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Abstract 

 
A high resolution Airborne LiDAR data creates better opportunity for an individual tree 
measurement and provides valuable results for more precise forest inventory. This paper 
presents tree filtering approach that able to separate dominant tree and undergrowth vegetation. 
The results can be used for a detailed individual tree measurement. This process is one of the 
main steps for a single tree extraction from the high resolution Airborne LiDAR data. The 
filtering technique lies on the fact that a dominant tree has distinct parts in the histogram that 
represent tree crown, tree trunk, and ground surface with or without undergrowth vegetation. 
The shape of the histogram was used to identify points that belong to the tree crown and the tree 
trunk. More points were assigned to the tree trunk based on an iterative analysis of the 
histogram at certain height above the ground surface. This step was coupled with the RG 
segmentation. It was found that the filtering routine failed to remove very close undergrowth 
vegetation. It was also observed that in order to get a good result, the tree filtering method needs 
at least small area of the tree trunk. 
 
Keywords: High resolution Airborne LiDAR, RG segmentation, 1D Gaussian filter, Gaussian 
fitting 
 
 
1.  Introduction  
 
Laser scanning is now becoming one of the important sources of information for forest 
applications. The laser beam with specific settings may be able to penetrate the forest structure, 
thus giving a better opportunity for accurate forest variable measurements. Hyyppä et al. (2004) 
has listed out numerous techniques and algorithms for tree variable extraction. The features and 
the predictors in the statistical method are being assessed from the laser derived surface models 
and point clouds. This information is then used to estimate forest parameters based on 
regression and discriminant analysis (Table 1). On the other hand, the image processing 
methods use the neighborhood information of point clouds and pixel of a Digital Surface Model 
(DSM). The physical features such as, tree crowns, individual trees, group of trees or the whole 
stands can be derived using this method. In this method, further step of forest parameters 
extraction are assessed using the existing models and statistical methods.  
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Table 1 : Tree variable extraction based on statistical method of LiDAR data (Hyyppä, et al., 2004) 
 

Method Description on method Forest properties 

Canopy profile area The canopy profile area is directly related 
to the logarithm of the timber volume Volume of timber 

Height percentiles of the 
distribution of canopy 

heights 

The Height percentiles of the distribution of 
canopy heights as predictors in regressions 
models to estimate mean tree height, basal 

area and volume 

Predictors in regressions 
models to estimate mean tree 

height, basal area and 
volume 

Canopy reflection sum, 
ground reflection sum and 

Canopy closure 

Canopy reflection sum is the sum of the 
portion of the waveform return reflected 

from the canopy.  Ground reflection sum is 
the sum of waveform return reflected from 
the ground multiplied by a factor correcting 
the canopy attenuation. Canopy closure is 
approximated by dividing the sum of the 

canopy and ground reflection sums 

Predictors in regressions 
models to estimate tree 
height, basal area and 

volume 

Canopy height and density 
metrics 

Canopy height metrics included e.g. 
quantiles corresponding to the 0,10,…,90 
percentiles of the first pulse laser canopy 

heights and corresponding statistics, where 
as canopy density corresponded to the 

proportions of both first and last pulse laser 
hits above the 0,10,…,90 quantiles to total 

number of pulses 

Canopy height and density 
metrics 

Tree cover and Surface 
cover 

Tree cover is calculated from the proportion 
of laser hits from tree canopy divided by the 
total number of laser hits. Surface cover is 
defined as the proportion of laser hits from 

the surface and the total number of hits 

Area of the tree and area of 
the ground surface 

Relative standard deviation 
of tree heights, the 

proportion of single returns 
and the proportion of first 

return, proportion vegetation 
points, mean intensity, 

standard deviation of both 
single and surface returns 

The proportion vegetation point is defined 
as a number of returns that are located 

above the crown base height divided by the 
total number of returns from the segment. 
This information is used for tree species 

classification 

Tree species classification 

Crown shape Crown shape is defined by fitting a 
parabolic surface to the laser point cloud Crown shape 

 
  
Litkey et al.(2007) pointed out that there are two main feature extraction methods that can be 
used to derive forest information from Airborne LiDAR data. The first method is based on a 
statistical canopy height distribution (e.g., Naesset (1997)) and the second approach is based on 
an individual tree detection (e.g., Hyyppä and Inkinen (1999) and Persson, et al. (2002)). It was 
stated that the methods based on the statistical canopy height distribution typically use 
regression, non-parametric or discriminant analysis for forest parameter estimation. On the other 
hand, the individual-tree-based method uses the neighbourhood information of canopy height 
point clouds and the pixels of Canopy Height Model (CHM) to extract features such as crown 
size, individual tree height and tree location. The forest inventory data are then being estimated 
using existing models and statistical techniques. 
 
Numerous studies stated that a discrete return laser scanner data can produce accurate 
information on a tree canopy since the quantiles of height distribution of laser scanner data area 
related to the vertical structure of the tree canopy (Maltamo, et al., 2004). Furthermore, since 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 546

some of the laser pulses penetrate the canopy of dominant tress, it is possible to analyze 
undergrowth vegetation. In their study, Maltamo et al. (2004) used a histogram plot to analyze 
multi-layered canopy structure. In this study it was concluded that the characteristics of the 
canopy height laser point data, especially the shape of the height distribution can be used to 
identify multi-layered stand structures. Reitberger et al. (2007) introduced a method to delineate 
tree crown and detection of stem position of single a trees from dense Airborne LiDAR data. In 
this study, trees were delineated using a watershed algorithm on the CHM and the possible stem 
position was derived from the local maxima of the CHM. In this study, they have introduced a 
3-step algorithm to search stem position in each tree segment. Firstly, all the points between the 
ground and the crown base height were separated and the points were clustered using 
hierarchical clustering based on their horizontal distances. Finally, the stem position was 
estimated using a robust RANSAC-based adjustment of the stem points.  
 
The objective of this study is to develop a new tree filtering approach for high density airborne 
LiDAR data that is able to separate dominant trees and undergrowth vegetation. The filtering 
process is one of the main steps of individual tree variable measurement (refer Figure 1). In this 
paper, the filtering method was tested on different LiDAR datasets with different density of 
undergrowth vegetation. The results can be used for individual tree variable measurements of 
dominant trees and undergrowth vegetation. In this case, the tree measurement can be carried 
out directly on a single tree rather than based on the regression models.  
 
 
 
 
 
 
 
 
` 
 

 
 
 
 
 
 
 
 

Figure 1: The overall flow for an individual tree measurement 
 
2.  Materials and method  
 
2.1 Study site  
 
This study was conducted at the Duursche Waarden floodplain, the Netherlands. The floodplain 
is along the IJssel River, which is the smallest tributary of the Rhine River in the Netherlands 
(Straatsma and Middelkoop, 2006). This area is partly covered by meadow and arable land and 
most of the areas have become nature. The vegetation in this area comprises of (1) softwood 
forest Willow (Salix abla, Salix viminalis), poplar (Populus nigra, Populus x canadensis), (2) 
hardwood forest oak (Quercus robur), ash (Fraxinus excelsior) and a small pine stand (Pinus 
sylvestris) on a river dune, together with (3) reed marshes (Phragmites australis), and (4) 
herbaceous vegetation with sedge (Carex hirta), sorrel (Rumex obtusifolius), nettle (Urtica 
dioica), thistle (Crisium arvense) and clover (Trifolium repens).      

Tree detection

Individual crown 

Tree filtering

Measurement of tree 

Seed point for each 
tree 

Point clouds for each 
tree segment 

Filtered dominant 
tree
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2.2 LiDAR data  

The LiDAR data used in this study was captured by the FLI-MAP 400 system. The FLI-MAP 
400 is a helicopter mounted LiDAR system designed to capture highly detailed terrain features 
with high accuracy. It was claimed that the absolute accuracy of the FLI-MAP 400 data 
measured over hard and level surfaces is 2.5 to 3.0 cm. The system is capable of scanning in 
three directions (forward, down (nadir) and back) and this increases the chance of capturing a 
significant amount of reflected pulses from the ground even in a quite densely vegetated area. 
The FLI-MAP 400 data records maximum four laser reflections with an unmatched distance of 
0.9 m, which enables optimal interpretation of a detailed terrain model even in vegetated areas. 
The data with an average density of 70 points per meter square were acquired during winter in 
2007. The leaf-off data allow better penetration through a tree canopy and therefore the vertical 
structure of a tree can be easily revealed. In this study, 10 sample trees were selected with 
different tree species and undergrowth density. All samples were delineated manually and for 
further processing stage, each sample was attached with one seed point located on top of the 
tree.   

2.3 Histogram-based tree filtering    
 
In this study, the new tree filtering approach is called a histogram-based tree. This method relies 
on the fact that a dominant tree would have distinct parts in the histogram that represent tree 
crown, trunk, ground surface and undergrowth vegetation. Previous study by Straatsma and 
Middelkoop (2006) has shown that the shape of height distribution of a tree has a higher 
frequency of laser pulses from the crown and undergrowth vegetation. On the other hand, the 
reflected laser pulse from the trunk is at a lower frequency. The segmentation process starts 
from a seed point located on top of the tree crown, and the shape of histogram is used to identify 
points that belong to the tree crown and the tree trunk. The RG segmentation is then used to 
subdivide the points into the tree crown and the trunk. The search for the tree trunk continues by 
iteratively analyses the shape of the histogram at certain height above the ground. This process 
is coupled with the RG segmentation to assign additional points to the tree trunk. The process 
continues until it is no longer able to distinguish between tree trunk and the undergrowth 
vegetation. Furthermore, if the process stops before it reaches the ground surface, the tree trunk 
is extrapolated by fitting a three dimensional line (3D line) using the points which have been 
previously assigned as a tree trunk. The additional points for a tree trunk is then collected based 
on the distance between the line and the remaining point clouds.  
 
2.5 One-dimensional (1D) Gaussian filtering 
 
As explained earlier in section 2.3, the histogram of the point cloud distribution of a single tree 
was used as a reference to assign points into tree crown, tree trunk, undergrowth vegetation and 
ground surface. In this study, the boundary that marks each part of the tree on the histogram was 
defined automatically using a multi-modal Gaussian fitting routine. It was observed that, the 
original histogram contains noises that need to be removed in order to get better result in 
Gaussian fitting process. Thus, the first step was to smooth the histogram. A 1D Gaussian filter 
was used to smooth out the histogram surface. In this study, only one value of sigma (0.015) of 
Gaussian filter was used for all the datasets (refer Figure 2).  
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Figure 2: One-dimensional Gaussian filter 
 
 
2.6 Gaussian fitting on histogram  
 
A Gaussian fitting on the histogram was based on nonlinear curve-fitting problems in a least 
square sense which is available in Matlab (lsqcurvefit). This routine determines the possible 
number of Gaussian peaks based on the pre-defined values such as number of possible Gaussian 
shapes and Gaussian model parameters (sigma, position, frequency). In order to determine this 
information, the peaks in the histogram of a single tree can be assumed to have a composition of 
tree crown, undergrowth vegetation and ground surface (refer Figure 3). As depicted in Figure 3, 
the Gaussian fitting routine was then applied on the filtered histogram to define a specific 
boundary for these 3 parts. Each boundary was defined by 3σ value from the Gaussian each 
peak (µ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Shape of histogram for a single tree 

 
All tree samples were delineated manually by hand and a seed point was attached on top of each 
tree. A semi-automatic tree detection and crown segmentation will be explained later in another 
study. The histogram-based tree filtering process was carried out with the following steps: 

1. Place a seed point on top of each tree.  
2. Define growing distances for 3 parts, 1) tree crown, 2) tree trunk and 3) distance 

between a 3D line and point clouds to extract additional points for tree trunk  
3. Calculate a histogram for a single tree and filter the histogram with 1D Gaussian filter  
4. Fit a Gaussian function on the filtered histogram to extract 3 different parts of the tree, 

namely, 1) tree crown, 2) undergrowth vegetation and 3) ground surface 
5. RG segmentation from the tree crown to the level that marks the beginning of the tree 

Crown 

Trunk

Undergrowth vegetation 

Ground 

a

b

c
d

a - Starting level (elevation) for tree crown 
b - Starting level (elevation) for tree trunk 
c - Starting level (elevation) for undergrowth vegetation  
d - Starting level (elevation) for ground 
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a b

trunk  
6. RG segmentation for the tree trunk  
7. Iteratively analyze the shape of the histogram to add more points to the tree trunk  
8. Stop step (7) if the process is no longer able to distinguish between points that belong to 

the tree trunk, the undergrowth vegetation as well as the ground surface 
9. Create a 3D line based on the points that have been classified as a tree trunk  
10. Assign additional points to the tree trunk based on their distances to the 3D line.  

Step (9) creates a 3D line, which intends to extrapolate tree the trunk until it reaches the ground 
surface. This will be the last step of collecting points for the tree trunk, since the filtering 
process as indicated in step (8) was no longer able to distinguish between the points that belong 
to the tree trunk, the undergrowth vegetation and the ground. This step assigned more points to 
the tree trunk by selecting points at certain distance from the extrapolated tree trunk (3D line). 
The tree filtering method basically needs three input parameters, namely growing distance for 
the tree crown, growing distance for the tree trunk, and distance between points to the 
interpolated 3D line. In general, large growing distance value was used for segmenting the tree 
crown, and small growing distance value was used for the tree trunk instead.  
 
3.  Results and discussions  
 
The results showed that the histogram-based method performs quite well in separating the 
dominant trees and the undergrowth vegetation (refer Figure 5). Furthermore the 1D Gaussian 
filtering helps in reducing noises in the original histogram and enhanced the general shape of 
the histogram. This process subsequently eased the multi-modal Gaussian fitting on the 
smoothed histogram (refer Figure 4). However, it should be noted that, different setting of the 
Gaussian filter for example with different σ value would produce different result on a smoothed 
histogram. This could suppresses some useful information and reduce the effectiveness of the 
tree filtering method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Examples of the original histogram, filtered histogram and fitted histogram for tree 1 (a) and tree 2 (b) 
 

Figure 4 shows some examples of the original histogram, the smoothed histogram and the 
estimated Gaussian functions on the histogram.  
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Figure 5: Original trees and filtered trees 
 

In this study it was found that the histogram-based tree filtering method requires at least small 
area of a tree trunk and the reflected laser pulses from this area should be less than the tree 
crown. In this case it would be rather difficult for trees with dense branches along the tree trunk. 
Very small area of tree trunk caused overlapping boundary between the tree crown and the tree 

Tree 1 Tree 2 Tree 3 Tree 4 

Tree 5 Tree 6 Tree 7 Tree 8 

Tree 9
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trunk. Thus, 3σ value will not be appropriate to represent the boundary of each part. Figure 7 (a) 
shows an example for a tree condition where there is a very small area of tree trunk and the 
undergrowth vegetation is very close to the dominant tree. In this example, a special experiment 
was conducted to observe the size of the area for the tree trunk in the histogram. For this 
purpose, the σ value for 1D Gaussian filter was tuned from 0.0026 to 0.1 and the different 
between two levels (between b and c) was observed (refer figure 3). It was found that the 
Gaussian fitting routine failed to identify appropriate value for level b and c, in which the 
different between them (level b – level c) should have a positive value. Figure 7 (b) shows that 
the histogram-based approach failed to separate the dominant tree and the undergrowth 
vegetation.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The different in meter for level b and level c 
 
In this study, it was also observed that each tree requires different value of growing distance 
depends on the closeness of the undergrowth vegetation to the tree crown and the tree trunk 
(refer Table 2). Small growing distance should be used for very close undergrowth vegetation. 
Therefore, further study is required to optimize the tree filtering method, in which values for the 
growing distance should be defined based on the density of the undergrowth vegetation.  
 

Table 2: Growing distance for each tree 
 

Dataset 

Growing 
distance 
for tree 
crown 

(m) 

Growing 
distance 
for tree 
trunk 
(m) 

Growing 
distance for 

3D line 
(m) 

Tree 1 0.8 0.5 0.6 
Tree 2 0.8 0.6 0.5 
Tree 3 0.8 0.4 0.5 
Tree 4 0.8 0.6 1.0 
Tree 5 0.8 0.6 1.0 
Tree 6 0.5 0.4 0.5 
Tree 7 0.8 0.6 1.1 
Tree 8 0.5 0.4 0.5 
Tree 9 0.5 0.3 0.5 
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Figure 7: Original tree (a), filtered tree (b), original histogram (c), filtered histogram (d) and fitted 
histogram (e) 

 
 
4. Conclusions 
 
In general the histogram-based tree filtering method which aims at separating the dominant tree 
and undergrowth vegetation performed well on all datasets. The results can be used in further 
detailed tree variable measurement for instance, species identification, stem diameter, crown 
size, crown volume and etc. However, the filtering method failed to filter the dominant tree 
which is very close to the undergrowth vegetation. It was also shown that the filtering method 
still needs to be optimized by taking into account the density of the undergrowth vegetation. 
This information will be used as the basis to select proper growing distance values for tree 
crown, tree trunk and 3D line. Further study is also required to quantify the effect of different 
magnitude (σ) of the 1D Gaussian filter to the performance of the histogram-based tree filtering 
method. In future, this method will be applied together with the tree detection and crown 
delineation routines on a larger Airborne LiDAR dataset. 
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