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Abstract 
 
Airborne laser scanning produces high resolution data which opens up for estimation methods 
on individual tree level. However, the detection rate depends on the forest structure, and 
typically suppressed trees below a dominant tree layer are not detected. This paper presents a 
method to produce tree lists consistent with unbiased estimates on raster cell level. First, 
automatic delineation of tree crown segments was performed. The number and attributes of trees 
were estimated within segments. Second, forest variables were estimated on a field plot level 
using both laser canopy height distribution and results from tree detection. Percentiles of the 
stem diameter and tree height distributions were estimated using regression models. Third, the 
estimated percentiles were used as input for imputation of field trees from similar field plots in 
order to create a target distribution matrix. The number of trees in this matrix was estimated by 
scaling with the estimated total volume for each field plot. Finally, the initial tree list obtained 
from the tree crown segmentation was adjusted by using the estimated target distribution matrix. 
Random errors and bias for stem volume and stem number estimates could be reduced by 
combining analysis on tree and raster cell level. 
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1. Introduction 
 
High resolution airborne laser scanning, ALS, data (≥10 measurements m-2) can be used for 
analysis on a tree level (e.g. Hyyppä et al. 2001; Persson et al. 2002; Solberg et al. 2006). A 
digital height model is created from laser data and image analysis techniques, most often 
Individual Tree Crown delineation, ITC, are used to detect individual trees and measure position, 
height, and canopy shape. This method is now being marketed as operational. However, the 
detection rate depends on the forest structure (Persson et al. 2002). Thus, estimates that are 
based only on analysis of individual trees might be biased (Maltamo et al. 2004). 
 
ALS is used operationally in Scandinavia for estimation of forest variables on raster cell level, 
the so called area based method, usually with regression models built on the Laser Canopy 
Height, LCH. The area based method generally produces forest variable estimates with high 
accuracy (Næsset et al. 2004) and low bias (Maltamo et al. 2006). Single tree methods usually 
have lower accuracy and underestimate the amount of trees (Næsset et al. 2004). Maltamo et al. 
(2004) have suggested a combination of methods to use the high accuracy from area based 
methods and the information for the dominant tree layer from single tree methods 
 
The aim of this study is to develop methods to supply an information system with a list of trees, 
each tree with estimated attributes, e.g. stem diameter and tree height. A method is presented to 
estimate tree lists with a combination of individual tree and raster cell level estimates. The 
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objective is to develop and validate a method that produces tree lists consistent with unbiased 
estimates on a raster cell level. 
 
2. Material and Methods 
 
2.1 Study area 
 
The study area is 1989 hectare large and located in the north of Sweden (lat. 640 25’ N, long. 140 
50’ E). The dominating tree species are Norway spruce (Picea Abies), birch (Betula spp) and 
Scots pine (Pinus Silvestris). The elevation ranges from 325 to 658 m a.s.l., which means that 
the site is located close to the limit for productive forest. 
 
2.2 ALS data 
 
The laser data acquisition was performed on August 7 and 8 2007 using a Leica ALS50-II 
airborne laser scanning system carried by a helicopter. The flying altitude was 600 m and the 
scan angle ±16 degrees, resulting in a scan width of 375 m and a scan density of about 10 points 
m-2. Laser returns were classified as ground or non ground using a progressive Triangular 
Irregular Network (TIN) densification method (Axelsson 1999, 2000) in the TerraScan software 
(Soininen 2004), and the ground returns were used to derive a Digital Terrain Model (DTM). 
 
2.3 Field data 
 
The area was divided into five strata using an existing stand register and a total of 179 field 
plots were allocated (Table 1). The field plot radius was 6 m in stratum 1-3 and 8 m in stratum 
4-5. The position of the field plots were measured using a Global Navigation Satellite System 
(GNSS). The trees on the field plots were measured using the Forest Management Planning 
Package (Jonsson et al. 1993). Within the plots, all trees with a stem diameter larger than the 
minimum stem diameter, 40 mm in stratum 1-3 and 60 mm in stratum 4-5, were callipered and 
tree species was recorded. The positions of the trees were registered relative to the centre of 
each plot by measuring azimuth and distance with a compass and ultrasonic device, respectively. 
The position of a tree was not measured if the tree had a large inclination. 
 

Table 1: Summary of field plot data 
 
Stratum Selection criterion Number 

of field 
plots 

 Species 
composition, 
percentage 
pine/spruce/
other 

Stem volume, 
average and 
5/95 
percentiles 
(m3 ha-1) 

Stem density, 
average and 
5/95 
percentiles 
(ha-1) 

1 Age 25-74 years, 
pine dominated 
(>=60%) 23  61/25/14 40, 28/59 1484, 539/2847 

2 Age 25-74 years, 
spruce dominated 29  0/65/35 49, 13/122 1524, 654/2493 

3 Age 25-74 years, 
mixed forest 33  31/40/29 43, 6/132 1299, 601/2440 

4 Age >75 years, 
spruce dominated 60  9/74/17 119, 41/218 895, 540/1450 

5 Age >75 years, 
pine dominated or 
mixed forest 34  36/56/8 140, 51/261 895, 413/1577 
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2.4 Individual tree crown delineation, ITC 
 
The first task was to automatically delineate tree crowns based on geometric tree crown models. 
A correlation image was produced by using geometric tree models and a Digital Canopy Model 
(DCM) derived from ALS height data. The correlation image was then smoothed and used for 
segmentation: a seed was placed at each pixel, with a DCM value greater than the height 
threshold and with a positive correlation value, and was allowed to climb to the neighbour pixel 
with the highest correlation value. The pixels with seeds climbing to the same local maximum 
defined a tree crown segment (Holmgren et al. 2006). The result was crown segments; each 
included an individual tree or a group of trees. The tree position was estimated by taking the x, 
y-position of the maximum canopy height value within the segment, and a measure of tree 
height (H) was achieved from the value of the maximum. The crown area of an individual tree 
could be derived by counting the number of pixels of a segment. A width (W) of a segment was 
derived assuming that a tree crown was circular. 
 
2.5 Field plot matching 
 
The three dimensional spatial pattern of the laser detected trees were matched with the spatial 
pattern of field measured positions of individual trees on a plot. The trees detected in ALS data 
were automatically linked to field measured trees (Olofsson et. al 2008). 
 
2.6 Estimation on tree segment level 
 
Each segment should ideally correspond to one tree on the ground but in reality, one segment 
may enclose several trees or one tree may be divided into several segments (Figure 1). Single 
tree properties have been estimated in two different ways: With regression models for variables 
of one tree in each segment, ITC, and with regression models for variables of the largest tree 
plus variables of the other trees in the segment, ITC with classification. 
 

 
 
Figure 1: Example of polygons from segmentation of ALS data and field measured trees shown as point 

symbols and circles with radius proportional to diameter. 
 
2.6.1 Classification of segments to determine number of trees 
 
Features were extracted from ALS data within the segments in order to model the number of 
field trees within a segment. Only segments where the centre was located inside a field plot and 
at least 2 m from the boundary were used in the analysis to reduce the number of segments 
covering ground outside field plots, referred to as reference segments. The variables 1-2 (Table 
2) were calculated from laser data, the rest were derived from field data. 
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Table 2: Variables used for analysis on tree crown segment level 
 
 Variable Description 
1 W , A is the area of the segment 
2 W/mean(W) Mean(W) is the mean of segment widths within same plot 
3 N Number of field measured trees within segment 
4 Dmax Maximum field measured stem diameter found within segment 
5 Dother Sum of field measured stem diameter for other trees within segment 
6 Hmax Maximum field measured tree height found within segment 
7 Hother Mean of field measured tree height for other trees within segment 
8 Bmax Maximum field measured basal area found within segment 
9 Bother Sum of field measured basal area for other trees within segment 
10 Vmax Maximum field measured stem volume found within segment 
11 Vother Sum of field measured stem volume for other trees within segment 
 
The strongest correlation for number of field measured trees inside segment was obtained for W 
and W/mean(W). W and W/mean(W) were divided into eight intervals and each reference 
segment was placed in an interval in order to estimate the probability for a reference segment to 
enclose a certain number of trees. The number of segments enclosing 1, 2, 3 and 4 or more field 
measured trees respectively was calculated for each interval and divided by the total number of 
segments in the interval. 
 

       (1) 
 
where  = number of segments enclosing i field measured trees in the interval and Nmax = 4. 

 is an estimate of the probability for a segment to enclose i field measured trees. The 
reference segments were used to build regression functions for 4-11 (Table 2). The regression 
was done separately for segments enclosing different number of field measured trees. 
 
An unknown segment was first placed in an interval determined by W and W/mean(W). The 
number of trees inside the segment was estimated as the sum of the probability to have a certain 
number of trees inside the segment times the number of trees. 
 

      (2) 
 
2.6.2 Estimation of tree variables from segments 
 
The variables 4-11 (Table 2) were estimated in each segment as 
 

      (3) 
 
where Ai is the value of the variable calculated from a regression model for segments enclosing 
i field measured trees. 
 
The result for each segment was an estimate of variables for the largest tree in the segment, i.e. 
4, 6, 8 and 10 (Table 2). ITC with classification also resulted in an estimate of variables for the 
rest of the trees in the segment, i.e. 5, 7, 9 and 11 (Table 2). The later estimate was divided by 
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the estimated number of trees minus one to get an estimate for each tree. 
 

     (4) 
 
If the result for the tree diameter was below the minimum value for the field measured tree 
diameter, Nestimated was iteratively reduced with one until the resulting tree diameter was above the 
minimum value. If the tree diameter was too small even when divided by one, the estimate was 
discarded. The estimates for the largest tree and the rest of the trees were put in a list of tree 
candidates. 
 
2.7 Estimation on raster cell level 
 
2.7.1. Estimation based on laser canopy height distribution, LCH 
 
Several features, height percentiles, average height of laser reflections, standard deviation of 
laser reflections and vegetation ratio, were derived based on the Laser Canopy Height (LCH) 
distribution by using vegetation returns. In order to exclude returns from below the canopy, e.g. 
shrubs and stones, vegetation returns were defined as returns with a vertical distance to the 
DTM greater than one meter and 10% of the maximum height within the plot/raster cell. These 
features were used to build regression models for the field measured percentiles for stem 
diameter and height distributions at 25%, 50%, 75% and 100%, as well as average stem volume 
per hectare and number of stems per hectare. Stepwise regression was used to find the most 
significant variables and Seemingly Unrelated Regression (SUR) was finally used to model the 
percentiles (Table 3). 
 

Table 3: Seemingly unrelated regression (SUR) for tree height and  
stem diameter distribution using laser canopy height distribution 

 
SUR model for stem diameter percentiles SUR model for tree height percentiles 
D25 ~ p10+p70+zavg+zstdh+vegratio H25 ~ p10+ p70+zavg+zstdh+vegratio 
D50 ~ p70+zavg+zstdh+vegratio H50 ~ p70+zavg+zstdh+vegratio 
D75 ~ p70+zavg+zstdh+vegratio H75 ~ p95+zavg+zstdh+vegratio 
D100 ~ p95+zavg+zstdh+vegratio H100 ~ p95+zavg+zstdh+vegratio 
 
The regression model used to estimate stem volume per hectare was (Eq. 5) and the regression 
model used to estimate number of stems per hectare was (Eq. 6). The result was corrected for 
logarithmic bias (Holm, 1977). 
 
log(Vol) ~ log(p90) + log(vegratio) + log(zavg)     (5) 
 
Dens ~ p90 + zstdh + vegratio       (6) 
 
where D25, D50, D75 and D100 = 25, 50, 75 and 100 percentile from field measured tree diameter, 
H25, H50, H75 and H100 = 25, 50, 75 and 100 percentile from field measured tree height, Vol = 
stem volume per hectare, Dens = number of stems per hectare, p10, p20, … = 10, 20, … 
percentile from laser reflection heights on plot, zavg = average height of laser reflections on plot 
and zstdh = standard deviation of laser reflections on plot and vegratio = vegetation ratio, the 
number of laser reflections from vegetation divided by the total number of laser reflections on 
plot. 
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2.7.2. Estimation based on laser canopy height distribution, LCH, and distribution of 
detected trees, ITC 
 
The laser reflection variables were combined with variables from individual tree detection 
aggregated on plots and used to build regression models for the field measured variables. 
Stepwise regression was used to find the most significant variables and SUR was used to model 
the percentiles (Table 4). 
 

Table 4: Seemingly unrelated regression (SUR) for tree height and  
stem diameter distribution using distribution of detected trees 

 
SUR model for stem diameter percentiles SUR model for tree height percentiles 
D25 ~ p10+zavg+vegratio+D60(ST)+ H50(ST) H25 ~ p10+zavg+vegratio+ D60(ST)+ H50(ST) 
D50 ~ p30+zavg+vegratio+ D60(ST)+ H75(ST) H50 ~ p30+zavg+vegratio+ D60(ST)+ H75(ST) 
D75 ~ p70+zavg+vegratio+ D75(ST)+ H80(ST) H75 ~ p70+zavg+vegratio+ D75(ST)+ H80(ST) 
D100 ~ p95+zavg+vegratio+ D75(ST)+ H100(ST) H100 ~ p95+zavg+vegratio+ D75(ST)+ H100(ST) 

 
The regression model used to estimate stem volume per hectare was (Eq.7) and the regression 
model used to estimate number of stems per hectare was (Eq. 8). 
 
Vol ~ vegratio + Vol(ST)       (7) 
 
Dens ~ p90 + vegratio + Dens(ST) + H100(ST)     (8) 
 
where D10(ST), D20(ST), … = 10, 20, … percentile from diameters from individual tree 
detection, H10(ST), H20(ST), … = 10, 20, … percentile from heights from individual tree 
detection, Vol(ST) = stem volume per hectare from individual tree detection and Dens(ST) = 
number of stems per hectare from individual tree detection. 
 
2.8 Adjusting tree candidate list from estimates on raster cell level 
 
The estimates of tree diameter and height percentile, stem volume and stems per hectare were 
used to identify plots with similar distributions. This was done by finding the plots with the 
smallest sums of squared differences between the values, i.e. the nearest neighbours. Plots were 
included in the list one by one until the number of trees was at least 800 or the number of 
included plots was 10. 
 
The field measured trees on plots with similar distributions were put into a field distribution 
matrix where each row corresponded to a tree height percentile and each column to a tree 
diameter percentile (Table 5). The percentiles were calculated from the list of trees on similar 
plots. 
 

Table 5: The distribution matrixes used for the analysis 
 
Field distribution Target distribution Stem distribution 

     
     
     
     
     

     
     
     
     
     

     
     
     
     
     

 
The number of trees  in each interval was multiplied by a scaling factor. 
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     (9) 
 
The result was an estimated target distribution matrix where each element corresponded to a tree 
diameter and height percentile and the value  corresponded to the number of trees on the 
plot in each percentile. The distribution of tree candidates was calculated by summing the 
number of tree candidates  in each percentile given by the target distribution. Tree 
candidates with a tree diameter or height larger than the 100 percentile were excluded from the 
list. 
 
The difference between the target distribution and the candidate distribution was calculated for 
each interval. If the number of tree candidates was too big, that number of tree candidates was 
excluded from the list. If the number of tree candidates was too small, that number of trees with 
correct tree diameter and height was added to the list by selecting trees at random from the list 
of field measured trees. The result was a list of trees with distribution and stem volume on plots 
predicted by the estimates on plot level. 
 
The result was aggregated on plot level and the procedure was repeated 50 times to study the 
average accuracy of the estimation. 
 
2.9 Validation 
 
RMSE and bias of stem volume per hectare and stem number per hectare was calculated for 
each method. Error index for tree heights, diameters and basal area on each plot was also 
calculated. The error index EI is defined as (Reynolds et al. 1988), 
 

       (10) 
 
where  is the number of estimated trees to histogram class j, is the number of actual trees 
in class j, and  is the total number of actual trees. This index measures the proportion of 
mismatch between two histograms based on given class boundaries. 
 
3. Results 
 
For estimation of stem volume, marginally lower RMSE was obtained from the model based on 
individual tree crown delineation after accumulation to plot level (Table 6, A) compared to the 
area based method that used laser canopy height percentiles as explanatory variables in the 
regression model (Table 6, C). For estimation of number of stems, RMSE was lower for the 
method based on LCH distribution compared to the ITC based method. ITC resulted in a large 
negative bias which was reduced to zero by using LCH. 
 
Both RMSE and bias was reduced for the ITC based method by classification of segments 
(Table 6, A and B). Further reduction of RMSE was possible if the estimates on segment level 
were summed to plot level and then used together with vegetation ratio as explanatory variables 
in a linear regression model (Table 4 and Eq. 7). By using this method (Table 6, D) for 
estimation of stem volume, the bias could be reduced to zero and the lowest RMSE was 
obtained. Adjusting the tree lists with the diameter-height distribution target matrix did not 
change the volume estimates much. For the stem number estimates, both RMSE and bias were 
reduced (Table 6, E and F). 
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Table 6: RMSE and bias for stem volume and stem number estimates on plot level using the methods: 
Individual Tree Crown delineation (ITC), ITC with classification, Laser Canopy Height (LCH) 

distribution, LCH and ITC distributions, ITC with adjustment, and ITC with classification and adjustment. 
Percentages of mean values within brackets 

 
Stem volume (m3ha-1) Stem number (ha-1)  Method 
RMSE Bias RMSE Bias 

A ITC 35 (36%) -14 (-14%) 595 (52%) -403 (-35%) 
B ITC with classification 33 (34%) -2 (-3%) 515 (45%) -208 (-18%) 
C LCH distribution  35 (37%) -2 (-2%) 358 (31%) 0 (0%) 
D LCH and ITC distribution  31 (33%) 0 (0%) 339 (30%) -2 (0%) 
E ITC with adjustment 34 (36%) 4 (4%) 402 (35%) 44 (4%) 
F ITC with classification and 

adjustment 
33 (34%) 4 (4%) 411 (36%) 52 (5%) 

 
The error index, which measures the proportion of mismatch between two histograms, decreased 
after adjustment of tree lists with the diameter-height distribution target matrix. This was observed 
for tree height, stem diameter, and basal area distributions, although the different was most obvious 
for tree height and stem diameter distributions (Table 7). 
 
Table 7: Error index for distribution of tree height, stem diameter, and basal area, on plot level using the 

methods: Individual Tree Crown delineation (ITC), ITC with classification, ITC with adjustment, and 
ITC with classification and adjustment. 

 
Error index  Method 
Tree height Stem diameter Basal area 

A ITC 98 97 90 
B ITC with classification 109 99 92 
E ITC with adjustment 95 92 89 
F ITC with classification and adjustment 96 93 89 
 
4. Discussion 
 
This study examined combinations of area based estimations and single tree estimations from 
segmentation. Such a combination gives more accurate estimation of stem volume per hectare 
than area based estimations only. The result for stem volume from LCH area based estimation 
was slightly less accurate than the result from ITC but it is not possible to draw any conclusions 
from that since the difference was small. RMSE was higher for all methods compared to other 
studies (Maltamo et al. 2006, Næsset et al. 2004). One reason may be that the plot size was 
small. Trees standing close to a plot boundary may have a big part of their branches on the other 
side. It is likely that the overall accuracy would be higher if a larger plot size was used. The 
proportion of deciduous forest was high, approximately 30% in stratum 2 and 3, which may 
degrade the accuracy considerably (Næsset et al. 2004). The analyses are not done with 
stratified data. Stratification of data and use of separate regression models for different strata 
may improve the accuracy of the estimates. However, the aim of this study is to compare the 
different methods and their results relative to each other using the same dataset. 
 
The study has also proposed a new method to create tree lists from estimation of forest variables 
on raster cell level. Those tree lists are more accurate estimates of stems per area unit than tree 
lists from individual tree detection. However, the RMSE of stem volume per area unit is almost 
the same. This may be due to the random selection from the list of field measured trees. 
 
The error index was lower for the tree lists adjusted with results from the area based method. 
Individual tree detection works best for larger trees and the area based method probably adds 
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most information for smaller trees. It may be possible to improve this by deriving larger trees 
from individual tree detection and adjusting the distribution according to results from the area 
based method for smaller trees. This is in line with the method used by Maltamo et al. (2004). 
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