and Wynne 2004; Popescu and Zhao 2008). One possible explanation for 
TreeVaW’s lack of performance in the current study is that its continuously varying filter 
window identifies only dominant and co-dominant trees, while hemispherical photography 
captures understory vegetation in addition to the taller tree crowns. TreeVaW processing of a 
LIDAR-derived CHM, while an effective way to locate individual trees and determine tree 
crown dimensions, was not an accurate method of determining plot-level PCC.  
 
Estimation of forest structural attributes is one of the more thoroughly pursued applications of 
LIDAR remote sensing (Lefsky et al. 2002; Riaño et al., 2004). One goal of this study was to 
develop a linear regression relating LIDAR data and multispectral imagery to ground-reference 
values of PCC and LAI for hardwood and pine forests. Linear regression analysis of LIDAR 
variables explains 84% of the variance associated with plot-level PCC and 78% of the variance 
for plot-level LAI. A second objective was to evaluate whether LIDAR and NDVI data fusion 
would improve estimates of PCC and LAI. While data fusion did improve PCC model 
coefficients of determination by 2%, this was not a great enough improvement to justify 
retaining NDVI variables in the final PCC prediction model. LAI regression models were 
unaffected by the inclusion of NDVI variables; LIDAR-derived parameters alone were a good 
predictor of plot-level LAI. In the process of investigating linear regression analysis, it was 
found that LIDAR-derived PCC had an excellent relationship to field values of PCC and LAI. 
Simple linear regressions related LIDAR-derived PCC to field values of PCC and LAI, an 
exciting development for future ecological studies in primarily loblolly pine forests. Using 
LIDAR to directly determine these canopy properties would make the process accurate and 
efficient. Finally, the overall objective of this study was to develop a use of LIDAR in 
evaluating forest canopy parameters such as PCC and LAI. Results clearly show that scanning 
LIDAR data can be used to accurately estimate PCC and LAI. 
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(a)      (b) 
 

Figure 1: (a) Observed percent canopy cover (PCC) and leaf area index (LAI) compared to predicted PCC and 
LAI.  

        (b) Observed percent canopy cover (PCC) and leaf area index (LAI) compared to LIDAR-derived 
PCC. 

 
LIDAR data processing by the height bin method, as used in this study, has the potential to 
become a standardized method of large-scale LIDAR forestry data processing. This approach 
was shown to be effective and accurate in predicting PCC and LAI in this study and has also 
been used in a study concerning mapping surface forest fuels (Mutlu et al. 2008). The height bin 
method has also been used in conjunction with TreeVaW processing to estimate biophysical 
parameters of individual trees, such as total tree height, crown width, and height to crown base 
(Popescu and Zhao 2008). 
 
Determining ground reference values of LAI using hemispherical photography immediately 
introduced the possibility of underestimating these values (Merilo et al. 2004), although other 
indirect methods of measuring LAI tend to underestimate it as well (Mussche et al. 2001; Bréda 
2003). In the future it may be helpful to determine a scale for LAI values, to calibrate them with 
direct measurements and compensate for clumping factors (Bréda 2003; Coops et al. 2004). 
Doing so may increase the agreement between the estimated LAI and ground reference values. 

 
5 Conclusions 
 
Our approach is unique in that it combines LIDAR estimates of PCC derived from height bins 
with a LIDAR-based CHM to estimate forest canopy characteristics through regression analysis. 
This method proved to be an accurate estimate of plot-level PCC and LAI, allowing us to 
predict these values at a local scale. PCC and LAI are important biophysical parameters in 
carbon sequestration and climate studies. Since LIDAR data can be acquired fairly quickly 
compared to ground-level forest inventory, our method could allow for fast, accurate, more 
effective ecological research as well as forest management. 
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