
SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 537

Neural network and quad-tree approach to extract tree position and 
height from LiDAR data 

 
Francesco Pirotti1, Alberto Guarnieri2 , Antonio Vettore2  

 

1 Department of Land and Agroforestry Systems, University of Padua, viale 
dell'Università 16, 35020 Legnaro Italy – francesco.pirotti@unipd.it 

2CIRGEO, Research Center for Geomatics, University of Padua,  viale dell'Università 
16, 35020  Legnaro Italy – cirgeo@unipd.it 

 
Abstract 
 
This paper reports an analysis of results from processing return signals from canopy covers 
using a artificial neural network to find if there is an improvement on detecting tree height and 
position compared to a more classic local maximum filter approach.    The hypothesis taken 
into consideration is that a neural network permits to insert several useful parameters in the 
decision process thus making it more “programmable” and apt be used in different forest cover 
situations.  Quad-tree is a method to organize the data to optimize the process done by the 
neural network. 
We conclude that results from classic methods and the neural network both give significant 
results compared to ground-truth measured on the terrain.  If the network is implemented with 
a certain number of trainers there is an improvement compared to the local maximum, but the 
difference is not statistically significant.  Nevertheless further improvements can be foreseen in 
the future thanks to the intrinsic nature of neural networks to be able to include additional nodes 
to adapt itself to the final objective – tree recognition. 
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1. Introduction 
 
New LiDAR technology has opened new frontiers in many fields which benefit from geomatic 
information.  LiDAR surveys give three-dimensional spatial data with significant accuracy and 
also integrate other information such as intensity of return signal, metric and non-metric images 
as well as hyperspectral images to give end-users remotely sensed information which can be, to 
a certain degree, correlated to stand characteristics.   
 
Forestry and related environmental sciences have been looking into LiDAR for  accurate 
spatial modeling of trees and terrain.  Land use mapping is of primary interest in land planning 
and LiDAR has proven a significant added value to classic remote sensing image classification 
methods (Lee and Shan, 2003).  
 
In the field of forestry, future research is focused on LiDAR-processing methods which will 
permit to extract  information at lower costs.  Classic methods require forest characteristics to 
be assessed using ground-plots, field-data and statistical methods.  Error sources and factors to 
consider  in field methods are the reliability of the workers (human error), statistical method 
adopted  (number of samples, variance, significance of the test) and costs. 
 
LiDAR data and higher training of operators  able to process remote sensing data correctly, 
will pay back in lower costs and higher accuracy for forest inventories.  Of course remote 
sensing will never replace completely field work because ground truth and on-site experience 
are very important factors, but a lot of tedious and repeating forestry work can be substituted 
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with state of the art LiDAR data processing. 
 
Tree species, mean diameter and height distribution in the stand are all information which are 
used in forest planning and inventories.  This information can be correlated    with LiDAR 
data with a certain amount of reliability.  Tree top extraction from LiDAR data gives 80% 
accuracy in uneven stands, better than digital photogrammetry and comparable if not better than 
ground measurements (Koukoulas and Blackburn 2005; Stonge et al., 2004; Magnussen et al., 
1999).  Integration of LiDAR with remote sensing imagery (Bork et al. 2007) is also promising 
because of complementarity between the two types of data, one giving geometric information 
the other spectral information. 
 
2. Methods 
 
The process was applied to a small test site to check for accuracy of results by comparing with 
ground-measured truth.   
 
2.1 Study area 
 

 
The whole study area comprises of a watershed basin located in the Belluno province, in the 
Veneto Region in Italy.  This area was chosen because it presents an interesting combination of 
orographic and vegetation characteristics.  Steep slopes and flat ground are present, as well as 
bare soil/rock, grassland and four different tree-species.  Height above sea level variation goes 
from a minimum of 1120 m to 2600 m.  The stream-line follows an almost east →  west 
direction as can be seen from figure 1 which is oriented north.  Length of its major and minor 
axis are respectively 3125 and 2200 meters. 

 
Figure  1: Study area 
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LiDAR and image data were recorded at the same time during a flight which took place the 13th 
of July around 14:00 italian time.  High resolution orthorectified images of the area at a mean 
spatial resolution of 15 cm were therefore available.   Cloud of LiDAR points has a density of 
6-11 pts / m2   where a single signal return was detected.  Density can get as high as 19 pts / 
m2   where vegetation causes multiple returns. 
 
Around 35% of the study area is covered by bare ground, and the rest is mostly covered by 
forest with a limited presence of grassland.  Tree species present are: Larix decidua, Picea 
abies, Pinus mugo and Fagus sylvatica. Some salix is present at the lowest points of the basin, 
but not in significant numbers.  There is a vast majority of Larix decidua and Picea abies 
which corresponds to Del Favero's classification of forest typologies (Del Favero 2004). 
 
2.2 Dataset 
 
For this particular analysis a sub-area was chosen with a total of  6000 m2  and with 55750 
points. The first step was to isolate the points belonging to the sub-area and to gather all 
information on ground truth.  Tree breast height diameter (BHD) and tree height were recorded 
by a survey while geographic position was recorded using the high resolution image.  Ground 
measures and the digital orthophoto were used to digitize canopy borders as well. 
The first processing step was to correct absolute height values of points by subtracting the 

ground model creating a new variable called dz which represents the height above ground of 
each point.  The minimum threshold for points to consider was 0.5 m above the ground to filter 

 
Figure 3: Sub-area for study: left – class by echo, middle – class by height, right right a section showing 

ground irregularity and canopy models. 

Figure 2: Sub-area used in analysis; left from laser points, right from RGB image 
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out most understory vegetation.  After this process the dz variable had a maximum value of 
29.32 m, which is reasonably close to that of the highest tree which is 29.81 m.  LiDAR 
measure of tree height have an error which can be estimated from its components.  First of all 
the error from the laser sensor: ± 0.3 m as reported by constructor. Then the highest point is not 
necessarily the actual tree top and since point density is about 6-11 pts / m2  that would mean 
0.2-0.3 m between points, therefore 0.1-0.15 m in the worst case scenario.  The total is 0.45 m 
difference between points, which can be considered the same height-wise if canopy has a slope 
of one. 
 
The LiDAR data in the sub-area was furthered filtered out in order to isolate a dataset with 
unique echo plus first-of-many echo (UFE).  The points from the UFE set where included only 
if they did not belong to ground class (see equation 1).  
 
This set gives us points which belong to vegetation, but without intermediate or last echoes, but 
only with unique echo and first-of-many echo.  This is actually a subset of the previous dataset 
where intermediate and last echoes are removed thus giving us the position in space of the first 
surface which caused the return of the laser signal towards the sensor.  The total number of 
points for this dataset was 20253. 
 
UFE = Unique U first-of-many  ∩ ground class                        (1) 
 
This set gives us point population which represents the canopy model surface.   
 
LiDAR data was processed with commercial software Terrascan from Terrasolid © , the neural 
network process was costum designed with a dynamic linked library developed in C language.  
The dataset was pre-processed with a low-pass filter correctly scaled to smooth out the noise 
due to leaf-scale variability. 
 
2.3 Neural Network and quad-tree setup 
 
The model for decision process is a back-propagation artificial neural network (ANN), while the 
organization in a quad-tree structure is integrated in the neural network.  The structure of both 
the ANN and the quad-tree was setup using C code, compiled both as a library and as a 
stand-alone executable.  The process reads the data, organizes points into quad-tree bins, sends 
data to the ANN, and receives feedback from the ANN for training. 
 
2.3.1 Quad-tree organization 
 
Data is fed to the first function as a table with these columns: x,y,dz,echo number and echo type.  
The spatial domain falls in the first three columns, whereas the others are added alphanumeric 
information.  The spatial data will be processed contextually, furthermore topological relations 
such as nearest neighbour and focal statistics are important as they can give added criteria to the 
process.  That is the reason why the data was organized into a quad-tree which assigns points 
to a certain address in the tree.  In this case each “leaf” in the quad-tree is cannot have more 
than 9 points and less than 4 points.  Spatially this means that each smallest square covers 
about half of a squared meter. 
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2.3.2 Neural network: nodes and neurons 
 
The points are fed to the ANN, which evaluates criteria, assigns weights and defines if a point is 
part of tree-top or it is part of canopy and if it part of canopy borderline. 
 
Criterion for assigning a point to the tree-top class and parameters which can be tuned in the 
ANN and therefore make up the hidden nodes: 

1. Point is a local maximum considering a certain radius.  Radius will actually be a 
multiple of the spatial resolution of the smallest “leaf” of quad-tree and is a parameters 
which can change to tune the ANN.  

2. Point must have neighbors with a local density totaling at least the minimum point 
density divided by two around an area which is dependent on tree species and 
configuration.  The area to consider is also a parameter which can vary. 

3. To be considered actual top of the tree a point must coincide with topmost value of local 
kriging interpolation, if it does not then a new point is created with such coordinates. 

4.  
A variable number of points are used as trainers for the ANN, as backward propagation permits 
to calibrate parameters in the hidden nodes in order to improve accuracy at each iteration of the 
process.   

 
The actual tree top is determined after using a kriging interpolator of the point itself and 18 
nearest neighbors. The interpolation part was done by having a call to a separate module from 
GRASS open source software, as it would have been a hardous and time consuming task to 
implement a kriging interpolator directly in the C library.  

 
 

 
Figure 5:  Neural Network: _In = input nodes, _n = hidden nodes, _On = output nodes 

 
Figure 4: Example of quadtree organization 
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3. Results 
 
Encouraging results were found even if not significantly different from classic local maximum 
filters. The number of trainers previously set in the output layer is important, as will be 
discussed in the next section. 
 

Table 1: Results from ANN using different number of training outputs 
 

Thinning operation 
Number of 

trees 
correct 

Number of 
trees 

incorrect* 

Total 
trees 
found  

RMSE of 
positioning 

(cm)  
Ground - truth 56 na 56 na 
Neural network with 2 trainers 44 8 52 24 
Neural network with 4 trainers 41 9 50 24 
Neural network with 8 trainers 55 4 59 21 
Neural network with 14 trainers 59 2 61 23 
Neural network with 20 trainers 55 8 63 23 
Local maximum filter 52 4 56 24 

*Defined as not belonging to tree top but to canopy 
 

 
4. Discussion and conclusions 
The results seem promising even if not significantly different from the local maximum filter. If 
the network is implemented with a certain number of trainers there is an improvement compared 
to the local maximum, but the difference is not statistically significant.  Nevertheless further 
improvements can be foreseen in the future thanks to the intrinsic nature of neural networks to 
be able to include additional nodes to adapt itself to the final objective – tree recognition. 

Some drawbacks to this method are found in the complexity of its actual implementation by 
untrained professionals.  Normalization of data, initial tuning of parameters and preprocessing 
of data should by done accurately, and it is often a source of error which heavily weights on 
final result.   
 
There is a lot of testing and refinement to be done to this method. It will be an interesting phase 
in the future to measure other datasets in the Missiaga basin to find if forest types can be 
associated with weights and parameters which make up the trained ANN. 
 

 
Figure 6: Point distribution on top of ground digital elevation model – green crosses represent trees 

found with 14 trainees while red crosses indicate misinterpretations. 
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