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Abstract  
 
The combination of various data sources has been demonstrated to be more effective than using 
them separately. Information retrieval is significantly improved by synergies between laser 
scanner and optical imagery. Digital photography relies on traditional orthorectification methods 
in order to accomplish an accurate spatial correspondence with Lidar products. We investigated 
combinatorial techniques in a high pine forest situated in mountainous relief in the Guadarrama 
Range (Spain). Results have shown critical inaccuracies in the integration of these data, even 
when obtained simultaneously. We propose the use of Lidar-derived DSM in the process of 
orthorectification of aerial imagery. We hypothesised that the use of true-orthophoto techniques 
for improving the planimetric accuracy of VHR can be reliable for forestry applications. The 
methodology slightly improved the geometrical results obtained, though radiometric results 
might be useless. Consequently, other possible solutions are also discussed. 
 
Keywords: LiDAR, color infrared, true-orthorrectification, forest management. 
 
 
1. Introduction 
 
Very High Resolution (VHR) optical imagery and Lidar have synergic capabilities for providing 
reliable data in operational forestry. For this reason, the integration of these data allows a 
cost-effective combination of techniques. Methodologies can benefit from the possibilities of 
both sensors: the potential of VHR imagery for thematic classification and index calculation 
(St-Onge and Cavayas 1997), and the accuracy of tree height information retrieved from Lidar 
(Lefsky et al. 1999). Extraction of Digital Elevation Models (DEM) from simultaneous Lidar 
can improve the automation of VHR imagery orthorectification. Estimation of forest parameters 
from Lidar can also be assisted by VHR. For instance, individual trees can be recognized and 
segmented from VHR imagery and their height and crown shape properties calculated from the 
Lidar point cloud (Leckie et al. 2005; Suárez et al. 2005). 
 
Lidar can be used for improving traditional photogrametric methods. It has been demonstrated 
that tree height retrieved from Lidar is more reliable than photogrammetry, since shade often 
obscures bare soil on aerial images (Hyyppä et al. 2008). Correlation of image pairs for mass 
point detection is time-consuming because it requires the quality control of a technician. Thus, 
correlation has been demonstrated inefficient in forest areas with high dense canopy, though 
other automated matching techniques are being developed (Zhang and Gruen 2004). For this 
reason, traditional photogrammetry has been demonstrated insufficient for large scale forest 
monitoring (St-Onge and Achaichia 2001). Waser et al. (2008) used Lidar data for normalizing a 
DEM retrieved from correlation of Colour Infra Red (CIR) aerial images. 
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In order to integrate the information derived from diverse sensors, a correct adjustment of the 
spatial features obtained should be achieved (Honkavaara et al. 2006). The precision offered by 
both VHR and Lidar has to be accompanied by a proper accuracy assessment in order to be 
reliable for forest applications (Hyyppä et al. 2000). Otherwise, the integration of these data 
cannot be properly accomplished, and such synergies will not emphasize meaningful indices, 
classifications or forest stand parameters. Some authors have encountered difficulties when 
combining both sources since the accuracy of Lidar is highly superior compared to aerial 
imagery (Packalen and Maltamo 2007). While a Lidar point cloud is orthogonally projected, 
VHR imagery has to be orthorectified. 
 
The process for orthorectifying imagery produces a metrical scale document in a homogeneous 
orthogonal projection. VHR aerial photographs acquired on-flight with a matricial sensor 
present a pronounced conical perspective depending on the flight height and the Field of View 
(FOV). In order to change from conical to orthogonal projection and formulate the topographic 
correction, internal and external image orientation and a DEM are required (Baltsavias and 
Käser 1998). Two types of corrections are applied during the orthorectification process of an 
aerial image: the displacement due to the conic perspective of the original photography and the 
topography correction. The first component depends on the focal length of the image, radial 
distance from the projection centre to the object and the height of the vertical element over a 
given datum. The topographic correction is carried out by using the DEM.  
 
Displacement due to the different height of the elements is therefore affected by the DEM 
utilized. A complete and exact correction is achieved when a rigorous model is used; but the 
object shift is not accurately corrected if the model is non-rigorous. Most frequently, the bare 
earth is used as reference surface, by means of a Digital Terrain Model (DTM). As a result, 
elements situated above the ground surface are located in a wrong position. In the traditional 
process of orthorectification of aerial imagery of forest areas, tree presence is consequently not 
modelled in the DEM. For this reason, trees might show in the orthophoto leaning over canopy 
gaps and tree tops are moved from their true location (see Figure 1; note that a’≠ a’’). In some 
areas, the usefulness of imagery can be severely affected. Overlaying Lidar and VHR products 
can be ineffective if, for example, a tree crown is located in the orthophoto where bare soil is 
shown in a Canopy Height Digital Model (CHDM). In this way, matching different sources of 
information can be in some cases impossible. 
 
A theoretical orthoimage of ideally straight trees should locate tree tops in the same position 
where tree bases are; usually, trees appear to lean instead. Lean observed in aerial picture can be 
caused by many factors: 

1. the height of the tree; 
2. DEM slope in radial direction outwards from the centre of the projection;  
3. natural lean of tree trunks. 

 
Factors 1 and 2 are caused by the use of a non-rigorous DEM for orthorectifying. The latter does 
not depend on remote sensing procedures, but is the cause of a large amount of variability which 
should be distinguished from the previous. 
 
Significant displacement of tree tops might be observed when the trees are very tall. This lean 
can be determined as a planimetric distance between where the tree top should be and where it 
actually appears, in meters outwards from the centre of projection. Lean due to tree height can 
be theoretically calculated as follows (formulae adapted from Molina 2008): 
 

dp = h · tg α      (1) 
 
This illustrates how the planimetric displacement (dp) of a feature above the DEM used in the 
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orthorectification is a function of the height of the feature from the DEM (h), and the FOV (α). 
Lean is therefore depending on the height of the elements in the picture, but also on camera and 
flight parameters: focal length, height of flight and maximum Euclidean distance from the 
centre of projection. 
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Figure 1: Lean caused by tree height when orthorectifying with a Digital Terrain Model (DTM). 

 
Equation (1) assumes flat terrain, but object lean observed in the image also depends on the 
slope (s) of the DEM used for the correction. Objects upslope from the nadir point appear less 
leaned than calculated in (1), while those downslope appear more leaned (see Figure 2). This 
increase or decrease of the observed lean can be added to (1) as a slope component of lean 
(adapted from Molina 2008): 
 

∆p = – dp · ks      (2) 
 

ks = tg s / (tg s + tg α)     (3) 
 
Hence, displacement is augmented or reduced (∆p) depending on the slope at the position of the 
tree. The ∆p component will be positive for upslope positions, while negative for elements 
situated downslope. Its value is dependent on the slope correction factor (ks) calculated in (3). 
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Figure 2: Lean increase due to a downwards slope of the Digital terrain Model (DTM). 
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Another source causing lean observed in pictures is the real natural lean of tree trunks. This can 
become significant in a high multi-structured forest. The topography of the study area can make 
tree trunks to be leaned systematically in a certain forest stand. The soil conditions and the 
relative position of trees themselves are factors affecting random trunk leaning. Random and 
systematic behaviour of variables describing image lean should therefore be analysed in forest 
environments.  
 
Lean problems can be solved by generating a so-called true-orthophoto. Orthorectification of 
aerial photography over urban areas usually rely on these techniques, since they are highly 
necessary for avoiding occluded areas when features represented are significantly taller than 
wider, as buildings are (Schickler and Thorpe, 1998). However, studies using true-orthophoto in 
forested areas and natural landscapes are scarce (Küchler et al. 2004; Waser et al. 2008). We 
hypothesised that employing true-orthophoto when integrating Lidar and digital camera in forest 
stands with presence of tall trees will improve the results obtained with traditional orthophoto.  
 
Generation of true-orthophoto is based on the use of a Digital Surface Model (DSM) instead of 
a DTM for correcting the planimetric position of each pixel. When the orthorectifying process is 
made using a DSM, every pixel of the resulting orthoimagery has the digital number captured 
from its real point of view from the sensor. Then, every element is located at its truly orthogonal 
position (Figure 3). By doing this, whenever a tree crown is repositioned properly, a blind spot 
occurs. The mosaicking procedure fills these hidden areas from another picture. An analysis of 
visibility defines the quality of each pixel from the slope relative to the viewing angle, the 
distance to the centre of projection and the distance to a blind spot. Flight parameters are 
therefore critical in improving the quality of this process, since better overlapping increases the 
quality of every pixel and reduces the possibilities of finding areas completely hidden in all 
pictures (Shiren et al. 1989). 
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Figure 3: Lean correction by using a Digital Surface Model (DSM) in the orthorectification process. 
 
A comparison of Figure 1 and Figure 3 illustrates how the tree top (a’’) is located in the 
orthoimage in a wrong position when using the DTM, but it is spatially coincident with the tree 
base when using an unrealistically perfect DSM.  
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2. Material and Methods  
 
2.1 Study area  
 
The study area includes a portion (latitude, 40º53'31'' - 41º15'22''N; longitude, 3º59'33'' - 
4º17'34''W) of the state-owned Scots pine (Pinus sylvestris L.) forest of Valsaín, situated in the 
province of Segovia (Spain). The landscape of the site is characterized by steep slopes, ranging 
between 10-30%, since it is located in the Central Mountain Range, with elevations between 
1265 and 2015 m above sea level in Alicante, Spain. The research has been carried out in a 
dense forest compartment with tall trees and pronounced relief, factors which are still 
challenging for assessing Lidar accuracy (Hyyppä et al. 2008), and which complicate the 
orthorectification process as well. 
 
2.2 Airborne sensors and dataset 
 
Stereocarto S.L. captured Lidar and imagery simultaneously using the same airborne platform. 
Both sensors were carried by a CESSNA 404-Titan with double photogrammetric window. The 
flight was performed on September 10, 2006 over a surface area of approximately 800 ha. Flight 
height was 1500 m above ground level. 
 
Lidar scan was made using an ALS50-II sensor from Leica Geosystems, Switzerland. Laser 
pulse rate was 55 kHz measuring an average of two points per m2, with footprint diameters of 
0.51 m at nadir. A FOV of 25º rendered a 665 m scan width with 40% side lap. Airplane ground 
speed was 140 knots. A value of intensity was captured for each one of a maximum of four 
discrete returns per pulse. Recording height accuracy was 0.15 m. 
 
Panchromatic, RGB colour, and near infrared images were captured using a DMC camera from 
Zeiss-Intergraph, Germany. DCM camera has a focal length of 120 mm with a system of frame 
Charge-Coupled Device (CCD) array sensors. Forward overlap was 60%, while sidelap was 
40%. The result was three strips with 55 VHR images of 15 cm ground sample distance and 12 
bit of radiometric resolution.  
 
The trajectory and altitude of each sensor was calculated independently using different Global 
Positioning and Inertial Navigation Systems (GPS/INS). The differential GPS solution was 
obtained using three reference stations: SGVA (designated by Technological Agricultural 
Institute of Castilla y León Region (ITACYL); latitude: 40º 56' 57,44''N; longitude: 4º 7' 
13,21''W), YEBE (designated by Spanish National Geographic Institute (IGN) network; latitude: 
40º 31' 29,63''N; longitude: 3º 5' 19,06''W), and MAD2 (designated by NASA worldwide 
network; latitude: 40º 25' 38,03''N; longitude: 4º 14' 57,08''W). The final positioning trajectory 
solution was combined from these three reference stations. The spatial reference system was the 
European Terrestrial Reference System 1989 (ETRS89). Planimetric coordinates were 
represented using the Universal Transverse Mercator (UTM) projection, zone 30 north. The 
altimetric datum was the mean sea level in Alicante, Spain. Elevations were described using 
orthometric altitudes. The Ibergo95 geoid model was used to transform from elevations over 
GRS80 ellipsoid to the geoid. 
 
Lidar elevation differences between overlap strips were under sensor tolerance, so that the point 
cloud was georeferenced without additional adjustments. The external orientation parameters 
from the images were obtained using a combined method of direct georeference and 
aerotriangulation using seven control points. Finally, the consistency of both datasets was 
checked using stereoscopic methods, by viewing the point cloud superimposed over the 
photogrammetric models of image pairs. 
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2.3 Lidar products 
 
Prior to obtaining state-of-the-art primary Lidar products such as DTM, DSM and CHDM, the 
raw cloud point was processed using Terrascan software from Terrasolid, Finland. The first 
classification step was to remove low and air points. Then, ground points were classified by 
using the geometric conditions of maximum terrain slope of 75º, iteration angle of 12º and 
iteration distance of two metres. A filter was applied in search for building points (Axelsson 
1999), as some small houses were located in the study area. Finally, unclassified points were 
considered as vegetation class. Quality control of classification was made by an operator using 
the imagery as a reference data layer. 
 
A one metre regular grid DTM was obtained using a triangulated model from the ground class 
Lidar points. Intermediate points and last of many returns within 1x1 m cell were removed from 
vegetation class as a previous step for DSM generation. DSM was then obtained using a 
triangulated model from ground class points and the remaining vegetation class points. CHDM 
was finally obtained subtracting DSM minus DTM models. 
 
2.4 Very High Resolution orthoimagery 
 
Traditional orthophoto was obtained from RGB and CIR images by using the Lidar DTM. 
Co-linearity method was applied for correcting the position. The digital number of each 15 cm 
pixel was assigned with a bilinear resampling method. The seam line of a final mosaicked 
product was optimized by selecting the most nadir area from each photograph. 
 
True-orthofoto was obtained as well from RGB and CIR images by using the Lidar DSM. 
Besides the topography correction, visibility algorithm was also utilised for detecting occluded 
areas. Nearest neighbour was used for resampling. Mosaicking was performed for the most 
nadir areas and for occluded areas too. In the true-orthophoto, no digital number was assigned 
for pixels not showing information from any of the images, so that they remained as no-data 
gaps. 
 
2.5 Reference data 
 
A total of six rectangular inventory plots of 40x60 meters were placed in the study area, 
measuring every tree height with a laser vertex hypsometer. We placed 2-3 landmarks so that 
every trunk in the plot was able to be aimed at with a Total Station NIKON DTM-332 from 
Trimble, California. To avoid the obstruction of vegetation, phase differential GPS 
measurements were taken in October 10, 2007 at nearby positions in absence of canopy cover. 
Simultaneous GPS observations were also taken at a ground control station in Coberteros 
(designated by IGN; latitude: 40º42'5,08''N; longitude: 3º57'23,67''W) for differential correction. 
Static observations were taken with HiperPro receiver from Topcon Positioning Systems Inc., 
California, and their own software was used for post-processing. The position of tree trunks was 
finally deducted from a polygonal itinerary between the landmarks and the dGPS occupations. 
We applied the same transformations described for flight dataset, assuring a proper equivalence. 
The uncertainty of these measurements was demonstrated to be under a tolerance of ±0.30 m in 
all cases. 
 
3. Results 
 
A comparison of the Lidar-derived products and the field reference information showed 
significant correspondences. A pair-wise analysis showed an average difference of 0 ± 0.15 m 
between the altimetry of the reference dataset and the elevations of the DTM product; the 
accuracy of georeferencing processes and the precision of the sensor were therefore confirmed. 
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When validating the inventory, CHDM tended to underestimate tree height, since the presence 
of outliers showed few planimetric mismatches in a discrete tree-by-tree comparison without 
any correlation algorithm for spatial matching. This is explained because the real orthogonal 
projection on the ground of some tree tops is not coincident with the tree base, due to the 
presence of naturally leaned trunks in the study area. This leads to a high presence of random 
noise in every planimetric tree-by-tree analysis. Nevertheless, no systematic lean tendencies 
were found in the study area. 
 
Contrary to the other two information datasets, orthorectified aerial imagery showed important 
displacements of planimetric information. This led to significant mismatching of Lidar products 
with imagery products, i.e. indices, classifications and photo-interpreted features. This was of 
critical importance, since integration of sensors was therefore unsuccessful in many cases. In 
order to distinguish displacements caused by random tree trunk lean from picture lean, the 
spatial distribution of planimetric errors was compared to the theoretical lean of trees calculated 
from (1) and (2). According to the parameters shown in Figure 1, the Euclidean distance to the 
centre of the projection (r) and the flight (H) and tree (h) heights; equation (1) can be 
reformulated as: 
 

dp = h · r / (H – h)      (4) 
 
The theoretical spatial distribution of lean errors was calculated (see Figure 4) for every position 
in the study area by using the calculated CHDM elevation as tree height in the equation (4), and 
the DTM for deducing the terrain slope at each pixel in radial direction outwards from the 
projection centre in (2) and (3). Real displacements were measured as the planimetric Euclidean 
distance between the tree base reference data and the tree top interpreted at the orthoimage. 
Observed lean showed a significant correlation with theoretical lean, presenting the same spatial 
distribution pattern. This demonstrated that the mismatching was provoked by the perspective 
itself, and not just by randomly distributed natural trunk lean. 
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Figure 4: Raster model showing the spatial pattern distribution of lean suffered by each pixel. 
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Tree tops observed from true-orthophotography were also compared with the reference position 
of their corresponding base. Planimetric shift was significantly reduced compared to traditional 
orthophoto. True-orthoimagery was verified as a reliable methodology for improving 
geometrical accuracy of aerial information, as shown in Figure 5. Errors were distributed 
randomly and showed no spatial pattern, so that they can be assumed to be dependent on other 
factors than the Euclidean distance to the projection centre of the picture. However, individual 
tree shapes were found distorted in many cases, so that true-imagery is less practicable for 
photo-interpretation purposes than traditional DTM-derived orthophoto.  
 

#I

#I

#I

#I

#I

#I

#I

#I

#I

Lean observed at CIR orthophoto
#I Tree top position from orthophoto

Tree base position from inventory
/ Observed planimetric lean distance
0 2 4 6 81

Meters

#I

#I

#I

#I

#I

#I

#I

#I

#I

Lean observed at CIR true-orthophoto
#I Tree top position from true-orthopoto

Tree base position from inventory
 Observed planimetric lean distance
0 2 4 6 81

Meters  
 

Figure 5: Comparison of mismatching between planimetric positions of tree base measured in the field 
and tree top position interpreted from false colour infrared orthophoto (left) and true-orthophoto (right).  

 
4. Discussion 
 
Simultaneous acquisition of Lidar in a photogrammetric flight notably increases the automation 
of the procedures and reduces processing time and costs for orthoimagery production. Lidar 
obtains mass points automatically, therefore reducing the need for quality control and 
minimising error occurrence. Thus, traditional photogrammetric correlation was still 
challenging in densely forested canopies, so Lidar introduced an exceptional advantage 
concerning DEM calculation from photogrammetric flight. VHR imagery needs to rely on 
precise data that only Lidar can nowadays offer. 
 
In order to integrate information simultaneously obtained from different sensors, a proper 
geometric correspondence between them has to be accomplished. Terrain slope and tree height 
were deemed important factors regarding the difficulties in achieving the orthogonal location of 
features in aerial imagery. It was demonstrated that lean of tree tops in orthoimagery was caused 
by the presence of tall trees and steep terrain. 
 
True-orthorectification of aerial imagery has significantly improved the planimetric adjustment 
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of tree tops. Nevertheless, radiometric properties have suffered numerous deficiencies. The 
consistency and usefulness of the radiometric information in true-orthophotos is yet to be tested. 
Thus, DSM-derived orthophoto contained numerous artefacts and no-data gaps, due to the 
visibility analysis’ process. Photo-interpretation of features is more difficult than those in 
traditional orthophoto. Isolated tree crowns showed more deformities than stands presenting 
continuous canopies; these results are coherent with those obtained by other authors (Leckie et 
al. 2003). Distortion of tree crown may reduce the possibilities of any analysis of texture or 
crown shape. 
 
Alternative possibilities for solving lean problems in future flights over high canopies in 
mountainous areas concern changes in: 

1. the digital camera; 
2. flight parameters;  
3. alternatives for orthophoto calculation; as those discussed in this article. 

 
The displacement of the vertical objects in the photographic images can be reduced by using 
larger focal length, or using linear array sensors with pushbroom technology instead of CCD 
array ones, where vertical displacement is bidirectional instead of radial. Linear array would 
accomplish lean errors to be distributed transversally to the flight line direction. Flight 
parameters should be modified by increasing the sidelap in order to optimise mosaicking 
procedures. Changes in flight height are not considered since spatial resolution would be 
reduced. 
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