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PREFACE 
 
SilviLaser 2008: September 17-19, 2008. Heriot-Watt University, Edinburgh, UK 
 
SilviLaser 2008 will be the 8th international conference in a series focussing on 
applications of laser systems for forest assessment and inventory. Previous conferences 
have taken place in Canada, Australia, Sweden, Germany, USA, Japan and Finland. In 
2006, the name SilviLaser was chosen by the Scientific Committee to create a 
recognisable identity for this highly successful series of international conferences. This 
year, we have chosen the James Watt II Centre at Heriot-Watt University, Edinburgh as 
the venue for this event.  This is very modern and well equipped to suit our needs for 
such a prestigious event.  
 
In recent years there has been rapid development and use of laser systems operating on 
a principal of Light Detection And Ranging (LiDAR) in the inventory, assessment, and 
monitoring of forests. Applications of laser technology have included the estimation of 
forest biophysical parameters (including carbon) at the individual tree or stand level as 
part of local, regional and even national forest inventory. In addition, laser data have 
been used to monitor forest change, model susceptibility to wind or fire damage, and 
map wildlife habitat. Laser systems can operate on ground-based, airborne and satellite 
platforms. They are typically categorised as profiling or scanning systems supplying 
range or waveform information per laser pulse. This distinction is, however, becoming 
increasingly blurred as laser systems evolve. 
 
On September 17th we celebrated a pre-conference workshop focused on the use of 
Terrestrial Laser Scanning in forestry. There is now considerable interest in this 
non-disruptive technology, and the realisation of its full potential justified us organising 
this event. We limited attendance to 30 people and very quickly we had to turn down 
requests for attendance. Presentations demonstrated both state-of-the-art research and 
mature tools ready for operational use. This was complemented by the latest advances in 
scanning systems, all of which enabled practitioners to discover another useful tool for 
taking field measurements.  
 
SilviLaser 2008 (September 18th and 19th) brings together research scientists and 
practitioners from around the world to share their experience in the development and 
application of LiDAR for forest assessment and inventory. Presentations cover all forms 
of laser system, from all possible platforms, and across a full range of forest 
applications. The conference has six session themes:  

• forestry applications & inventory;  
• data fusion;  
• ecological applications & habitat mapping;  
• waveform LiDAR;  
• algorithm and techniques development;  
• terrestrial laser scanning and laser cameras.  

 
SilviLaser 2008 will discuss the state-of-the-art in laser systems and data processing 
techniques in order to meet a range of information needs. The conference aims to 
encourage new and stronger linkages between LiDAR practitioners, and in particular 
between researchers, data providers and end-users of derived products. All of the papers 
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in the proceedings have been double-blind peer reviewed by at least two experts in the 
field. This was performed mostly by the Scientific Committee but with additional 
assistance required due to the submission of 70 full manuscripts. The editorial board 
also read the papers. The standard of submission was extremely high, and competition 
for oral presentations was strong. We believe that through this rigorous reviewing 
process, we have improved the quality of the papers and selected a diverse range of high 
quality presentations. We are grateful for the efforts expended by the large team of 
reviewers. 
 
The keynote speakers at SilviLaser 2008 are Professor Richard Lucas (Aberystwyth 
University), Dr Wesley Newton (U.S. Geological Survey) and Professor Ralph Dubayah 
(University of Maryland). The research interests of Prof. Lucas include the integration 
of airborne and spaceborne LiDAR, SAR and hyper-spectral data for assessing the 
structure and biomass of tropical and subtropical forests and woodlands. His current 
research sites include Brazil and Queensland, Australia. Dr Wesley Newton is the 
Supervisory Statistician in the USGS Northern Prairie Wildlife Research Center. His 
current projects include developing bird species-habitat models using LiDAR data in 
northern forests and developing management optimization algorithms. The research 
interests Prof. Dubayah include the estimation of Tropical Forest aboveground biomass 
using large-footprint LiDAR, and improving model carbon projections of the land 
surface using LiDAR remote sensing. He was principal investigator for the Vegetation 
Canopy Lidar (VCL) Mission. 
 
We are particularly pleased to welcome five international post-graduate students to 
SilviLaser 2008 in Edinburgh, thanks to bursaries kindly supported by ESRI. In addition, 
we are also pleased to have a special session on ecological applications for forest habitat 
assessment, which is sponsored by the British Ecological Society. 
 
We wish to thank all contributing authors, members of the Scientific Committee, all 
manuscript reviewers, our sponsors, and the local organising committee.  Their support 
is highly appreciated and was essential for enabling this conference to take place. We 
hope you enjoy SilviLaser 2008 and that further develops your science and practice in 
the applications of laser systems for forest assessment and inventory. 
 
 
SilviLaser 2008 Editorial Board: 
Ross Hill (Bournemouth University) 
Jackie Rosette (Swansea University) 
Juan Suárez (Forest Research, Edinburgh) 
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Advances in forest characterisation, mapping and monitoring through 
integration of LiDAR and other remote sensing datasets 

 
Richard Lucas1, Alex Lee2, John Armston3, Johanna Breyer1,  

Peter Bunting1 & João Carreiras4   
 

1Institute of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, 
Ceredigion, SY23 2EJ rml@aber.ac.uk 

2Defence Imagery and Geospatial Organisation, Russell, Canberra, ACT 2600, Australia. 
Alexander.Lee@defence.gov.au 

3Joint Remote Sensing Research Program, Remote Sensing Centre, Department of 
Natural Resources and Water, Climate Building, 80 Meiers Road, Indooroopilly, 

Queensland, 4068, Australia john.armston@nrw.qld.gov.au 
4Tropical Research Institute, Department of Natural Sciences, Rua João de Barros, 27, 

Lisbon, Portugal. jmbcarreiras@gmail.com 
 

Abstract  
 
The diversity of scales and modes in which ground, airborne and spaceborne LiDAR operate 
has increased opportunities for quantitatively assessing forest structure, biomass and species 
composition and obtaining more general information on dynamics and ecological/commercial 
value. However, the level of information extracted can be increased even further by integrating 
data from other sensor types, including hyperspectral and Synthetic Aperture Radar (SAR). 
Examples include the generation of species-specific tree and stand level maps of biomass 
through inclusion of fine spatial resolution hyperspectral data and the use of LiDAR data and 
derived products for better interpreting the information content of SAR and optical data and 
parameterising models that simulate and assist understanding of the interaction of 
electromagnetic energy with forest components. Applications where synergistic use of LiDAR 
and other remote sensing data are advantageous include commercial forest inventory, 
quantifying carbon dynamics and biodiversity, and detecting change at scales from individual 
trees to landscapes. Recognition of the value of integrating other forms of remote sensing data 
with LiDAR is leading to the development of techniques for data fusion and also new 
synergistic sensors on platforms ranging from Unmanned Airborne Vehicles (UAVs) to satellites 
(e.g., DESDynI). 
 
Keywords: LiDAR, hyperspectral, forests, biomass, structure, biodiversity, carbon 
 
 
1. Introduction  
 
For forest studies, ground-based, airborne and spaceborne LiDAR have been used primarily to 
retrieve basic structural attributes, including height, canopy cover and vertical profiles from 
which indirect measures (e.g., basal area, timber volume and biomass) have been derived 
(Lefsky et al., 2005; Tickle et al., 2006; Goodwin et al., 2006; Brandtberg, 2007; Popescu and 
Zhao, 2008). Increasingly, however, studies are recognising or demonstrating that by integrating 
data from other sensors, including optical (e.g., hyperspectral) and Synthetic Aperture Radar 
(SAR), forests can be better characterised in terms of their structure, biomass and species 
composition (Hyde et al., 2005; 2006; Chen et al., 2007; Nelson et al., 2007). Opportunities for 
detecting changes in these attributes over time and at various scales are also enhanced (Wulder 
et al., 2007). Approaches to integration have varied but have typically involved combining data 
and derived products from other sensors to better quantify forest attributes (e.g., Hyde et al., 
2006; Nelson et al., 2007; Lucas et al., 2008) or using LiDAR-derived information to better 
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interpret data acquired by other sensors (e.g., Lucas et al., 2006a; Simard et al., 2008). Using 
our own case studies and based on a review of current literature, this paper provides an 
overview of such approaches and gives application examples relating to the inventory and 
conservation of forest resources. Future synergies of LiDAR and other forms of remote sensing 
data are noted, focusing particularly on integration techniques and the deployment of new 
platforms and sensors.      
 
2. Measures derived using LiDAR data alone 
 
Most early studies using LiDAR focused on retrieval of simple descriptors of forest structure 
(Table 1a), with the majority utilising height information in the form of canopy height 
surfaces/models interpolated from outer canopy point data. More recent studies have derived 
additional attributes (Table 1b), including diameter at breast height (DBH), basal area and 
density (Hudak et al., 2008), timber volume and biomass (Naesset and Gobakken, 2008). In 
most cases, these attributes have been determined by establishing relationships with those 
directly measured (e.g., height or crown dimensions; Hyyppä et al., 2001), summaries of the 
LiDAR data themselves (e.g., canopy geometric volume or profile area; Chen et al., 2007; 
Wulder et al., 2007), or LiDAR-based indices (e.g., the Height Scaled Crown Openness Index 
(HSCOI); Lee and Lucas, 2007).   
 

Table 1: Examples of structural measures derived a) directly and b) indirectly from LiDAR data.     
 

a) Attribute b) Attribute Derived from: 

 H1  Diameter H or crown dimensions, HSCOI2 
 Crown/canopy cover  Basal area H or crown dimensions, CGV3 
 Crown canopy depth  Volume CGV 
 Crown/canopy profile  Biomass H, H-squared, HOME4 
 Outer canopy ruggedness   canopy cover, depth volume, reflectance 
 Gap fraction  Density HSCOI, counts of delineated crowns 
 Forest type/species  LAI5, PAI6 H or crown dimensions, profile area 
   FPC7 Crown dimensions 

1H, 2Height-Scaled Crown Openness Index, 3Canopy Geometric Volume,  
4Height of median energy return, 5Leaf Area Index, 6Plant Area Index, 7Foliage Projected Cover.   

 
A large number of studies have also identified and often adjusted for factors complicating 
retrieval including crown shape and leaf state (on/off; which vary within and between species), 
the location and spatial arrangement of trees within footprints of varying dimension, local slope, 
varying reflectivity of the ground and canopy, the LiDAR sampling intensity, atmospheric 
interference, and the reliability of ground measurement (e.g., Harding and Carabajal, 2005; 
Hyde et al., 2005; 2006; Wulder et al., 2007; Jang et al., 2008; Reitberger et al., 2008).  
 
3. Terrestrial Laser Scanners and links with airborne LiDAR 
 
Terrestrial Laser Scanners (TLS) provide detailed reconstructions of trunk, branch and leaf 
distributions from which tree locations, diameter and height (Maas et al., 2008; Watt and 
Donoghue, 2005), timber volume by size class (Jupp et al., 2005), and canopy gap fraction 
(Danson et al., 2007; Henning and Radtke, 2006) can be quantified. Potential exists also for 
retrieving the woody biomass of individual trees, either by considering the sizes of the stems 
scanned or multiplying the volume of scanned branches and trunks by wood density. Although 
limited by survey times and occlusion as a function of stand density, TLS provide a permanent 
record of forest structure. A close correspondence between forest height (Breyer, 2008) and, to a 
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lesser extent, foliage profiles (Jupp et al., 2005) retrieved separately using co-registered TLS 
and airborne LiDAR has also been reported. Linking TLS data with other remote sensing 
datasets (e.g., airborne LiDAR) does however require a high level of geolocational accuracy 
(Figure 1). Hence, establishment of a comprehensive and precise network of ground survey 
points and the use of high quality Inertial Navigation System (INS) for airborne systems is 
essential if all scan points are to be correctly located in three-dimensional space.  
  

 
 

Figure 1: Airborne (full waveform) LiDAR point cloud (grey)  
with a sub-plot acquired by TLS (white) included, Lake Vyrnwy, mid-Wales. 

 
 
4. Linking fine spatial resolution multi/hyperspectral data 
 
Studies are increasingly incorporating data acquired by finer (typically < 1 m) spatial resolution 
multi/hyperspectral airborne (e.g., Compact Airborne Spectrographic Imager; CASI) and/or 
spaceborne sensors (e.g., Quickbird) to enhance descriptions of forests. The desire to 
simultaneously acquire complementary LiDAR and multi/hyperspectral datasets has also led to 
sensors being flown on the same platform (e.g., the Carnegie Airborne Observatory (CAO); 
Asner et al., 2008). More commonly, however, data are acquired using different platforms and 
on a similar or proximal date and algorithms for automatic rather than manual co-registration of 
data are then desirable.  
 
Accurate co-registration of datasets significantly increases the diversity of information that can 
be extracted. St-Onge et al. (2008), for example, used a LiDAR-derived digital terrain model 
(DTM) as a base for increasing the accuracy of tree height estimates generated from historical 
stereo aerial photography. Within co-registered datasets, stand density can be estimated by 
counting a) extracted high points in LiDAR or ‘bright points’ in multi/hyperspectral data 
(Wulder et al., 2000) and/or b) tree crowns/clusters delineated using algorithms ranging from 
valley following to template matching (Bunting and Lucas, 2006). For open forests and orchard 
sites, retrieval accuracies have exceeded 70 % (Lee and Lucas, 2007) and 99 % (Jang et al., 
2008) respectively. The advantage of having co-registered datasets is that trees identified within 
one can be attributed with measures (e.g., height or species; Chen et al., 2007) from the other, 
thereby leading to better descriptions of the forest. As an example, Bunting and Lucas (2006) 
applied an algorithm developed within Definiens Developer software and CASI data to 
delineate tree crowns of varying dimension. Once delineated, crowns were associated with a 
species type using spectra extracted from the sunlit portions as input to a linear discriminant 
function. A subsequent step then applied species-specific allometric equations relating 
LiDAR-derived height to the above ground and component (leaf, branch and trunk) biomass 
(Figure 2). Whilst performing well for isolated trees, the biomass was found to be 
over-estimated where trees with large expansive crowns occurred but was under-estimated 
where stem density was high (more than several per m2). Whilst hyperspectral data provide 
superior classifications of tree species, several studies have discriminated species or broad forest 
types using LiDAR intensity data (Antonarakis et al., 2008), relative height differences between 
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the first and last vegetation returns (Moffiet et al., 2005) and directed graphs (Brandtberg, 2007). 
Holmgren et al. (2008) reported, however, best discrimination when using a combination of 
LiDAR and multi-spectral data.   
 

 
Figure 2: Estimates of A) branch and B) trunk biomass generated using a combination  

of LiDAR and CASI data. Dots/red circles indicate trunk locations (Lucas et al., 2008a). 
 
 
5. LiDAR for interpreting SAR data 
 
5.1 Empirical relationships established between SAR and LiDAR-derived data 
 
As with LiDAR, SAR is an active sensing technique and as emitted wavelengths at different 
frequencies and polarisations interact with components of the forest volume, the backscattered 
intensity relates partly to the overall structure and biomass of the forest. LiDAR-derived 
estimates of biomass and structural attributes can provide a basis for supporting the 
development of SAR-based retrieval algorithms, particularly as field-based measurements are 
often limited in amount and spatial distribution. As an example, and focusing on wooded 
savannas in Australia, Lucas et al. (2006a) established a relationship between LiDAR metrics 
and biomass (r2 = 0.92). Relationships established subsequently between the LiDAR derived 
biomass and airborne SAR backscatter at different frequencies and polarisations (and for the 
equivalent of 4500 0.25 ha plots) then revealed differences in the saturation of backscatter 
above certain thresholds of biomass between SAR channels and suggested that L-band (~ 25 cm 
wavelength) cross polarised data acquired at incidence angles > ~ 40o provided the best option 
for biomass retrieval. The LiDAR-derived estimates of biomass also provided opportunities to 
evaluate existing biomass retrieval algorithms. For example, Le Toan (2008) proposed a 
Bayesian approach that utilised a priori knowledge of forest biomass to increase the accuracy of 
biomass retrieval and quantify uncertainties such that: 
 

P B | γ 0( )∝ P(γ 0 | B).P(B)  Equation 1. 
  
where P(B|γo) is the probability of biomass given a value of backscatter (gamma0; γo) and P(γo|B) is 
the probability of γo given a value of biomass. In the case of woody savannas, the a priori 
information was obtained from the Gaussian probability distribution function for biomass (P(B)) 
derived from the LiDAR data. The algorithm of Saatchi et al. (2007) uses L and/or P-band (~68 cm 
wavelength) data to separately estimate the biomass of the trunk and crown, which are then summed 
to give total above ground biomass. This model was newly parameterised for wooded savannas by 
applying crown:trunk ratios to the LiDAR-derived biomass as a function of species type (e.g., 
conifer, eucalypt, acacia), as described using co-registered stereo aerial photography (Tickle et al., 
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1996). The resulting model coefficients were then used to map biomass across the landscape, with 
best retrieval obtained using a combination of L-band (trunk biomass) and L- and P-band (crown 
biomass). By using these same biomass data, but adjusting for clearing since 2000 using 
time-series of Landsat sensor data, a modified version of the Saatchi et al. (2007) model was 
developed that used L-band dual polarimetric data acquired in 2007 from the Advanced Land 
Observing Satellite (ALOS) Phased Arrayed L-band SAR (PALSAR) as input. For regional 
application, further calibration and validation and consideration of a greater range of forest 
structural types is necessary. For this purpose, the Queensland Department of Natural Resources 
and Water (QDNRW) previously acquired discrete return LiDAR data for sites across 
Queensland ranging from sparse woodlands to dense tropical rainforests. Whilst biomass has yet 
to be estimated from these data, a close correspondence between LiDAR-derived attributes 
including height, foliage projected cover (FPC) and crown density and ALOS PALSAR data has 
been observed (Figure 3; Armston et al., 2008) suggesting that characterisation and mapping 
across the wider landscape is achievable from regional coverages.  
 
 

 
Figure 3: Correlations of PALSAR L-band HH σ0 against LiDAR-derived overstorey structural attributes 

for 33 sites randomly sampled from the area of 19 LiDAR surveys covering open and closed forests. 
 
5.2 Retrieval through integration of LiDAR and SAR 
 
Whilst some success has been achieved in retrieving biomass and structural attributes from both 
SAR intensity data and LiDAR, the mechanism of retrieval differs because of the modes of 
observation. Within SAR data, the increase in backscatter with biomass, for example, is largely 
a consequence of the greater number, diversity and size of scatterers (leaves, branches, trunks) 
within the forest volume. Within LiDAR, biomass is retrieved because of an inherent 
relationship with height and also the canopy volume. As these sensors are responding to 
different elements of the forest volume, additional information might be retrieved through their 
combination. A useful example is that of high (e.g., > 15 m) mangroves dominated by 
Rhizophora stylosa. These mangroves exhibit a SAR backscatter (L- and P-band) that 
approaches that of non-forest because of microwave attenuation by the extensive root system 
(Lucas et al., 2007). However, by integrating height information (e.g., from LiDAR), these 
mangroves can be identified as being of high biomass. Nelson et al. (2007) compared the 
retrieval of biomass using LiDAR and SAR (multi-angle BioSAR), concluding that whilst better 
retrieval was obtained when in combination, the small improvement over the use of LiDAR 
alone may not justify the increased resources required. Nevertheless, their combined use was 
considered to have greatest potential in retrieving the biomass of high biomass forests with 
excurrent growth forms.   
 
5.3 Parameterisation of radar simulation models. 
 
Radar simulation models are used primarily to understand the interaction of microwaves with 
different components of the forest volume and also the ground surface. These models are 

r = 0.75 r = 0.74 r = 0.84 
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typically two-dimensional and assume a random distribution of elements (e.g., disks or 
cylinders representing leaves and branches respectively). Comparisons between actual and 
simulated backscatter provided an indication of how well the SAR data are simulated and also 
permit then the signal to be decomposed such that the contributions from the different scattering 
mechanisms (e.g., trunk-ground) to the overall backscatter can be better quantified and 
understood. More recently, models that consider the distribution of elements in 
three-dimensional space have been established, but often the scattering elements are assumed to 
be distributed randomly within the volume space. However, LiDAR provides the opportunity to 
establish more precisely the location of scattering elements, which is particularly useful where 
the distribution is clumped rather than random. As an example, Lucas et al. (2006b) 
parameterised a coherent SAR image simulation model with structural attributes derived from 
discrete return LiDAR data. Key elements of the parameterisation involving LiDAR were a) the 
identification of stem locations based on low values within a Height Scaled Crown Openness 
Index (HSCOI) surface and estimation of biomass (based on allometric equations applied to 
diameter, as estimated from a relationship with the HSCOI, and/or height), b) the generation of 
voxels based on the three-dimensional distribution and frequency of LiDAR returns within 1 m3 
integer intervals from ground level to the maximum height of the stand and assignment of an 
estimate of leaf and tertiary branch biomass (derived from allometrics and based on the number 
of voxels associated with each stem), and c) the approximation of primary and secondary branch 
locations based on position, distance and angle from the main stem and primary branches 
respectively and an association with volume based on logical rules. Ground surface parameters 
were also determined from the LiDAR digital terrain model (DTM). A close correspondence 
was observed between simulated and actual (AIRSAR) data, suggesting effective modelling of 
the SAR backscatter. The model is now available within the European Space Agency (ESA) 
software package POLSARPRO (http://earth.esa.int/polsarpro/). Whilst parameterisation is 
complex, the approach provides considerable insight into the interaction of microwaves with 
different components of the forest volume.      
 
5.4 Evaluation of InSAR and polInSAR data based on LiDAR 
 
As with LiDAR data, there is increasing demonstration of the potential of retrieving information 
on the distribution of scattering elements within the vertical profile of forests using SAR (repeat 
or single pass) interferometry (InSAR) and polarimetric SAR inteferometry (PolInSAR). A 
particular advantage of such approaches is that the coverage of SAR is much greater compared 
to LiDAR (Hyde et al., 2006; Baltzer et al., 2007). Nevertheless, LiDAR data can play a key 
role in the verification of retrieved profiles (Slatton et al., 2001), thereby leading to fine-tuning 
of algorithms. LiDAR can also provide a yardstick for assessing the retrieval of structural 
attributes from other sensors. For example, several studies have demonstrated differences of 
only a few metres in the errors associated with height retrieval from InSAR and LiDAR (e.g., 
Baltzer et al., 2007, Breidenback et al., 2008). Hyde et al. (2006) also suggested that InSAR 
was best suited for structurally homogeneous forests and that LiDAR provided better estimates 
of the height of larger trees. 
 
6. Application examples 
 
Relative to optical and SAR data sources, LiDAR technology is a new advance in the remote 
sensing of forests. As costs were high and the logistics of acquisition were complex, initial 
activities were concentrated largely in the research and government sectors, which were also in 
a better position to advance the development and evaluation of new sensor types (e.g., LVIS, 
SLICER). However, with the increased availability of commercial LiDAR (terrestrial and 
airborne) and freely accessible spaceborne LiDAR combined with an increasing capacity to 
integrate data from other sensors, significant expansions in both research and operational 
applications have occurred in recent years. The following sections give a brief overview of 
several applications. 
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6.1 Commercial forestry  
 
The uptake of LiDAR for operational forestry applications has, until recently, been relatively 
low in many countries because of the perceived inability to retrieve the same level of 
information obtained through traditional forest survey techniques, the high costs involved, and 
also the lack of expertise within the intended user community (Suarez et al., 2005). The uptake 
of LiDAR is, however, variable with Naesset et al. (2004) and Nelson et al. (2007) noting an 
increasing number of organisations using these data routinely for forest structural measurement 
and management planning, particularly in Scandinavia and North America. Furthermore, 
recognition of the wide range of information that can now be obtained from LiDAR (e.g., 
DTMs, forest structure and the identification of areas that cannot be logged such as habitat trees 
and riparian zones) and the potential of integrating with other remote sensing datasets has led to 
an increase in utilisation in many countries.   
 
6.2 Carbon stocks and dynamics 
 
The retrieval of biomass (carbon) from LiDAR metrics through empirical relationships with 
field measurements has been demonstrated in many studies (Culvenor et al, 2005; Naesset and 
Gobakken, 2008; Lim and Treitz, 2004) and such estimates can potentially support carbon 
trading and national accounting (Patenaude et al., 2004). As examples, Naesset and Gobakken 
(2008) used LiDAR-retrieved canopy height and density to estimate the biomass of boreal 
forests in Norway. Lefsky et al. (2005) integrated time-series of Landsat sensor data to age 
stands and, in conjunction with LiDAR-derived stem height and biomass, generated estimates of 
wood Net Primary Productivity (NPP). Using LiDAR combined with Landsat and SPOT sensor 
data in New Zealand (Ministry of the Environment, 2008), estimates of carbon stocks for 
extensive areas of forest have been generated as part of a national sampling program of 
greenhouse gas emissions monitoring. By contrast, the Australian National Carbon Accounting 
System (Brack et al., 2006) has not integrated LiDAR data to the same extent because of the 
difficulty of calibration associated with the complexity of forests structures. Nevertheless, the 
potential benefits of using LiDAR for calibrating other forms of remote sensing data and 
supporting carbon accounting and reporting schemes in many countries have been recognised.   
 
6.3 Biodiversity assessment 
 
The high diversity of fauna and non-tree flora associated with forests is attributable to the 
diversity of habitats, which, in part, is reflected in the spatial distribution and arrangement of 
structural elements within the volume space that trees create and occupy. Several studies have 
noted that the distribution and richness of bird species in particular are closely linked to forest 
canopy structure (Hyde et al., 2005) and heterogeneity (Goetz et al, 2007), both of which can be 
quantified using airborne LiDAR. Hill et al. (2005) and Hinsley et al. (2006) also reported a 
link between habitat quality (defined by forest canopy structure and height) and the breeding 
success of Great Tits (Parus major). Such assessments might be improved by integrating 
information on tree species and the age and condition of stands, as obtained using, for example, 
multi/hyperspectral data (Hill and Thomson, 2005). Most studies focusing on biodiversity are 
confined to relatively small areas because of the limited coverage of airborne acquisitions. 
Extrapolation to regional areas requires the establishment of forest height and structural maps 
over larger areas, which can potentially be generated using SAR interferometry and/or IceSAT 
data. Such information would complement habitat maps generated at a commensurate scale 
using airborne/spaceborne optical datasets. 
 
6.4 Environmental change 
 
The detection of changes in forest cover (deforestation, degradation and 
regeneration/afforestation) using LiDAR is limited primarily by spatial coverage and the cost of 
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data acquisition. Nevertheless, the requirement for change mapping based on such data is 
compelling. Within Australia, trees of certain species identified in 2000 from a combination of 
LiDAR and hypespectral data were noted to have died back in 2006, partly because of the 
intense drought (Lucas et al., 2008b). This dieback has been observed previously over large 
areas and so repeat acquisition by both sensors and subsequent assessment of changes in 
structure, biomass and species can inform on the impacts of adverse change but also better 
understand how these might be detected using sensors with wider spatial coverage (e.g., ALOS 
PALSAR). Wulder et al. (2007) compared two profiling LiDAR transects 600 km in length 
across boreal forests in Canada in 1997 and 2002, indicating that global comparisons of 
structural attributes were less informative than spatially explicit comparisons undertaken for 
local areas (in this case, defined by segmenting Landsat ETM+ data). The local approach 
allowed LiDAR profiles to be treated as samples of a population, with the latter defined as a 
Landsat segment, thereby avoiding the issue of geolocation error. This study also raised the 
issue that long time-periods between comparisons are often required for monitoring certain 
processes such as vegetation growth and dieback in response to climate change. This has further 
implications for comparison of different LiDAR datasets as recent years have seen a rapid 
advancement of LiDAR technology from single discrete return profiling instruments to full 
waveform small-footprint scanning systems (e.g. Wagner et al., 2004). Therefore, care needs to 
be taken when using different airborne LiDAR systems for monitoring because geolocation 
errors and different acquisitions specifications of the LiDAR surveys may cause differences in 
estimates of structural attributes that are not the result of real change (Goodwin et al., 2006; 
Wulder et al., 2007). 
 
7. Overview and future opportunities 
 
Through a series of case studies and with reference to the published literature, this review has 
highlighted the benefits of integrating LiDAR with other remote sensing datasets for furthering 
the characterisation, mapping and monitoring of forests at a range of scales. In particular, the 
integration of datasets can lead to a) an increase in the diversity and accuracy of information on 
forest structure, biomass and species composition and change, particularly at the individual tree 
and stand level, b) a greater capacity to establish empirical models with moderate to coarse 
spatial resolution (e.g., spaceborne optical and SAR) data, thereby facilitating retrieval across 
wider areas, c) unique opportunities for providing detailed parameterisation of simulation 
models that can be used to better understand the interaction of electromagnetic energy with 
forest components and/or be inverted to allow retrieval of a greater range of biophysical 
properties from remote sensing data (Koetz et al., 2006), and d) greater provision of data or 
derived products for inclusion within multi-sensor biophysical retrieval algorithms.   
 
Recognition of the benefits of data integration has led to the design of sensors that combine 
LiDAR with other optical or multi-angular (e.g., Carbon3D) or radar sensors (e.g., DESDynI) 
and also the development of systems (e.g., The Carnegie Airborne Observatory) and new 
platforms (e.g., Unmanned Airborne Vehicles) with capacity to support both LiDAR and 
multi/hyperspectral sensors. Such developments are anticipated to lead to a greater uptake of 
LiDAR for a range of applications. Advances in approaches to the integration of such data (e.g., 
automated registration) and algorithms for retrieving biophysical attributes of forests have also 
been ongoing and are anticipated to lead to their greater use within forest-related applications.  
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Abstract 
 
Canopy height distributions were created from small-footprint airborne laser scanner data with 
an average sampling density of 0.9 points m-2 collected over 100 georeferenced field sample 
plots and 57 stands. Height percentiles, mean and maximum height values, coefficients of 
variation of the heights, and canopy density at different height intervals above the ground were 
computed from the laser-derived canopy height distributions of the first return data. The plot 
positions were altered randomly by means of Monte Carlo techniques. The standard deviation 
(SD) of the differences for various metrics derived from the canopy height distributions between 
incorrect plot positions and ground-truth positions were compared. The SD increased with 
increasing plot position error.   
 
The effects of sample plot position error on the accuracy of mean tree height (hL), stand basal 
area (G), and stand volume (V) predicted at stand level using a two-stage procedure combining 
field training data and laser data were assessed. The standard deviation of the differences 
increased with increasing plot position errors. Except for hL the largest increase in median SD 
was found for mature forest on poor sites. The effects of plot position error seem to be more 
pronounced for G and V compared to hL. 
 
Keywords: Airborne laser scanner, GPS, position error, sample plot 
 
1. Introduction 
 
The aim of forest inventories at a property/compartment level is to provide data for forest 
planning and management, and they are often carried out according to an area-based approach, 
which implies that the individual forest stands are the basic units of the inventories. During the 
last 15-20 years, several experiments have been carried out in order to determine various 
biophysical strand properties, such as mean tree height, basal area, and timber volume based on 
airborne laser scanning (ALS) measurements (Means et al. 2000; Næsset 1997, 2002). The 
operational area-based forest stand inventory method adopted in Scandinavia utilizes mainly 
ALS data in a two-stage procedure proposed by Næsset and Bjerknes (2001) and Næsset (2002). 
In a first stage, georeferenced field training plots with corresponding ALS data are used to 
develop empirical relationships between various metrics derived from the laser data and 
biophysical properties measured in field. These relationships provide, in the second stage, 
corresponding predicted values of each stand from the laser data.  
 
Thus, accurate geographical co-registration of ALS data and field plots is essential for accurate 
predictions of biophysical stand properties. If the remotely sensed data and the field data are 
poorly co-registered, the basic laser-derived metrics will be subject to errors. If the basic 
laser-derived metrics are subjected to errors, it is likely that also the resulting stand predictions 
of the biophysical variables will be affected. However, since the biophysical properties are 
predicted from equations that are combinations of several laser variables, the effects of position 
errors can hardly be quantified by just assessing effects of one laser-derived metric at a time. 
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The Global Position System (GPS) technology is usually applied to obtain the geographical 
location of the field observations. GPS can provide timely and accurate spatial data under “clear 
sky” conditions. However, in forested landscapes, biological and topographic obstacles tend to 
degrade GPS position accuracy. Sophisticated GPS receivers are expensive to acquire and the 
logistics and data management in differential positioning is time-consuming in forest inventory 
applications, particularly in remote areas where it takes time to collect data and maintain base 
reference stations far from the field locations in the forest. In an operational context, there is a 
trade-off between costs and accuracy. One would often seek an accuracy that is “good enough” 
in order to save costs and simplify the work. In Norway, for example, the GPS accuracy for the 
National forest inventory (NFI) plots is expected to be within 10 m for 99% of the plots 
(Gjertsen 2007). 
 
Gobakken and Næsset (2008b) assessed the effects of positioning errors and sample plot size on 
biophysical stand properties derived from ALS. They found significant effects of plot position 
errors and the effects were larger for poor sites with more scattered trees compared to 
productive sites with denser canopies and more evenly distributed of the trees. However, the 
study was limited to only one test site. The present study was carried out to verify the main 
findings based on data from another forest area. Thus, the objectives of this study were to assess 
the effects of field plot position errors (1) on selected laser-derived metrics and (2) on three 
important biophysical stand properties of interest in forest inventories predicted from the ALS 
data, i.e., mean tree height, stand basal area, and timber volume. Nine different levels of field 
plot position errors were assessed. The position errors were analysed using Monte Carlo 
techniques. The accuracy of the predicted biophysical properties was evaluated using an 
independent validation dataset. 
 
2. Method 
 
2.1 Study area 
 
A forest area in the municipality of Krødsherad (60°10’N 9°35’E, 130-660 m a.s.l.), of about 
6500 ha was selected for this study. The main tree species in the area were Norway spruce 
(Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). Further details can be found in 
Næsset (2004). This study was based on two different field data sets, i.e., (1) sample plots and 
(2) forest stands. The sample plots were used to assess the effects of different laser point 
densities on laser-derived metrics and to develop regression models for the three biophysical 
properties of interest. The forest stands were used to assess how sample plot position error 
affected the stand predictions of the three biophysical properties.  
 
2.2 Sample plots 
 
In total, 100 sample plots were distributed systematically throughout the entire 6500 ha study 
area according to a regular grid. The plots were divided into three strata according to age class 
and site quality of the stands in which they were located. The area of the sample plots was 232.9 
m2. The measurements were carried out during the summer 2001 (Næsset, 2004b). On each plot, 
all trees with dbh >10 cm were callipered. The dbh was recorded in 2 cm classes. Basal area (G) 
was computed as the basal area per hectare of the callipered trees. The heights of sample trees 
were measured by a Vertex hypsometer. Mean height of each plot was computed as Lorey’s 
mean height (hL), i.e., mean height weighted by basal area. Volume of each tree was computed 
by means of volume equations of individual trees (Brantseg, 1967; Braastad, 1966; Vestjordet, 
1967) with height and diameter as predictor variables. Total plot volume (V) was computed as 
the sum of the individual tree volumes.  
 
Finally, to synchronize the hL, G, and V values to the date the laser data were acquired the 
individual plot values were prorated by means of growth equations (Blingsmo, 1984; Braastad, 
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1975; Braastad, 1980; Delbeck, 1965). The prorated values were used as ground-truth. A 
summary of the ground-truth sample plots data is displayed in Table 1. Differential Global 
Positioning System (GPS) and Global Navigation Satellite System (GLONASS) were used to 
determine the position of the centre of each sample plot. 
 
2.3 Stand inventory 
 
In total, 57 large test plots distributed on the three pre-defined strata located in subjectively 
selected stands were selected. Ground reference data for the test plots were collected during 
summer 2001 following similar measurement and computational procedures as for the sample 
plots, see above. Each plot was a quadrate or had a shape close to a quadrate, and the size 
ranged from 2869 to 4219 m2. The large test plots are hereafter denoted as stands. A summary of 
the ground-truth stand data is displayed in Table 1. 
 

Table1: Summary of field inventory of sample plots and stands a. 
 
  Small plots (233 m2)   Stands 
Characteristic Range Mean  Range Mean 
Young forest – stratum I    (n=30)     (n=19) 
hL (m)      8.1 - 19.5 13.4  10.5 - 19.7 15.4 
G (m2ha-1)                        6.4 - 62.4 25.0  12.0 - 41.9 27.3 
V (m3ha-1)                       26.8 - 617.6 182.4  64.0 - 329.6 212.5 
           
Mature forest, poor site quality – stratum II (n=37)     (n=19) 
hL (m)      9.9 - 25.4 15.5  12.2 - 20.1 15.6 
G (m2ha-1)                        5.6 - 42.7 22.6  12.0 - 31.5 21.1 
V (m3ha-1)                       29.6 - 446.3 173.7  83.0 - 292.7 162.3 
           
Mature forest, good site quality – stratum III (n=33)     (n=19) 
hL (m)      15.0 - 26.0 21.0  15.7 - 24.4 20.3 
G (m2ha-1)                        15.5 - 57.0 34.2  21.9 - 37.7 29.8 
V (m3ha-1)                       116.8 - 674.8 338.0  186.0 - 378.9 286.6 
a hL=Lorey's mean height, G=basal area, V=volume. 

 
2.4 Laser scanner data 
 
A fixed-wing aircraft carried the ALTM 1210 laser scanning system (Optech, Canada). The laser 
scanner data were acquired in the period between 23 July and 1 August 2001 (cf. Næsset 2004). 
The average sampling density was 0.9 m-2. A complete post-processing of the laser data was 
undertaken by the contractor (Blom Geomatics, Norway). A triangulated irregular network 
(TIN) was generated from the planimetric coordinates and corresponding height values of the 
individual terrain ground points. All the return observations (points) were spatially registered to 
the DTM according to their coordinates. Terrain surface height values were computed for each 
point by linear interpolation from the DTM. The relative height of each point was computed as 
the difference between the height of the return and the interpolated terrain surface height. Only 
the first returns were used for further analysis. The first return data were spatially registered to 
the field plots and stands. 
 
2.5 Simulation of plot position error 
 
To investigate the effects of position errors on metrics derived from the laser data for each field 
plot, the position errors were simulated. This was done by introducing a horizontal shift in the 
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field plot coordinates from the ground-truth positions prior to extracting laser points inside the 
plots. Horizontal shifts from true positions of 0.5, 1, 2, 3, 4, 5, 10, 15, and 20 m, respectively, 
were used. For each of these nine fixed levels of position errors, the error-contaminated 
positions were computed 500 times in a Monte Carlo simulation by using a randomly selected 
angle. 500 repetitions were used so that we could control the random effects in the simulations. 
 
2.6 Computations of laser metrics 
 
For each sample plot and stand inventoried in field, height distributions were created for those 
laser points that were considered to belong to the tree canopy, i.e., points with a height value of 
>2 m. Canopy height percentiles at 10% (h10), 50% (h50), and 90% (h90) were computed. In 
addition, also the maximum (hmax) and mean values (hmean), and the coefficient of variation (hcv) 
of the canopy height distributions were computed. Furthermore, several measures of canopy 
density were derived. Canopy density was computed as cumulative densities of 10 different 
vertical layers of equal height (Næsset 2004). The height of each layer was defined as one tenth 
of the distance between the 95% percentile and the lowest canopy height (>2 m) (Gobakken and 
Næsset 2008a). The cumulative canopy densities were then computed as the proportions of laser 
echoes above layer # 0 (>2 m), 1, . . ., 9 to total number of echoes. The cumulative densities for 
layer # 1 (d1), # 5 (d5), and # 9 (d9) were selected for further studies.  
 
To assess how sample plot position error influenced on the stability of laser-derived metrics, 
differences between corresponding metrics derived for the plots with error-contaminated 
positions and in true positions were computed for each sample plot. The standard deviations of 
the differences were then calculated for each of the 500 repetitions in the Monte Carlo 
simulation. Separate comparisons were carried out for the three strata. Further explorative data 
analysis of the Monte Carlo repetitions was performed using graphical methods, i.e., 
box-and-whisker plots (R Development Core Team 2006; Tukey 1977). 
 
2.7 Predictions of biophysical stand properties 
 
To assess the accuracy of laser-based predictions of mean tree height, basal area, and volume 
based on different field plot position errors, we followed the two-step procedure proposed by 
Næsset & Bjerknes (2001) and Næsset (2002) (1) by relating the three biophysical properties of 
interest to the laser data of the sample plots using regression analysis, and (2) by applying the 
estimated regression models to predict corresponding values of the test stands. As an additional 
step, (3) the differences between predicted values of the biophysical stand properties and 
ground-truth values were computed. The standard deviations of the differences were also 
calculated. The predicted values were restricted to predefined reasonable maximum values for 
the forest area in question. 
 
As a preparation for the simulations, we wanted to determine a fixed set of explanatory 
variables to avoid effects of altering the variables in the regression models. Thus, variables to be 
included in the models were determined using the ground-truth field plot positions. The 
estimation of regression models was based on the height and density-related metrics derived 
from the first return height distributions as candidate explanatory variables. In the regression 
analysis, multiplicative models were estimated as linear regressions in the logarithmic variables.  
 
The effects of field plot position error on the estimation and prediction of biophysical stand 
properties were assessed by means of Monte Carlo techniques as described above. The entire 
sequence in steps (1)–(3) above was repeated 500 times for each of the nine plot position errors. 
Thus, 500 × 9 estimates of the mean differences between predicted biophysical stand properties 
and ground-truth values and corresponding estimates of the standard deviations of the 
differences were derived. As a reference, the mean differences and the SD values when using 
ground-truth plot positions were calculated for the respective strata. 
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3. Result 
 
3.1 Effects of plot position error on the stability of laser-derived metrics 
 
Figure 1 shows the standard deviation (SD) of the differences between corresponding 
laser-derived metrics computed for the plots in error-contaminated positions and in true 
positions for different forest types (strata I-III) over the 500 repetitions of erroneous positions 
using the Monte Carlo procedure. The standard deviation of the differences for the height 
percentiles (h10, h50, and h90), the three height-related metrics maximum laser canopy height 
(hmax), arithmetic mean laser canopy height (hmean), and coefficient of variation of laser canopy 
heights (hcv), and for the density-related metrics (d1, d5, and d9) increased with increasing plot 
position error. The amount of extreme observations increased with increasing plot position error.   
 
3.2 Effects of plot position errors on predicted biophysical stand properties  
 
The effects of using regression models estimated from plots with error-contaminated positions 
were assessed by using the estimated regressions and the two-step procedure to compute stand 
mean values of the three biophysical properties in 57 forest stands. As a reference, differences 
were computed assuming true plot positions. Using ground true plot positions the mean 
differences for hL, G, and V were -1.4, 9.7, and 9.5% for stratum I, -1.9, 3.4, and 4.3% for 
stratum II, and -1.3, 8.8, and 6.9% for stratum III, respectively. The box plots illustrating the 
results of the simulations with error-contaminated plot locations show that the variation in mean 
difference between the 500 Monte Carlo repetitions in general increased with increasing plot 
location errors even if the median mean difference decreased for some of the comparisons (Fig. 
2, Left). 
 
Using ground-truth plot positions, the standard deviations (SD) of the differences for hL were 
6.6, 3.5, and 3.2% for strata I, II, and III, respectively (Fig. 2, Right). The SDs were 14.5, 9.3, 
and 12.4% for G and 19.1, 10.2, and 12.7% for V for strata I, II, and III, respectively, using 
ground-truth plot positions. The standard deviation of the differences increased with increasing 
plot position errors. Except for hL, the largest increase in median SD was found for mature 
forest on poor sites (stratum II). The effects of plot position error seem to be larger for G and V 
compared to hL.  
 
4. Discussion 
 
The results in this study are in line with Gobakken and Næsset (2008b). The main findings in 
the present study were that on poor sites where there normally are few stems it is important to 
have accurate plot positions to obtain accurate estimates of V and G. Improved GPS positioning 
by e.g. longer time periods of GPS data collection might be considered for more variable forests 
in order to reduce positional errors. However, there will often be fewer biological obstacles 
providing good conditions for GPS data collection in open forests and normally relatively 
precise GPS positions would be expected in such forests compared to dense forests.  
 
Furthermore, cost-plus-loss analyses (cf. Eid et al. 2004) where the total costs of the inventory 
as well as the expected economic losses as a result of future incorrect decisions due to errors in 
measurements are considered, should be applied to evaluate the effects of plot position error. 
Cost-plus-loss comparisons between inventories with different positional accuracies might find 
that the requirements for positional accuracy is lower in variable and open forests compared to 
fully stocked and more even forests. 
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Figure 1: Standard deviation of the differences between laser-derived metrics (see text) of plots with 

error-contaminated positions generated with Monte Carlo simulation (500 repetitions) and true positions 
for different forest types (young forest=stratum I; mature forest with poor site quality= stratum II; mature 

forest with good site quality=stratum III)1

                                                  
1 The box-and-whisker plots show first and third quartile as the box (“hinges”), the median as the 
horizontal line dividing the box and extreme values as points. 
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Figure 2: Mean difference (left) and standard deviation of the differences (right) between predicted and 
observed values of Lorey’s mean height (hL) (top), basal area (G) (middle), and volume (V) (bottom) in 
forest stands of different types (young forest=stratum I; mature forest with poor site quality= stratum II; 
mature forest with good site quality=stratum III) based on prediction models estimated with sample plots 
assuming different levels of position errors of the plot locations. Statistics for each level of position error 
is computed from the outcome of the 500 Monte Carlo repetitions1. As a reference, the horizontal lines 

indicate the results when using ground-truth plot positions for stratum I, II, and III, respectively 
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The field-measured ground-truth plot positions were treated as if they were free from errors in 
this study. In fact, the computed ground-truth plot coordinates had an expected average accuracy 
of approximately 0.2 m (Næsset 2004), however, this miss-location should only have a marginal 
influence of the major findings. 
 
Gobakken and Næsset (2008b) also found that larger plot sizes to a certain extent can 
compensate for sample plot position errors. Consequently more research is needed to find the 
optimal combination of field plot size and requirements for plot position accuracy. 
 
To conclude, the results have shown that the accuracy of positions of the sample plots are an 
important factor affecting precision of forest inventory based on ALS data. 
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Abstract 
 
The two main approaches in ALS based prediction of growing stock characteristics of forests 
have been individual tree detection (ITD) and canopy height distribution based modelling 
(CHD). There are numerous studies, in which either of these approaches have been used with a 
particular test area and dataset. However, the results obtained are not directly comparable 
between different datasets and areas. In this paper we present a comparison of ITD and CHD 
using the same validation dataset. The validation data consisted of 41 sample plots, located in a 
boreal managed forest. ITD and CHD produced equally accurate estimates with respect to stem 
volume and Lorey’s height. The RMSE was about 22% for volume and about 8% for Lorey’s 
height. The residuals were also similar with both methods. Stem number estimates were less 
accurate with both approaches; particularly ITD had a large RMSE and bias in the form of 
underestimation. This study indicated that, when considering total stem volume, both ITD and 
CHD are potential inventory approaches in managed boreal forests. CHD has a cost benefit in 
the acquisition of ALS data but, on the other hand, it requires more field work in the collection 
of modelling data. 
 
Keywords: individual tree detection, canopy height distribution 
 
1. Introduction  
 
The two main approaches for predicting growing stock characteristics of forests using ALS data 
are the canopy height distribution approach (CHD), usually used with low-resolution data (e.g. 
Næsset 2002; Lim et al. 2003; van Aardt et al. 2006; Maltamo et al. 2006), and the individual 
tree detection approach (ITD), used with high-resolution data (e.g. Hyyppä and Inkinen 1999; 
Persson et al. 2002; Popescu et al. 2003; Peuhkurinen et al. 2007). Low resolution means in this 
context that the pulse density at ground level is about one per square metre and high resolution 
means about 5-10 pulses per square metre. Most studies have concentrated on predicting 
characteristics of forest stands or trees as a whole, but characteristics by tree species have also 
been considered using both approaches (e.g. Holmgren and Persson 2004; Packalén and 
Maltamo 2007; Holmgren et al. 2008). 
 
The major difference between the laser canopy height distribution and the individual tree based 
approach is that the latter relies on the detection of individual trees and allometric relationships 
at tree level, whereas the former uses height hits directly at the plot, microstand or stand level to 
estimate growing stock characteristics. A common method in individual tree delineation is to 
detect trees from an interpolated canopy height model by locating local maxima of the height 
values. After that trees are segmented around local maxima by some region growing algorithm, 
for instance. In the canopy height distribution approach regression modelling is the most often 
used estimation technique, although other techniques, such as non-parametric estimation, have 
also been utilized. Most actual forestry applications have so far been based on the canopy height 
distribution approach. 
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There are numerous studies regarding either of the two approaches in which the accuracy of 
some inventory attributes have been reported using a particular test area and dataset. This 
naturally raises the question which approach produces more accurate estimates for forest 
characteristics. However, obtained accuracies are not directly comparable between different 
datasets and areas. In this paper we present a comparison of ITD and CHD using the same 
validation dataset. Estimates are compared at the plot level and emphasis is given to the 
objectivity of the comparison. The aim is to compare the accuracy of ITD and CHD and to 
examine similarities and differences of the estimates.   
 
2. Method 
 
2.1 Study area and field data 
 
The area concerned is a typical boreal managed forest area in eastern Finland, and hence it is 
dominated by coniferous tree species. A network of 472 circular sample plots with a radius of 9 
metres was measured during the summer in 2004. Sample plots were distributed over 67 forest 
stands. Differential GPS was used to determine the position of the centre of each plot to an 
accuracy of approximately 1 m. The diameter at breast height (dbh), tree and storey class, and 
tree species were measured for each tree with a dbh greater than 5 cm. Height was measured for 
one sample tree of each species and storey class by plots. This data was required for calibration 
of the tree species-specific height models of Veltheim (1987), which were used to calculate the 
heights of the rest of the trees. The volumes of individual trees were calculated as a function of 
dbh and tree height using the models of Laasasenaho (1982) and summed at the plot level. 
Lorey's mean height was calculated for each plot by multiplying the tree height by its basal area 
and then dividing the sum of this calculation by the total basal area of a plot. 
 
A subset of 41 of the sample plots described above were selected to be used as test data in this 
study (Table 1). These sample plots were the ones located in the area from which both high and 
low resolution ALS data were available and the dominant tree species in the selected plots was 
either Scots pine (Pinus Sylvestris L.) or Norway spruce (Picea abies (L.) Karst.). Another 
subset of 56 sample plots was used as modelling data in CHD (Table 1). First all the stands 
which contained test plots were excluded and then one sample plot was chosen randomly from 
each stand left to be included in the modelling data. Thus, the test data was not used in 
modelling. 
 
Table 1: Main characteristics of the growing stock in the sample plots of the test and modelling datasets. 

 
 n min max mean std 

CHD Modelling data 56  
  Volume, m3ha-1  51.4 447.1 204.1 101.6 
  Lorey’s height, m  7.8 25.4 15.9 4.4 
  Stem number, ha-1  550 3105 1529.8 101.6 
Test data 41  
  Volume, m3ha-1  56.1 502.8 209.9 115.0 
  Lorey’s height, m  8.8 27.0 16.6 4.3 
  Stem number, ha-1  511 2790 1410.9 533.6 

 
For ITD, a total of 32 height calibration trees were measured in the winter in 2008 to calibrate 
laser based tree heights to field measured ones. The dbh, height and tree species of 16 Scots 
pine and 16 Norway spruce within the high resolution ALS data area but outside the sample 
plots were registered. To predict tree height in 2004 from laser tree height, linear regression was 
used to get separate height calibration models for the two tree species. However, in order to get 
heights of trees in 2004, height increment of three growing seasons had to be first removed. 
Height increment was also modelled with regression by tree species. The modelling data were 
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obtained from the sample trees of 10th National Forest Inventory (Korhonen et al. 2007), 
measured in 2004-2006, that were within 50 km from the centre of the test area and that had a 
measurement for height increment of five years. Three fifths of the predicted five year height 
increment were then removed from the field measured tree heights to obtain tree heights in 
2004. 
 
2.2 ALS data 
 
Two ALS data sets were used: high resolution data was used in ITD and low resolution data in 
CHD. The ALS data were collected on August 4th, 2004, using an Optech ALTM 2033 laser 
scanning system. Low resolution dataset covers all the sample plots in the area and its point 
density is about 0.7 measurements per square metre. Low resolution data was captured at an 
altitude of 1500 m above ground level (a.g.l.). Four overlapping flight lines were also captured 
at an altitude of 380 m a.g.l. These four flight lines together with the low resolution data from 
the same area comprise a high resolution dataset which covers the region of the 41 sample plots 
used as test data. The point density in high resolution data is about 7 measurements per square 
metre. The field of view of the laser scanner was 30 degrees in both altitudes. 
 
The low resolution dataset was used to generate a digital terrain model (DTM) to a pixel size of 
one meter using the method explained in Axelsson (2000). The high resolution dataset was used 
to generate a canopy height model (CHM) for ITD. First the DTM height was subtracted from 
the orthometric laser scanning heights and this point dataset was rasterized to a CHM of 40 cm 
pixel size by taking the maximum point height value within a 28 cm radius from each centre of 
a pixel. To get a final CHM, the number of missing pixels and low, differing pixels was reduced 
with a median filtering in local windows of 3 by 3 pixels. First, each missing pixel that had at 
least n height values (parameter) within its eight-neighbours was replaced with the median of 
the height values. This was run three times with parameter n having the values 5, 3 and 3. After 
this, the remaining missing pixels were set to 0. Further, a pixel was considered to be a low, 
differing pixel, if at least seven of the eight-neighbours were more than five meters higher than 
the pixel itself. These pixels were replaced with the median of the neighbours that were more 
than five meters higher. 
 
2.3 Individual Tree Detection 
 
Laser based tree candidates were located and delineated in the CHM using watershed 
segmentation. Segmentation was done to remove some small tree crown segments, typically 
belonging to very small trees or caused by missing pixels at the tree crown boundaries. Other 
than that the method was similar to local maxima finding. Before segmentation, a CHM was 
low-pass filtered with height based selection of degree of filtering (Pitkänen et al. 2004). Three 
Gaussian filters were used so that the filter size increased along with the height of the pixel 
being filtered. The smallest and largest σ values were selected by verifying visually that the 
number of local maxima was reasonable at both ends of the tree height range. The height ranges 
and corresponding σ values used were 0-12 m and σ 0.4, 12-24 m and σ 0.6 and over 24 m and 
σ 0.8. 
 
A negative image of the height filtered image was then created for the watershed segmentation 
that was used to separate tree crowns from each other. Watershed regions associated with the 
local minima in the negative image were identified using an algorithm which followed the 
drainage direction (Gauch 1999, see also Narendra and Goldberg 1980). To get boundaries 
between crowns and background, pixels lower than two meters in the height filtered image were 
masked out from the crown segments. Finally small segments, at most three pixels in size, were 
combined to one of the neighbour segments, be it a tree crown or background, based on the 
smallest average gradient on the common segment boundary. 
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Tree locations and heights were then obtained from the location of the pixel with the highest 
CHM value within each segment. These laser based heights were further calibrated to estimates 
of field measured tree height using height calibration models. Either the model of Scots pine or 
Norway spruce was used for all laser based trees within a plot, based on the dominant tree 
species of the plot, which was assumed to be known. A dbh was predicted for each laser based 
tree from the height estimate using the models by Kalliovirta and Tokola (2005); South boreal 
models for either Scots pine or Norway spruce were employed (see table 6, p. 236), again 
according to the dominant tree species of the plot. Within the plots, only trees with a dbh 
estimate greater than 5 cm were retained in stem number and other estimates. The volumes of 
individual trees were calculated from the dbh and tree height estimates using the same models 
(Laasasenaho 1982) as with the field data and summed at the plot level. Lorey's mean height 
was also calculated similarly as in the field data. 
 
2.4 Canopy Height Distribution modelling 
 
Orthometric laser scanning heights were transformed to above-ground heights by subtracting the 
DTM at the corresponding point. The ALS hits were then classified as ground and canopy hits, 
assuming that points with a canopy height value of less than 2 metres represented ground hits 
and the remaining points could be considered canopy hits. The first and last pulse height 
distributions were created from the canopy height hits and different height metrics were 
calculated for each sample plot. Percentiles for the canopy height were computed for 1, 5, 10, 20, 
… , 90, 95 and 100 % (h5,…, h100) (see Næsset 2002), and proportional canopy densities were 
calculated for each of these quantiles (p1,…, p100). Furthermore, the proportion of canopy hits vs. 
ground hits (veg) was computed for each plot. All these characteristics were calculated 
separately for first and last pulse data, henceforth denoted by the prefix f or l. 
 
Regression models were then constructed for the stand variables volume, Lorey's mean height 
and stem number, and ALS-based height characteristics were used as independent variables in 
these regression models. The candidate models, and all their different transformations, were 
compared to find as linear as possible a relationship between dependent and independent 
variables by using stepwise regression. The forms of the final models were then chosen on the 
basis of model accuracy. As it was assumed that the dominant tree species of the plots were 
known, the information about the dominant tree species was tested as a dummy variable while 
constructing regression equations. 
 
2.5 Estimated stand characteristics and accuracy assessment 
 
Accuracy assessment was performed with the test data (41 sample plots) that was not used in 
model creation either in the CHD or ITD. High resolution ALS data was used in ITD and low 
resolution ALS data in CHD. The stand characteristics mean volume, stem number and Lorey's 
mean height were estimated for the test plots. The results were validated in terms of relative 
RMSE and bias at the plot level:  
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where n is the number of plots, iy  is the observed value for plot i, iŷ  is the predicted value 
for plot i and meany  is the observed mean of the variable in question. 
 
3. Results  
 
The variables used in the CHD models were ln(f_h1), f_h70, ln(l_veg) and l_p1 for square root of 
volume, f_veg and l_h20 for square root of stem number and f_h10 and ln(l_h70) for logarithmic 
mean height. Bias correction factors were also added to the model predictions. The dummy 
variable indicating the dominant tree species was not statistically significant in any of the 
constructed models.   
 
The accuracies of volume, Lorey's mean height and stem number estimates at the plot level are 
presented in Table 2. ITD and CHD produced almost equally accurate estimates regarding stem 
volume and Lorey’s height. The RMSEs for volume were 21.73% and 21.78% for CHD and 
ITD, respectively, and the corresponding figures for Lorey’s height were 8.33% and 8.35%. The 
CHD slightly overestimated both volume and height, whereas the ITD slightly overestimated 
height and underestimated volume. However, bias was minor in both approaches for these two 
variables.  
 
Stem number estimates were less accurate than the estimates of volume and height, as was 
expected. The CHD method was able to estimate stem number considerably more accurately 
than what was achieved with the ITD. The RMSEs of stem number were 27.29% for CHD and 
49.12% for ITD. The ITD underestimated the stem number clearly, whereas the bias of the CHD 
was negligible. However, both methods had a trend in residuals: from sparse to dense plots, the 
ITD estimates changed from slight underestimates to clear underestimates whereas the CHD 
estimates changed from overestimates to underestimates. 
 

Table 2: Accuracy of the estimated stand characteristics at the plot level for ITD and CHD. 
 

  Volume Lorey’s height Stem number 

ITD 21.78 8.35 49.12 
RMSE-% 

CHD 21.73 8.33 27.29 

ITD 3.00 -2.75 36.55 
BIAS-% 

CHD -3.96 -0.25 3.60 

 
The study design enabled the comparison of residuals between the ITD and CHD because stand 
characteristics were estimated for the same plots. It was especially interesting to compare 
residuals as a function of stem number because ITD underestimated the stem number in most of 
the plots, the bias being 37%. Figure 1 depicts the relative error of volume as a function of stem 
number for the ITD and CHD. Stem volume was selected because it is often the most important 
outcome of a forest inventory. One could assume that the ITD was more biased in dense forests 
compared to the CHD. However, there is no observable trend of difference between the ITD and 
CHD in Figure 1. Thus, error in stem volume does not differ between the ITD and CHD as a 
function of stem number.  
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Figure 1: Relative error of volume at the plot level as a function of observed stem number for ITD and 
CHD. Vobs denotes observed and Vest estimated stem volume. 

 
4. Discussion 
 
ITD and CHD yielded almost equally accurate estimates for volume and Lorey's mean height. 
The bias was minor in these variables with both approaches, too. Regarding stem number, ITD 
was substantially less accurate than CHD and produced notable bias. The obtained accuracies 
are consistent with earlier studies carried out using CHD based methods in Finland (e.g. Havia 
2006, Maltamo et al. 2006). Comparison to earlier works in the case of ITD is difficult since 
most of the studies done in Finland are carried out on unmanaged seminatural study areas (e.g. 
Hyyppä and Inkinen 1999, Maltamo et al. 2004). The only exception is the work by 
Peuhkurinen et al. (2007), in which two mature stands of the current study material were used in 
pre-harvest inventory by means of ITD. It is also difficult to compare tree and plot level 
accuracies: in ITD studies, the accuracy assessment is often done at tree level. 
 
This case study indicated that considering volume and mean height both ITD and CHD are 
potential inventory approaches in managed boreal forest. The results of stem number estimation 
were not so good, especially with ITD. With this method, the estimates of different variables are 
based on the same laser detected trees. Thus, there is some contradiction in the result that stem 
numbers were clearly underestimated but volume estimates were accurate. It is obvious that 
large, dominant trees, forming most of the stem volume, are more often detected by ITD than 
small or suppressed trees. Most of the difference is probably explained by this; the same 
tendency was observed by Persson et al. (2002), for instance. Other possibilities are 
overestimation of tree heights or dbh of the trees. Data for laser tree height to field tree height 
calibration was collected three growing seasons after the ALS data, which reduces the accuracy 
of height calibration. It is also possible that the models used to predict dbh from tree height gave 
overestimates in this area. However, this is left to be studied in a further work. 
 
Another possibility than accuracy is to compare costs of the inventory methods. Of course the 
costs of the high pulse density data are higher than those of the low pulse density data. On the 
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other hand CHD methods require more field work. In our study only one field day was used to 
measure calibration data for ITD, whereas it will take about 1-2 weeks to measure about 50 
plots used in CHD. However, we used considerably lower number of modelling plots than in 
many earlier CHD studies (e.g. Næsset 2002, Maltamo et al. 2006) but the accuracy was still 
correspondent. It is possible that the amount of reference data could still be reduced in CHD; the 
more important thing is to find the optimal placement of the sample plots. A cost factor which is 
very difficult to take into account is the time spent in the analysis. Especially those processing 
steps, which cannot be completely automated, increase costs. From this point of view CHD is 
maybe slightly more straightforward. 
 
In Finland the prediction of species specific stand variables is of primary interest but here we 
only assumed that the main tree species of a stand is known. However, there exist also studies 
where Scandinavian tree species are taken into consideration. In the case of CHD based 
methods Packalén and Maltamo (2007) have shown that when ALS data and aerial photograph 
are combined tree species can also be successfully predicted. In the case of single tree detection 
there also exist some studies which have considered tree species information (e.g. Holmgren et 
al. 2008, Ørka et al. 2007, Vauhkonen 2007) but the calculation of tree volumes has not been 
taken into consideration. Diameter distributions are also of interest in many applications but 
they are not considered here. Thus, the deductions made in this paper do not take into account 
the ability of CHD or ITD to estimate species specific stand characteristics or diameter 
distributions. 
 
The implemented study design enabled the comparison of estimates between ITD and CHD, 
when typical data sets for both methods were used. In addition to accuracy comparison it is 
interesting to examine whether they produce similar kind of residual structures or not. This 
might reveal if one or the other approach is more accurate in some type of forests, in mature or 
dense stands, for instance. One comparison of this kind was shown in Figure 1. It was also 
noted that especially in those plots where forest characteristics were estimated most inaccurately 
there is a clear correlation of residuals between ITD and CHD. This is an interesting observation 
that needs to be studied further in future. 
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Abstract.  
 
Light Detection and Ranging (LiDAR) data at 0.5- 2m postings were used with double-sample, 
stratified inventory procedures involving single-tree attribute relationships in mixed, natural, 
and planted species stands to yield sampling errors (one half the confidence interval expressed 
as a percentage of the mean) ranging from ±2.1% to ±11.5% at α=0.05. LiDAR sample trees 
were selected with focal filter procedures and heights computed as the difference between 
interpolated canopy and DEM surfaces. Tree dbh and height data were obtained on 
LiDAR:ground samples ranging from a 5:1 ratio on 0.08 ha rectangular strips to a 10:1 ratio on 
0.02 ha circular plots established with a real-time Differential Global Positioning System. 
Dbh-height and ground-LiDAR height models were used to predict dbh from adjusted LiDAR 
height and compute Phase 2 ground and LiDAR estimates of basal area and volume. Phase 1 
LiDAR estimates were computed by randomly assigning heights to species classes using the 
probability distribution from ground plots in each inventory strata. Phase 2 LiDAR estimates 
were computed by randomly assigning heights to species-product groups using a Monte Carlo 
simulation for each ground plot. There was no statistical difference between double-sample, 
mean volume estimates from 0.5m and 1m LiDAR posting densities with and without height 
bias adjustment or on smoothed and unsmoothed LiDAR canopy surfaces. Volume estimates 
from single-phase LiDAR inventory procedures utilizing existing tree attribute and 
LiDAR-ground height bias relationships were obtained with sampling errors of 1.8% to 5.5% 
for full and minimized data sets to test minimum LiDAR inventory requirements. 
 
1. Introduction 
 
Light detection and ranging (LiDAR) is a relatively new remote sensing tool that has the 
potential for use in the acquisition of measurement data for inventories of standing timber.   
LiDAR systems have been used in a variety of forestry applications (Magnussen and Boudewyn 
1998, Lefsky et al. 1999, Means et al. 2000) for the quantification of biomass (Nelson et al. 
2003), basal area, and tree and stand height estimates. Stand level, LiDAR inventory procedures 
involving average values of tree attributes such as dominant height, mean diameter, basal area, 
and volume have been applied to obtain unbiased stand level predictions (Naesset 2002, Naesset 
2004, Popescu et al. 2002). Since LiDAR has the capability to detect individual trees and 
measure tree height with predictable bias when correlated with ground measurements (Persson 
et al. 2002, Holmgren 2004), strata-level inventory estimates involving individual tree, 
double-sample inventory procedure have been used by researchers from Mississippi State 
University in conifer and mixed hardwood stands in the Northwest and Southeast (Collins 2003, 
Parker and Evans 2004, Parker and Glass 2004, Parker and Mitchel 2005, Parker and Evans 
2006, Williams 2006).   The individual tree approach to stand inventory when combined with 
double-sample, ground procedures permits relatively precise estimates of volume with a simple 
prediction function for ground-LiDAR height bias and ground-based attribute relationship 
functions for tree diameter and total height which can be used with any standard, standing tree 
volume function. Stand level approaches involving average tree attribute values for sampling 
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units require more sophisticated prediction models than an individual tree approach and 
procedures that differ radically from traditional ground-based inventory methods.  The 
objective of this paper is to summarize and discuss the procedures, models, and 
advantages/disadvantages of the single-tree approach to using LiDAR data in double- and 
single-phase forest inventory methods.  
 
2. Methods 
 
2.1 Flight Planning for a LiDAR Inventory 
 
Small-footprint, multi-return LiDAR data have been acquired with various sensors to attain 
nominal posting spacings of 0.5 -2.0 m, 0.25- 4  point/m2, and footprint sizes of 0.122 - 0.330 
m for two returns per pulse (Table 1). Aircraft altitudes of 600-1,000 m and swath widths of 189 
- 609 m were used.  The minium required density of LiDAR hits is a function of the crown size, 
average height, and spatial density of the sample trees in the primary canopy. Acceptable 
sampling statistics were attained for sparse densities of large crown conifers in Idaho (± 11.5% 
sampling error at the 95% confidence level with a standard error of ± 5 m3, Parker and Evans 
2004) with 0.25 points/m2; however, 1 point/m2 was required to achieve acceptable inventory 
results in natural pine and mixed pine-hardwood stands (± 7.6% sampling error, Parker and 
Glass 2004 ) and 2 points/m2 in young (6+ years) pine plantations (± 2.2% sampling error, 
Parker and Evans 2006) in the Southeast.  Increasing LiDAR density from 2 to 4 points/m2 did 
not statistically improve the volume estimation precision and the increased “noise” in the 
high-density LiDAR data translated into additional sampling error about the volume estimate. 
 

Table 1. LiDAR specifications for sample single-tree inventory projects in conifers and mixed  
hardwoods in Idaho and Coastal Plain (CP) and Flatwoods (FW) areas of Louisiana (LA). 

_________________________________________________________________________            
LiDAR specification Example 1 Example 2 Example 3 Example 3 
   (Idaho)  (CP LA)  (FW LA) (CP LA) 

_________________________________________________________________________ 
Points per m2         0.25   1                  1.9  4 

Nominal spacing   2.0 m         1.0 m        0.7 m        0.5 m 
Footprint size             0.330 m     0.213 m    0.250 m    0.122 m 

Aircraft altitude             1,000 m     1,067 m    1,000 m        610 m 
Swath width              600+ m         609 m       243 m       189 m 
Tract size             2,023 ha                     485 ha 18,000 ha       485 ha 
Percent LiDAR Coverage 1.43%         100%         10%        100% 

__________________________________________________________________________ 
 
Target aircraft altitude is a function of the desired swath width and scan angle for the LiDAR 
pulse generator and sensor and the technical ability of the sensor to achieve the desired posting 
density. The swath width diminishes as the desired posting density increases, but reasonable 
swath widths can be achieved with 2-4 points/m2.  An important factor influencing desired 
swath width was the size of the ground-based sample plots used in the inventory procedure.  
The swath should be sufficiently wide to encompass the sample ground and LiDAR plots within 
the center one-third of the swath so as to minimize the “edge effects” of the LiDAR data. Tree 
attribute measurements are severely compromised at the extremes edges of the swath and scan 
angle.  
 
Percent LiDAR coverage is a function of economics and inventory design. LiDAR data is 
relatively expensive to obtain and complete area coverage is normally not required for most 
timber inventory designs. In some instances, the cost of complete LiDAR coverage to produce 
an accurate, up-to-data Digital Elevation Model (DEM) may be more justifiable than the 
expense for a timber inventory. The use of a current Geographical Information System (GIS) to 
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locate flight lines that cross the desired sampling strata can minimize the percent coverage of 
the LiDAR area. Most forested areas to be inventoried can be flown with ten percent or less 
LiDIR area coverage by orienting flight lines so as to cross the target inventory strata at desired 
flight line intervals. 
 
2.2 Field and LiDAR Plot Design and Procedures 

Inventory design for the single-tree LiDAR applications involved  the use of circular (Parker 
and Evans 2006, Parker and Glass 2004) or rectangular plots (Parker and Evans 2004) with all 
plots being Phase 1 LiDAR plots and every rth  plot as a Phase 2 ground plot. Field designs 
varied from a 9:1 ratio of LiDAR to ground circular plots in a nested arrangement to a 10:1 ratio 
with rectangular or circular plots along a flight line (Figure 1).  UTM coordinates were 
established at the center of each circular Phase 2 plot or at the endpoints of rectangular plots for 
navigation with a real-time Differential Global Positioning System (DGPS).  Differential 
corrections from either the U.S. Government WAAS or private enterprise OmniStar 
geo-stationery satellite were obtained satisfactorily under tree canopies by using a large dome 
antenna. Based on informal field tests on surveyed bench marks, field locations were obtained 
with approximately 1 m accuracies with both systems.  
 
2.3 LiDAR Surfacing for Tree Location and Height Determination 
 
The LiDAR data were processed to produce a ground surface or digital terrain model (DTM) 
and a tree surface for determination of sample tree locations and tree heights within the sample 
field and LiDAR plot areas. LiDAR data sets were surfaced to produce 1st return canopy and 
last return DTM with 0.2 m cell sizes using a linear interpolation technique. Tree locations and 
heights were determined with algorithms and focal filter procedures developed by McCombs et 
al. (2003) that used a variable search window radius based on relative density.  These 
procedures used moving 2.5, 4.0, or 5.5 ft radius search windows to identify each tree peak as 
the point that is higher than 85% of the surrounding maxima from one of the three search 
window, radius files. Tree height was interpreted as the difference between canopy and DTM 
z-values at each tree peak location. Tree heights were converted to point coverages and clipped 
to sample area boundaries using UTM coordinates to describe sample plot locations and sizes. 
 
A spatial filtering technique derived from image analysis called smoothing was used to reduce 
commission errors by minimizing the abrupt elevation changes in the initial canopy surface. The 
Focal Analysis option in ERDAS’ Imagine software performed smoothing based on user-defined 
inputs for window size and preferred statistical procedure. A 5-by-5 pixel window was used to 
create a 1 m2 filter that would avoid removal of small peaks in the canopy surface (small trees), 
while maximizing the smoothing function. The filter moved across the LiDAR canopy surface, 
pixel by pixel, averaged the values within the window, and placed the result in the center pixel.  
 
Smoothing heights on LiDAR surfaces improved the relationship between LiDAR and ground 
tree heights in terms of R2, reduced height biases for hardwoods, increased height biases for 
pines, and improved target recognition in terms of trees/ac estimates There were however no 
statistical differences (α =0.05) between double-sample regression volume estimates with 
smoothed versus unsmoothed LiDAR surfaces from low- or high- density LiDAR. Standard  
errors and sampling errors of the regression estimates were lower for all unsmoothed LiDAR  
data models than with smoothed data models.  Thus, smoothing heights on LiDAR surfaces 
did not produce a statistical gain for volume estimation using double-sample procedures. 
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Figure1. Sample designs for 0.02 ha plots with 9:1 and 10:1 ratios of LiDAR plots (Phase 1) to 
ground (Phase 2) circular plots in a nested arrangement and plots along a flight line. 

 
 
3. Results 
 
3.1 Double-Sample, Regression Estimator Procedures 
 
The double-sample model widely used with ground-based point sampling (Avery and Burkhart 
2002) and aerial photogrammetric inventories and adapted for these studies was: 
 
   )( 212 xXyY lr −+= β     (1) 
 
With traditional aerial photogrammetric inventories, the X1i and x2i  variables are photographic 
volume/unit area and ground volume/unit area from Phase 1 and Phase 2 plots, respectively, and 
β is the regression slope coefficient for yi (ground volume) over x2i (photo volume) on ground 
plots.  Thus, a Phase 1 (large sample) variable such as remotely sensed (i.e. photographic or 
LiDAR derived) volume has a strong, identifiable relationship with a Phase 2 (small sample) 
variable such as ground volume.  
 
In applications of the double-sample model with single-tree LiDAR data, Phase 2 sample tree 
measures of dbh and height were used to derive height-dbh and dbh-height equations of the 
model type: 
 
   Hgr = b0 +b1[ln(dbh)]b2[age]b3 + ε     (2) 
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   dbh = b0 + b1[ln(Hgr)]b2[age]b3  + ε            (3) 
 
where Hgr was ground measured height, dbh was ground measured dbh, and age was average 
stand age (years) from GIS data. The age variable in Models (2) and (3) was removed when age 
did not contribute significantly to the relationship.  Models (2) and (3) were derived from the 
ground-measured sample trees, but one is not a back transformation of the other.  Model (2) 
was applied to ground-plot trees where dbh was measured on all trees and heights on a 
sub-sample. Model (3) was applied to LiDAR derived tree heights to obtain a dbh for single-tree 
volume computation. 
 
Generally only 2 trees per ground plot were measured for height; dbh was measured on all trees. 
The height-dbh Model (2) was applied to trees on the ground plots for which height was not 
measured to obtain a height for single-tree volume computation.  Sample tree heights from the 
Phase 2 ground plots were used to predict ground height of target trees identified on LiDAR 
surfaces. The dbh-height Model (3) was applied to the bias-adjusted, single-tree LiDAR height 
from the ground-LiDAR height bias Model: 
 
  Hgr= b0 + b1(HLi) + ε              

 (4) 
 
where Hgr was measured ground height of trees on Phase 2 plots and HLi was interpolated height 
of the same trees from the LiDAR surface.  
 
Derived dbh on LiDAR plots and derived height on ground plots permitted the use of a standard, 
standing-tree volume equation with dbh and height as variables to predict volume. Thus, the 
double-sample models used in this study involved LiDAR mean estimates of  basal area (LiBA 
from Phase 1and liba from Phase 2 with matching ground plot) and volume (LiVOL from Phase 
1 and livol from Phase 2 with matching ground plot) for the x-variables as: 
 
  εβ +−+= )( libaLiBAyY lr     (5) 
 
  εβ +−+= )( livolLiVOLyY lr      (6) 
 
with variance: 
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where y bar was Phase 2 mean ground volume, β was the regression slope coefficient for yi 
(ground volume/unit area) over x2i (LiDAR volume/unit area or basal area/unit area on ground 
plot) and x1i was volume or basal area on the LiDAR plot.  Data were fitted to Models (5) and 
(6) for all data combined (i.e. non-stratified), each ages-class strata, and combined strata.  
Combined strata, linear regression estimates of volume and associated standard error of each 
double-sample model were obtained by:  
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where n1i and n2i were Phase 1 and 2 sample sizes respectively for stratum i, i=1 to X strata. 
 
All double-sample volume computations were performed with the Windows software program 
LIDARDS (LiDAR Double-Sample) developed by Parker (2005). The software allowed the 
user to specify dbh limits for species-product classes, regression coefficients for the dbh-height 
and ground height-LiDAR height models, stratum definitions of beginning and ending plot 
numbers and average age, and to enter comma delimited data files of Phase 1 LiDAR heights 
and Phase 2 ground-plot trees (species, product, dbh, and height of sample trees). LiDAR 
heights in the Phase 1 data were allocated in a Monte Carlo simulation to species-product 
classes on each matching Phase 2 ground plot on the basis of percent distribution by numbers on 
the ground plot. Since species and dbh of the LiDAR trees are unknown, the Monte Carlo 
simulation (50 iterations) would randomly allocate the LiDAR derived trees (dbh predicted 
from adjusted LiDAR-to-ground height) to species-product classes and obtain a mean basal area 
and volume estimate for the species-product class. Thus, basal area and volume estimates from 
Phase 1 LiDAR plots that had a matching Phase 2 ground plot became Phase 2 LiDAR plots.  
Phase 1 LiDAR heights that did not have a matching Phase 2 ground plot were randomly 
allocated to encountered species classes in each stratum in a single iteration and used to 
compute mean estimates of numbers of trees, basal area, and volume. Phase 2 tree measures of 
dbh and height were used to compute LiDAR estimates of mean basal area and volume by using 
field-derived dbh-height equations to predict dbh from LiDAR height and volume. Predicted 
dbh and height were used in a single-tree volume function to predict individual/single tree 
volume. Double-sample volume estimates and associated precision statistics were computed 
with Models (5) and (6) for each stratum and with Models (8) and (9) for combined strata.  
 
3.2 Single-Phase Inventory Procedures 

A recent study by Williams(2006) investigated the minimal data inputs for a LiDAR based 
timber inventory with single-phase procedures.  Since the ground phase of a double-sample 
field procedure is both expensive and time consuming, Williams investigated the feasibility of 
using LiDAR data in single-tree approach to obtaining volume estimates by stratum with a 
single-phase inventory procedure.   Previous studies have shown that LiDAR can provide 
precise, but biased estimates of tree numbers and heights.  If the assumptions are made that (1) 
the LiDAR height bias is known and relatively constant for a given species-origin class (i.e. 
pine plantations) and (2) previously established tree attribute relationships are also known, 
inventory estimates of volume can be obtained with a single-tree approach and single-phase 
procedures from LiDAR data only.  
 
The tree attribute relationship from Model (3) was developed from ground measurements of dbh 
and height within Continuous Forest Inventory (CFI) plots and from the Phase 2 ground plots in 
the double-sample approach by Parker and Evans (2006). Sample trees were randomly selected 
from the original data sets in groups of 75 and fitted to tree attribute Model (3) under the 
assumption that ground data were available from previous studies. The ground-LiDAR height 
bias equation obtained from Model (4) (Parker and Evans 2006) was assumed to be constant and 
known. LiDAR derived heights from Phase 1 plots were adjusted for bias with Model (4) then 
used with Model (3) to obtain single-tree dbh estimates for use with a single-tree volume 
function in a conventional, single-phase inventory processor. The stratum volume estimates and 
precision statistics were compared to estimates obtained from the Phase 2 ground plots by 
Parker and Evans (2006). 
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The single-tree, single-phase volume estimates from LiDAR data compared favorably with 
ground plot estimates (Table 2). At the tract level for 20 age class strata on 10,443 ha, there was 
no statistical difference between the single-phase LiDAR estimates and the ground plot estimate. 
Single-phase volume estimates were obtained for the full data set of Phase 1 LiDAR plots, the 
Phase 1 LiDAR plots that had a matching Phase 2 ground plot, and 5 iterations of reducing the 
LiDAR data set to a 5:1 ratio with ground plots within each stratum.  The Williams (2006) 
study found no statistical difference (α=0.05) between tract-level, single-phase volume 
estimates where the single-tree relationship model was developed with 1,539 sample trees from 
the Phase 2 ground plots by Parker and Evan (2006),  1,509 trees from the regional CFI plots, 
or 5 iterations of 75 randomly selected trees from the Phase 2 data set. The study concluded that 
precise single-phase LiDAR inventory estimates are feasible with minimal inputs of ground data 
for establishing tree attribute relationships.  A potential application of the single-tree, 
single-phase inventory procedure would be the rapid post-thinning inventory of pine plantations 
and periodic inventories of forested holdings. 

 
Table 2. Comparison of single-tree, single-phase, volume predictions from LiDAR data using 0.02 ha 

circular plots on 10, 443 ha of pine plantations with ground plot volume estimates where sampling error 
was half the (1-α) confidence interval expressed as a percentage of the mean. 

____________________________________________________________________________________
Data set description  No. of plots Sampling error%  Tract volume vs. control
 
Ground plots – Phase 2   842  2.8%  Control 
LiDAR plots – Phase 1             7,562  1.8%  Not statistically different
LiDAR plots – Phase 2   842  5.2%  Not statistically different
LiDAR plots – Phase 1         5:1 ratio  5.5%  Not statistically different 

Phase 1:2          in 3 of 5iterations 
____________________________________________________________________________________
 
 

 
4. Discussion about Single-Tree LiDAR Inventory Procedures 
 
LiDAR provides precise x, y, and z coordinate data that can be used to extract tree heights and 
locations; however, there are several sources of bias that can impact the accuracy of a per-unit 
area volume estimate. Height bias is primarily caused by the failure of the laser pulse to hit the 
terminal leader, but this bias can be predicted with acceptable success in confers but not in 
hardwoods with broad rounded crowns. Height bias can also be introduced by the interpolation 
of tree heights with mixed linear and nonlinear procedures within the same data set. Tree count 
bias has at least two sources of origin; trees in the mid and lower canopy layers are hidden from 
the laser pulse by a dominant canopy and tree maxima locations may not be interpreted 
correctly during the LiDAR surfacing and height extraction process.  
 
The precision of volume estimates with single-tree LiDAR procedures in a double-sample 
process is not affected by the height or tree count bias inherent in LiDAR data.  These biases 
are effectively adjusted during the double-sample inventory procedures.  The height bias can 
be adjusted prior to single-tree volume computations with LiDAR derived heights or afterwards 
during the double-sample volume adjustment process. Height bias correction prior to volume 
computation improves the accuracy of the resulting per-unit area volume estimate. The tree 
count bias caused by canopy coverage or LiDAR surfacing/processing is also effectively 
adjusted through the double-sample volume computations.  Tree count bias however has a 
major impact on the accuracy of volume estimates in a single-tree procedure computed with 
single-phase inventory methods. Thus, if there is any doubt about the validity of the tree counts 
or height bias during LiDAR processing, a double-sample volume computation process should 
be used. 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 37

 
Ground sample tree measurements are needed to establish the ground-LiDAR height bias and 
the relationship between standing tree height and dbh. The number of sample trees is dependent 
upon the number of parameters in the regression models and variation in the data. A reasonable 
rule of thumb is 25 samples per parameter estimated in a regression model. Since the LiDAR 
height bias is relatively constant for a species in a local area and the dbh-height relationship for 
a give set of species-site conditions is also relatively stable, the sample trees can be obtained 
from either the LiDAR inventory or surrounding forested areas. 
 
Establishing the LiDAR to ground tree height bias requires the matching of trees on the ground 
and on the LiDAR surface. Past experience has shown that the location of a plot center must be 
done with a real time, DGPS and the distance and direction to the sample trees from the plot 
center should be obtained with a laser so that the x, y coordinates of the sample trees can be 
located on the LiDAR surface.  
 
Sample plot size and shape on the ground and on the LiDAR surface should be a function of 
tree density on the ground and the LiDAR processing procedures employed. Experience has 
shown that the ground plot size should be adjusted such that a minimum of 6 and a maximum of 
approximately 15 trees should be selected. The minimum number is associated with the with- 
and between-plot variation and the maximum is a logistical consideration for minimizing 
omission/commission errors in tallying trees.  Rectangular plots are easier to handle during the 
LiDAR processing, but more difficult to establish in the field and to use in establishing distance 
and direction to sample trees from a DGPS location.  The cost of a LiDAR inventory can be 
minimized by flying only a portion of the desired inventory area. As long as the LiDAR swaths 
cover the desired strata , ground plots could be located randomly or systematically within strata 
within swaths. DGPS permits the location of sample plots and trees with relative ease and 
precision. 
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Abstract 
 
Site Quality (site productivity) information underpins many aspects of radiata pine plantation 
management in South Australia. The criterion of Site Quality is volume production at age 10 and 
is directly assessed by means of plot based and ocular assessments. Trials examining the use of 
LiDAR for Site Quality assessment were commenced in 2002. LiDAR data was captured using 
three different LiDAR systems in 2002, 2006, 2007 and 169 field plots were measured across 9 
sites. A study was carried out to investigate the effect of LiDAR data capture parameters 
Campaign and Site on the regression relationships between forest and LiDAR variables. The 
study found that the factor Campaign had a significant effect on volume prediction models while 
a possible Site effect was detected for one Site. Predominant height prediction models were 
unaffected. Introducing Campaign and Site parameters in volume prediction models reduced 
Root Mean Square Error by up to 25.5%. Predominant height and volume prediction models 
explained 95.3% and 95.2% of the variance respectively. Campaign effects were not due to 
scanning angle, flying altitude or point density effects but appear to reflect differences in LiDAR 
systems and drought effects. Calibration protocols and modelling strategies are therefore needed 
for general application.     
 
Key words: site productivity, LiDAR, modelling, stand volume, radiata pine    

1. Introduction 
 
Site Quality (site productivity) information underpins many aspects of radiata pine plantation 
management in South Australia. The productivity criterion used is total volume production to 
small end diameter underbark 10 cm, at or near age 10 y (Lewis et al., 1976). The Site Quality 
assessment method, in use since 1949, relies on objective (plot based) and subjective (ocular) 
assessments before any commercial thinning takes place. It results in a map showing seven Site 
Quality classes at a resolution of 0.1 ha (Figure 5).  
 
The literature describes many examples of LiDAR estimation of stand volume (Maclean and 
Krabill, 1986; Nelson et al., 1988 and many others). Recognising that Site Quality assessment is a 
problem of assessing spatial variation in stand volume, studies were commenced in 2002 to test 
the feasibility of LiDAR based Site Quality assessment. The methodological framework adopted 
was the area based or height distribution method (Næsset, 2002). At the core of this method is the 
development of regression relationships between forest and LiDAR variables at the plot level.  
 
Field data collection for calibration of prediction models constitutes a necessary and costly step in 
the method. The site and forest-type dependency of forest-LiDAR relationships has been the subject 
of several studies (Næsset et al., 2005; Lefsky et al., 2005; and others). These studies found that 
many forest–LiDAR relationships held across a broad range of sites and forest types when identical 
LiDAR instruments and comparable data collection parameters were applied. Changes in LiDAR 
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systems and flight parameters may change the relationships between forest and LiDAR variables 
(Holmgren et al., 2003, Lovell et al., 2005; Chasmer et al., 2006 and others). 
 
The data for this study were collected in 2002, 2006 and 2007. Each trial contributed new sites 
and soil types. Each trial made use of a different LiDAR system. The objective of this study was 
to detect, describe and incorporate any “Site” and “Campaign” effects in the regression 
relationships between forest and LiDAR variables. The structurally homogenous, even aged, 
plantations of radiata pine comprising the study sites were particularly suited to the pursuit of this 
objective. As used in this text “Site” refers to the complex of soil, genetics, climate, silviculture 
and “Campaign” to the complex of LiDAR system and data capture parameters including 
seasonal effects.  

2. Data and materials 

2.1 Study sites 
 
Figure 1 shows the location and rainfall at the nine study sites in the South East of South 
Australia. Because preferred assessment age would be between 8 and 10 plantations were selected 
in age range 7-11 (see Table 1). Sites were also selected so as to represent the main soil groups. In 
total 1756.2 ha of plantations were included in the study. All plantations were unthinned at time of 
data capture except for 100 metre wide Fuel Management Zones (FMZ) at the edges of some 
compartments in sites SP, MH, HO and DR. 
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Figure 1: Study sites established in 2002, 2006 and 2007 in the South East of South Australia 

 

2.2 Calibration plots 
 
A total of 169 rectangular (20x25m) calibration plots were measured in 2002, 2006 and 2007. Plot 
locations were purposively selected so as to sample the full range of the Site Qualities and soil 
groups found on site. The grouping of soils followed Leech (1978) who identified 7 soil groups, 
each producing different growth patterns (Table 1 list soil groups in order of importance). At Site 
DR seven plots were located in the thinned FMZ. Plot corners were located by surveying along 
compartment boundaries and tree rows using measurement tape. Plantation boundaries had been 
surveyed by theodolite or differential GPS, with sub metre precision.  
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Table 1: Site specifics and measurement dates 
 

Site SP DR AE MH BR RC HL HO GH 

Area (ha) 210.9 377.4 51.5 239.0 83.6 170.6 151.4 250.5 221.3 

Soil Groups(*) C, B C, E, B C, E B D, E E, C C, E C, D, E C, E 

Measured 04/2002 04/2006 05/2006 05/2006 08/2007 07/2007 08/2007 05/2007 07/2007

Plantation age 10 9, 10 10 7, 9, 11 10 10 10 9,10 9 

* B: Caroline sand; C: Other sand; D: Tantanoola flinty sand; E: Loamy sand and Terra Rossa 
 
 
Table 2 shows that the number of plots measured per Site was poorly balanced with no replication 
of Sites across Campaigns.  
 
 

Table 2: Number of plots measured by Campaign and Site  
 

Campaign     Site      

 SP DR AE MH BR RC HL HO GH Total 

2002 28 0 0 0 0 0 0 0 0 28 

2006 0 47 7 25 0 0 0 0 0 79 

2007 0 0 0 0 9 13 8 17 15 62 

 
 
Diameter at breast height and predominant height (PDH) were measured in the plots. In South 
Australia PDH is defined as average height of the 75 tallest trees per ha, restricted so that trees are 
evenly spaced in each quadrant of the plot. PDH was estimated as the average height of the 4 trees 
with largest diameter in each plot quadrant, increased by a constant of 0.45m to convert from 
largest to tallest (based on unpublished analysis).  
 
Stand volume was predicted using a model fitted to stand volume data collected from Permanent 
Sample Plots (PSP) across the State. Some 372 measurements in stands aged 4-20 years old were 
used to calibrate a form-factor model predicting under-bark volume to small-end diameter 10cm 
underbark (V10) with basal area, stocking, PDH and age as predictor variables.  Figure 2 shows 
the range of PDH and V10 by Site. 
 

2.3 LiDAR data and pre-processing 
 
A different LiDAR system was used in each of the campaigns, as summarised in Table 3. 
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Table 3: LiDAR system details and flight parameters of three campaigns 
 

 2002 2006 2007 

System Optech ALTM 3025 Leica ALS 50 Optech ALTM 3100 

Date 7th July 2002 9th April 2006 20th July 2007 

Flying altitude (m) 1,100 1,040 1,100 

Pulse repetition rate (Hz) 25,000 73,200 33,000 

Max scanning angle (dgrs) 15.0 13.5 12.5 

Pulse density ( m-2) 0.5-2.1 1.2-9.5 2.3-3.2 

Returns per pulse First and last echo Up to four echoes  Up to four echoes  

 
Data were captured at comparable flying heights and scanning angles. Point densities varied due 
to pulse repetition rates, number of fly-overs by the aircraft, scanner properties and data 
processing by the supplier. During Campaign 2006 higher point densities of up to 9.5 m-2 were 
recorded in narrow bands at the edges of flight strips, due to overlapping of strips as well as 
scanning mirror deceleration effects. Several calibration plots were located in those bands.  
 
LiDAR returns were classified as ground or non-ground points by the supplier. The ground points 
provided the basis for the construction of a Digital Terrain Model (DTM) using an ESRI ArcGIS 
implementation of Delaunay triangulation. The height of LiDAR points above ground level was 
calculated as the difference between a point’s z value and the z value of its projection on the 
DTM. 

3. Methods 
 
Ordinary Least Squares regression (OLS) is commonly used to calibrate prediction models in 
LiDAR applications. One of the base assumptions in OLS is that prediction errors are 
independent and normally distributed. In the presence of grouping structures in the data set, each 
with slightly different relationships between response and predictor variables, this assumption 
may be violated leading to biased estimates of the significance of predictor variables. Grouped 
data sets are a common occurrence in forest mensuration (for example multiple measurements on 
a single tree, remeasures of a permanent plot). Several strategies have been proposed to address 
the problem: data culling to minimise data grouping (Vanclay, 1994), stratifying data and fitting 
separate models to different strata (Næsset, 2002), introducing new explanatory variables 
including the use of dummy variables (Næsset et al., 2005), 2-stage modelling coupled with 
Generalised Least Squares techniques (Ferguson and Leech, 1978) and Mixed Effect Modelling 
(Gregoire et al., 1995; Breidenbach et al., 2007). Mixed-effects models are primarily used to 
describe relationships between a response variable and some covariates in data that are grouped 
according to one or more classification factors. The term mixed effects refers to the distinction 
between fixed effects (effects associated with an entire population or with certain repeatable 
levels of an explanatory variable) and random effects (localised effects associated with individual 
experimental units drawn at random from a population and regarded as additional terms, to 
account for correlation among observations within the same group), (Pinheiro and Bates, 2000). 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 43

Fixed and random effect variables have different roles: fixed effect variables explain variation 
while random effect variables help organise unexplained variation (Robinson, 2008). 
 
Models were developed in two stages. In the first stage single predictor variable models were 
fitted for PDH and V10, using OLS. Model residuals were analysed by Campaign and Site to 
reveal any structures indicative of grouping of the data. In the second stage one, two and 
three-predictor variable models were fitted, with incorporation of Campaign and Site effects, 
either as dummy variables in OLS models or as fixed or random effects in linear mixed effect 
(LME) models. 
 
A range of LiDAR predictor variables were considered, describing different aspects of the 
distribution of laser heights in the calibration plots. To minimise the impact of differences in 
LiDAR system capabilities only the first return (i.e. first recorded echo) data were used. All first 
return data were used regardless of classification (ground or vegetation points) or pulse type 
(single or multiple return pulses). Variables included: 
• mean height (mh), mean quadratic height (mqh), standard deviation of heights (sdh) 
• maximum height (hmax), average of the maximum height in each plot quadrant (hmax4) 
• percentile heights of the ordered cumulative height distribution (h0, h10,…,h90) 
• proportion of ground returns (propg), proportion of returns in height frequency distribution 

classes (d0, d10,…, d90).  
Most of these variables have been proposed in other studies. Additional predictor variables 
considered in the models were age, LiDAR point density and scanning angle. 
 
To identify the most effective predictor variables a combinatorial screening approach was adopted 
whereby models were fitted to all possible combinations of the predictor variables mentioned above. 
Logarithmic transformations or quadratic forms of the variables were considered. The criterion for 
selecting the preferred one, two and three-variable models was the Akaike Information Criterion 
(AIC) – following Gregoire et al. (1995) - with the added constraint that each explanatory variable 
had to be significant at p<0.05. Root Mean Square Error (RMSE) was used as a measure of the 
precision of model predictions. 
 
In OLS regression the dummy variables were used to distinguish Campaign and Site subgroups in 
the data set. Hypotheses of difference in slope and/or intercept dummy variables were compared.  
 
In LME models Campaign was introduced as a fixed effect because of the low number of levels of 
the variable and its specific nature. Site was introduced as a random effect for reasons explained 
later. Several possible assumptions regarding the random effects were tested: (1) variable 
intercept but constant slope, (2) variable slope but constant intercept or (3) variable intercept and 
slope. Models with the same fixed effects but different random effect assumptions were compared 
using likelihood-ratio tests.  
 
Analysis was performed using R statistical software (R-Development-Core-team, 2007).  
 
Volume prediction models were used to generate volume surfaces which were then converted to 
Site Quality maps using volume to Site Quality conversion tables. LiDAR Site Quality maps were 
compared with conventional Site Quality maps using an error matrix approach. Because of space 
constraints the results of this analysis could not be reported here. However an example of a 
LiDAR and conventional Site Quality map was presented for illustrative purposes.    

4. Results 

4.1 Models without Site and Campaign effects 
 
Single variable OLS models for PDH and V10 were fitted to the whole data set and residuals were 
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examined. The best predictor for PDH (lowest AIC) was hmax4 (the mean of the highest returns in 
each of the four plot quadrants). This was interesting because hmax4 was the variable that most 
closely matched the way PDH was measured in the field. There was no evidence of curvature in the 
relationship. The best single predictor variable for V10 was mqh (mean quadratic height of first 
returns, including ground returns). This is a somewhat similar result to that obtained by Nelson et al. 
(2007) in loblolly pine plantations in the south eastern United States. The PDH and V10 models 
explained 95.3% and 91.1% of the variance in the data. Figure 2 shows the fitted models. 
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Figure 2: Single variable OLS models for PDH and V10 

 
The PDH model residuals were indifferent to the factor Campaign and evidence of Site effects 
was weak. The V10 model residuals however were strongly correlated with the factor Campaign. 
There were also significant differences at the Site level but those mostly mirrored Campaign 
trends, with the notable exception of Site MH (see Figure 3, left). Further analysis showed that the 
residuals of the models were not significantly correlated with scanning angle or LiDAR point 
density. Furthermore, plots located in the thinned FMZ of Site DR did not produce different 
residual patterns compared to unthinned plots and were therefore left in the data set (in fact this 
confirms the efficiency of the variable mqh as a predictor of volume).  
 
It was concluded that Campaign, and possibly Site effects, were affecting volume-LiDAR 
relationships, suggesting that models in Figure 2 could be improved. 
 

4.2 Models incorporating Site and Campaign effects 
 
Comparison of AIC and likelihood ratio tests showed that Site and Campaign effects were not 
significant in PDH models and no further analysis was carried out of those models. 
 
Dummy variables for Campaign and Site were introduced into a single variable OLS volume 
model. Table 4 shows 3 variants of this model. Models with Campaign dependent slope or 
Campaign dependent intercept and slope had a lower AIC indicating that a model structure 
consisting of parallel lines best fit the data. C_2006, C_2007 and S_MH are dummy variables that 
take the value of 1 when Campaign is equal to 2006 or 2007, or Site is equal to “MH”. Otherwise 
they have a value of zero. 
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Table 4: Ordinary Least Squares volume prediction models incorporating Campaign and/or Site effects  
 

Model Parameters (standard error) RMSE  AIC
1 V10 = 22.91 + 1.209 mqh 

           (3.50)   (0.029) 18.4  1472

2 V10 = -2.36 + 1.300 mqh + 8.49 C_2006 + 30.77 C_2007 
          (4.14)    (0.025)        (3.22)                  (3.46) 

14.4  1388

3 V10 = 0.10 + 1.301 mqh + 28.25 C_2007 + 15.89 S_MH 13.7  1372
           (3.32)  (0.024)         (2.51)                    (3.18)  

 
Model 2 showed significant differences between all three Campaigns at p=95%. Model 3 
expressed that without the data for Site “MH”, the difference between Campaign 2002 and 2006 
was no longer significant. While the variable S_MH indicated a possible Site effect, its 
significance had to be questioned given the limitations of the data set (such as no replication of 
Sites across Campaigns). There was no evidence of Site effects in Campaign 2007 despite the 
important soil differences between Sites (See Table 1). Analysis showed that the distribution of 
the Campaign 2007 model residuals was not correlated with Soil Groups.  
 
Campaign and mqh were introduced into LME models as fixed effects. Site was introduced as a 
random effect because the OLS result for Site “MH” is difficult to rationalise against a range of 
anticipated effects from other Sites and the ill-balanced distribution of the data (see Table 2). 
Analysis of model fit parameters and log likelihood parameters showed that random effects were 
most effectively modelled as random intercepts (parallel lines). Table 5 shows three variants of 
the model. RMSE are provided both for global and localised (Best Linear Unbiased Predictors - 
BLUP) predictions.  
 
Figure 3 shows the marked improvement of the distribution of residuals of models including 
Campaign and Site effects (OLS Model 3 and LME Model 2) compared to the model without 
these effects.  
 
 
Table 5: Linear Mixed Effect volume prediction models incorporating Campaign and/or Site effects. 
 
Model  Effects  RMSE AIC
   fixed (standard error) random global local 
1  V10 = 18.10 + 1.293 mqh Site 19.3 13.7 1405
            (5.27)    (0.024)   
2  V10 =  -2.26 + 1.299 mqh + 8.78 C_2006 + 30.90

C_2007 Site 14.5 13.7 1382

             (6.20)  (0.024)         (6.37)
(6.18)    

3  V10 = 4.01 + 1.300 mqh + 24.59 C_2007  Site 14.8 13.7 1388
           (4.36)  (0.024)          (4.39)    
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 Figure 3: Residuals of OLS and LME volume prediction models grouped by Campaign and Site 
 
Likelihood ratio tests comparing the LME models with their corresponding OLS form were all 
significant at the 95% probability level. Model 2 was the model with the lowest AIC, and 
interestingly the variable C_2006 was not significant at 95%. According to this model therefore 
the difference between the Campaign 2002 and 2006 effects was not as important as indicated by 
corresponding OLS model 2. Given the data and the Campaign circumstances (rainfall in 
preceding year, see Discussion) the LME inference seems the more plausible one. 
   
Incorporating Campaign and Site effects in prediction models reduced RMSE by up to 25.5%. 
Analysis not reported here showed that the inclusion of additional LiDAR variables failed to 
improve model fit and that Campaign and Site effects remained significant. OLS model 3 
explained 95.2% of the variance, LME model 1 (BLUP) explained 95.1%. 
 
Site Quality maps were compiled using LME, Model 1 and were compared with conventional Site 
Quality maps. An example is shown in Figure 4 and clearly demonstrates the potential of LiDAR 
as an alternative basis for Site Quality assessment.   

5. Discussion 
 
Significant Campaign effects were observed in the relationship between mqh and plot V10. No such 
effects were observed in the relationship between hmax4 and plot PDH. This indicated that 
Campaign effects affected the shape but not the range (minimum, maximum) of the distribution of 
LiDAR first returns heights observed in a plot. Differences in flying height, scanning angle and point 
density were rejected as possible explanations of these effects. There simply were no significant 
differences in flying height between Campaigns and there was no correlation whatsoever between 
scanning angle or point density and the model residuals of OLS, Model 1. The observations in this 
study were mostly consistent with the findings of Chasmer et al. (2006) who reported greater canopy 
penetration rates as laser pulse energy increased. However, that study considered all pulse echoes 
(up to four) rather than just the first echoes used in this study. A more plausible hypothesis perhaps 
was that the severe drought in the year leading up to Campaign 2007 reduced plantation leaf area 
and hence the relationship between mqh and plot V10. Linder et al. (1987) found that in a period of 
drought radiata pine responds by producing shorter needles, as well as shedding significantly more 
older needles earlier in the summer. The rainfall in the 12 months preceding Campaign 2007 data 
capture was 554 mm while it was 762 and 707 mm in the year leading up to Campaign 2002 and 
2006 respectively. Nelson et al. (2000) offered a similar explanation in a study in Costa Rica. 
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Figure 4: LiDAR and conventional Site Quality maps for Site DR, 9 year old plantation. Calibration plots 

are shown in a colour indicating field measured Site Quality. 
 

The only evidence of a possible Site effect was observed in Site MH. It has been well documented 
that soil and climate differences may lead to site specific relationships between stand height and 
stand volume (Lewis et al., 1976; Skovsgaard and Vanclay, 2007). However, given the isolated 
occurrence of a Site effect in this study, given that there was no replication of comparable Site 
conditions in the study and given the ill-balanced distribution of data, treating Site as a random 
effect in a mixed effect model seemed a more prudent path for prediction.  
 
Mixed effect modelling may also provide advantages where a model needs to be applied outside 
the model’s domain (where Site is unknown) or when the number of dummy variables becomes 
unmanageable. The inclusion of LiDAR variables additional to mqh into the prediction models 
did not significantly improve the models. This is consistent with the findings of Nelson et al. 
(2007).    
 
The objective of Site Quality assessment is to make site-specific, spatially explicit estimates of 
forest productivity. The Campaign and Site effects detected in this study can therefore not be 
ignored. Calibration data collection protocols need to be developed that produce the field data 
necessary to detect and quantify these effects. Alternative sampling strategies such as random, 
systematic and purposive sampling need to be compared to identify the strategy that best fits the 
purpose of the data, which is to fit a calibration model of known structure. Modelling techniques 
need to be adopted that allow for Campaign and Site effects to be expressed and make efficient 
use of calibration data collected in the past. Planned research aims to address these questions. 

6. Conclusion 
 
The study has produced evidence that Campaign and possibly Site effects influence the 
relationships between stand and LiDAR variables in young age radiate pine plantations. Of the 
two effects Campaign is by far the more important one; volume relationships were significantly 
affected while predominant height relationships were not. These effects were successfully 
incorporated in volume prediction models using Ordinary Least Squares and Mixed Effect 
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modelling techniques resulting in reductions of RMSE by up to 25.5%. Hypotheses as to the 
cause of the effects were presented. The evidence indicates that Site and Campaign effects cannot 
be ignored in the calibration of LiDAR prediction models for Site Quality assessment and should 
be considered in field data collection protocols and modelling techniques. Research needs were 
highlighted. 
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Abstract 
 
Vegetation mapping for environmental monitoring is today conducted by manual 
photo-interpretation combined with field surveys. This study is the first attempt in Sweden to 
investigate the potential of using Airborne Laser Scanning (ALS) for the estimation of crown 
coverage of tree crowns and shrubs. Thirty field plots were randomly allocated within a 1×1 
km2 area in southern Sweden. All plants with any part inside the 10 m radius and with a height 
greater than 0.3 m were measured. The field data were used to derive crown coverage for each 
plot. Proportions of laser returns within height intervals were derived from ALS data and used 
as explanatory variables in simple linear regression models for estimation of crown coverage of 
trees and shrubs. For estimation of tree crown coverage (> 3.0 m height) the 
root-mean-square-error (RMSE) was 4.9%. For estimation of total (trees and scrubs) crown 
coverage (> 0.3 m height) the RMSE was 6.3%. These RMSE values were achieved despite a 
mixture of tree species on the field plots. However, the analysis was not sufficient for high 
accuracy estimations of the amount crown coverage from shrubs (0.3-3.0 m height interval) 
below a tree canopy. 
 
Keywords: crown coverage, shrubs, vegetation mapping, LiDAR 
 
1. Introduction 
 
Detailed vegetation mapping for selected areas is, in Sweden, conducted by using field surveys 
in combination with manual photo interpretation. The manual photo interpretation technique is 
however costly and the results are dependent on the interpreter. It is therefore difficult to obtain 
objective quantitative measurements that are suitable for comparisons over time. In addition, 
aerial photo interpretation will only provide information about the uppermost layers of a 
vegetation canopy. 
 
Use of aerial photo interpretation for vegetation assessment in Sweden includes: (1) the general 
vegetation map that is created on a regional basis, (2) the sample based National Inventory of 
Landscapes in Sweden (NILS) program (http://nils.slu.se/), and (3) the mapping and monitoring 
of Natura 2000 sites. For both the NILS program and for the Natura 2000 monitoring there is a 
need to develop objective and cost efficient methods for following changes in different layers of 
the vegetation canopy. A study of the early specifications for monitoring of Natura 2000 sites in 
Sweden (Naturvårdsverket 2005) revealed that vegetation cover and height are of high relevance 
for monitoring of more than 40 Natura 2000 nature types.  
 
In Scandinavia, Airborne Laser Scanning (ALS) is now an operational technique for producing 
maps of forest timber and pulp resources. ALS data based methods for estimation of variables of 
relevance for the forest industry, such as tree heights, stem volume, and stem diameter, have 
already been successfully developed. These methods have also been introduced as commercial 
services that are provided by forest inventory companies (Næsset et al. 2004). However, there 
are so far only limited developments of laser remote sensing for vegetation mapping in the 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 51

context of habitat monitoring. For example, canopy height derived from ALS was found to be a 
strong predictor of bird species richness in the temperate forests of Maryland, USA (Goetz et al. 
2006). Some of the variables that are important for vegetation mapping have been estimated in 
several studies, for example above ground biomass (e.g., Nelson et al. 1988; Means et al. 1999; 
Lefsky et al. 2002a; Lim and Treitz 2004). The height and cover of the canopy surface are 
usually estimated but it is also possible to estimate canopy gaps and canopy height profiles 
(Lefsky et al. 2002b). Some studies reports estimates of Leaf Area Index (LAI) (e.g., Parker et 
al. 2001; Hagiwara et al. 2004; Morsdorf et al. 2006, Solberg et al. 2006), as well as the canopy 
fraction (e.g., Hopkinson and Chasmer 2007). 
 
The current pilot study is the first Swedish attempt to asses ALS based vegetation mapping for 
environmental monitoring. The study was limited to investigating the ability to estimate crown 
coverage of tree crowns and shrubs using ALS data. The objective was to build regression 
models based on ALS data for estimation of crown coverage on field plots, and validate these 
models. 
 
2. Material and Methods 
 
2.1 Study area 
 
The study area is located in southern Sweden (Lat. 56º 41' N., Long. 13º 9' E.). The area is the 
inner 1×1 km2 of a NILS-survey-unit (Essen et al. 2007). 
 
2.2 ALS data 
 
The study area was laser scanned the 28th of October 2006 by using a LiteMapper 5600 ALS 
system operated from a fixed winged aircraft, Partinavia P68B, with an altitude of 180 m above 
ground level and a flight speed of 75 ms-1. The strip side overlap was 80% and the field of view 
was 45 degrees, but by not using overlapping data the maximum used field of view could be 
reduced to 35 degrees. The pulse repetition rate was 100 kHz. The pulse density was 
approximately 20 returns per square meter. Each emitted laser pulse could result in three 
different return pulses: single return pulse (P0), first return pulse of a double return (P1), or 
second return pulse of a double return (P2). ALS data were processed in order to provide 
measures of vegetation height above ground level by first classifying each laser return as either 
ground or vegetation using the TerraScan software (Soininen 2005). Interpolation was then 
performed, by using the laser return classified as ground hits in order to create a Digital 
Elevation Model (DEM). Laser canopy height, i.e. the vertical distance to ground (DEM-value), 
was derived for each laser return. 
 
2.3 Field data 
 
A total of 30 circular field plots with 10 m radius located within the laser scanned area were 
field surveyed from June to August 2007. The aim of the field survey was to describe the three 
dimensional structure of trees and shrubs with high accuracy. Prior to the field survey, 
homogenous polygons (forest stands) had been delineated and for each polygon tree crown 
coverage had been estimated by photo-interpretation. For the allocation of field plots, the 
polygons were classified according to tree crown coverage and field plots were randomly placed 
within each class. The position of the field plot centre was measured using Global Navigation 
Satellite System (GNSS). The GNSS data were post processed by using data from a reference 
station. After post processing sub-meter accuracy was expected for open areas, i.e. areas with no 
tree cover. However, position data could be less accurate due to poor satellite configuration and 
a dense tree cover. All plants with a height greater than 3.0 m were classified as trees, and all 
plants with a height of 0.3 to 3.0 m were classified as shrubs. A tree or shrub was measured if it 
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had at least some part that could be projected on the ground within the circular field plot. There 
was a mixture of several species on each field plot (Table 1). 
 
2.3.1 Tree crown coverage 
 
For all trees on a field plot, stem diameter was measured and species registered. The azimuth 
and distance from the plot centre to the centre of the tree stem was measured by using a 
compass and an ultrasonic distance measuring device, respectively. Tree height was measured 
for a sample of five trees from each of the tree species groups: Scots Pine (Pinus silvestris), 
Norway spruce (Picea abies), and deciduous trees, on each field plot, or less if there not were 
enough of trees of a particular tree species group. For each tree, major and minor axes were 
measured for an ellipse describing the extent of the living part of the crown. One axis of the 
ellipse was in the direction to the plot centre in order to make it possible to calculate the 
proportion of the ellipse that was within the field plot. For each tree individual, the ellipse 
coverage, a value between 0 and 1, was estimated as the projected area on ground of all leaves 
and branches inside the ellipse that were alive divided by the total area of the ellipse. 
 
2.3.2 Shrub crown coverage 
 
All shrubs were measured that were totally or partially situated within the field plot. For all 
individuals, species were registered and height was measured. The distance and azimuth from 
the plot centre to the centre of a shrub was measured in the same way as for the trees. For each 
shrub, major and minor axes were measured of an ellipse that describes the extent. One of the 
axes of the ellipse was in the direction to the plot centre. For each shrub individual, the ellipse 
coverage, a value between 0 and 1, was estimated as the projected area on ground of all leaves 
and branches inside the ellipse that were alive divided by the total area of the ellipse. 
 
2.3.3 Calculation of crown coverage 
 
For each field plot, a raster image with 0.1 m raster cell size was created and all cell values were 
first set to zero. For a specific raster cell, estimates of crown coverage were accumulated by 
using the crown coverage value of all ellipses that covered the raster cell. If the accumulated 
value of a raster cell was greater than one, the raster cell value was set to one. This procedure 
resulted in 30 field-survey data generated images of crown coverage (see Figure 1), one for each 
field plot. The crown coverage area C for height interval h and for plot i was calculates as 
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where Akl is the raster cell area, Lkl is the accumulated ellipse coverage values from trees or 
shrubs with height within height interval h and with ellipses covering the raster cell of column k 
and row l for the m×n raster. The value of Pkl was set to one if the raster cell was inside the 10 
m radius plot, otherwise zero. Field measured tree crown coverage (Cc) was derived for plot i by 
using h ≥ 3 m and dividing Ci with the total plot area. Field measured total crown coverage (Cv) 
was derived for plot i by using h ≥ 0.3 m and dividing Ci with the total plot area. 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 53

 
Figure 1: Raster image (1 dm resolution) for one of 30 field plots with measured ellipses that describe 

extent and proportion of projected area of leaves and branches (crown coverage). 
 
 
Table 1: Number of shrubs and trees grouped into Norway spruce, Scots pine, and deciduous trees for 30 

field plots, and mean height and mean stem diameter (range within brackets) for shrubs and trees, 
respectively 

 
Shrubs (0.3-3.0 m height) Trees (> 3.0 m height) Plot 
Pine Spruce Deciduous Height (cm) Pine Spruce Deciduous Diameter (mm) 

1 0 3 1 137 (59-230) 16 1 4 244 (40-488) 
2 1 1 2 51 (32-67) 0 25 0 126 (50-312) 
3 0 22 2 154 (42-300) 8 14 0 197 (36-600) 
4 0 14 1 144 (60-271) 18 4 3 241 (30-520) 
5 0 0 6 69 (46-97) 9 0 8 285 (41-457) 
6 0 32 0 117 (34-270) 4 18 3 247 ( 41-545) 
7 0 5 3 113 (34-265) 9 6 2 307 (74-620) 
8 0 3 2 130 (43-250) 13 4 11 235 (61-429) 
9 0 21 15 144 (47-299) 18 5 12 245 (69-436) 
10 0 1 31 111(34-246) 10 2 26 202 (19-417) 
11 0 4 15 52 (36-89) 15 11 1 261 (29-520) 
12 0 41 0 114 (37-300) 11 11 5 285 (30-585) 
13 0 8 3 195 (112-297) 3 9 29 184 (40-603) 
14 0 12 11 134 (59-264) 17 16 9 232 (36-456) 
15 0 2 11 191 (48-290) 0 49 0 162 (98-248) 
16 20 4 31 90 (33-243) 0 0 1 46 (46-46) 
17 88 21 86 92 (32-280) 3 0 0 70 (66-74) 
18 30 3 19 70 (32-162) 0 0 0 0 
19 189 6 65 70 (27-208) 0 0 0 0 
20 114 6 34 69 (31-193) 0 0 0 0 
21 14 5 63 101 (31-291) 12 1 13 147 (18-330) 
22 14 4 102 124 (33-298) 46 1 22 106 (19-363) 
23 72 16 116 105 (38-269) 3 0 13 65 (30-147) 
24 133 19 127 78 (30-298) 7 0 1 121 (61-149) 
25 155 35 55 71 (30-271) 9 0 1 143 (73-224) 
26 5 16 63 129 (36-286) 7 1 39 86 (20-267) 
27 21 16 73 105 (31-281) 11 16 5 142 (39-355) 
28 127 15 113 109 (31-297) 17 4 21 80 (21-282) 
29 84 13 124 81 (31-287) 11 1 8 111 (26-227) 
30 19 6 49 87 (34-297) 16 1 19 131 (35-351) 
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2.4 Correction of field plot positions 
 
Tree crowns of an area of 50×50 m2 around each plot were automatically delineated by using an 
earlier developed algorithm (Holmgren and Wallerman 2006). The delineation of tree crowns 
from laser data was based on template matching. First, from a Digital Canopy Model (DCM) 
that was derived from laser elevation data, a binary crown area image was derived with value 
one for crown area, and closing (dilation followed by erosion) was performed on this image. A 
new height value was then interpolated for the DCM at cells with zero height value, but crown 
area according to the crown area image. Templates were tested at each raster cell of the DCM by 
setting the height of the template to the value of the DCM value. There were some restrictions 
when calculating the correlation between templates and laser elevation data: only realistic 
width-height ratios of the templates were allowed, and no template was tested with less than 25 
laser returns. For a correlation image, the value of a raster cell was set to the highest found 
correlation at that location. The correlation image was then smoothed and used for 
segmentation: A seed was placed at each raster cell, with a DCM value greater than a height 
threshold and with a positive correlation value, and was allowed to climb to the neighbour raster 
cell with the highest correlation value. The raster cells with seeds climbing to the same local 
maximum defined a tree crown segment. 
 
The result was crown segments; each included an individual tree or a group of trees. The tree 
position was estimated by taking the x, y-position of the maximum canopy height value within 
the segment, and a measure of tree height was achieved from the value of the maximum. A 
crown area of an individual tree was derived by counting the number of raster cells of the crown 
segment but was not used in this study for further analysis. 
 
The three dimensional spatial pattern of the laser detected trees were matched with the spatial 
pattern of field measured positions of individual trees on a plot. A matching algorithm was used 
for this task (Olofsson et al. 2008). The plots were both translated and rotated until the best 
match, i.e. maximum correlation value, between the spatial tree-patterns were found. In this way 
the position of field plots with poor GNSS data could be corrected. 
 
2.5 Statistical analysis 
 
Different combinations of laser return types (first return, second return, or only return) were 
grouped. The corrected locations of the field plots were used to extract ALS data within the 10 
m radius field plots. The proportions of laser returns on a plot that were located 3.0 or 0.3 m 
above ground level were derived, and used for estimation of tree crown coverage (Cc) and total 
vegetation coverage (Cv) (trees and shrubs), respectively. The field estimated crown coverage 
values versus proportions of laser returns within the different height intervals were plotted. 
Simple linear regression models with and without an intercept were tested for estimation of 
crown coverage. 
 
3. Result 
 
The proportion of laser returns from the tree canopy was highly correlated with the field 
measured tree (h > 3.0 m) crown coverage Cc. The best tested explanatory variable Dc was the 
proportion of first and only returns (P0+P1) above the height threshold 3.0 m. The best model 
found was simple linear regression without intercept (Equation 2). The root-mean-square-error 
(RMSE) was 4.9%. The sizes of residuals (ε) were about the same for the full range of tree 
crown coverage (Figure 2A). The correlation coefficient was 0.98 between estimated and field 
measured tree crown coverage. 
 

ε+×= cc DC 77.0 ˆ        (2) 
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There was a low correlation with the crown coverage of only shrubs and the proportion of laser 
returns within the corresponding height interval, i.e. between 0.3 and 3.0 m distance from the 
ground. No attempts were therefore made to estimate this fraction separately 
 
The proportion of laser returns from the vegetation was highly correlated with the field 
measured total crown (h > 0.3 m) coverage Cv. The best tested explanatory variable Dv was the 
proportion of first and only returns (P0+P1) above the height threshold 0.3 m. The best model 
found was a simple linear regression with an intercept (Equation 3). The RMSE was 6.3%. The 
sizes of residuals (ε) were about the same for the full range of total crown coverage (Figure 2B). 
The correlation coefficient was 0.96 between estimated and field measured total crown 
coverage. 
 

ε+×+= vv D.C 68.00790 ˆ       (3) 
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Figure 2: (A) Estimated tree crown coverage versus field measured tree crown coverage (trees with a 
height above 3.0 m); (B) Estimated total crown coverage versus field measured tree crown coverage 

(trees and shrubs with a height above 0.3 m). 
 
4. Discussion 
 
The results of this study indicate that it is possible to use airborne laser scanning to obtain 
objective measurements of vegetation crown coverage. Despite a diverse composition of tree 
species on the plots, simple regression models could be used to estimate crown coverage with 
high accuracy. 
 
Morsdorf et al. (2006) used the proportion of pulses above a height threshold to estimate 
fractional cover, i.e. crown coverage, but used hemispherical photographs as ground truth data. 
They derived laser variables, first and last returns separately, and found the highest explanation 
power for the first return data. They argued that one source of error could be the difference of 
view angles between the hemispherical camera and the laser scanner sensor. For the simple field 
method of the present study, different view angles were not a problem because crown coverage 
was estimated separately for each plant. However, different view angles of the ALS data could 
be an error source that needs to be accounted for if the method is used operationally. 
 
There might be several reasons for the low correlation of the present study between laser 
derived variables (proportions within height intervals) and the crown coverage of shrubs (plants 
within 0.3 and 3.0 m). There are problems in distinguishing small plants and other low objects, 
e.g., stones, grass, blueberry shrubs. The classification algorithm only uses the position of 
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reflection locations. It would probably be possible to improve the classification if also full 
waveform laser data would have been used. 
 
In the present study, only a first attempt was done to estimate crown coverage. It might be 
possible to improve estimates by extracting more information from ALS data. For instance, 
Hopkinson and Chasmer (2007) found that intensity based power distribution has higher 
correlation with the canopy gap fraction than just the laser pulse return distribution for the 
subclasses single, first, intermediate and last laser returns. 
 
Full waveform data have earlier been used to estimate the vegetation structure at different height 
levels. For instance, Parker et al. (2001) studied the correlation between the power (i.e. the 
waveform) of the accumulated laser pulse return at different heights and the irradiance at the 
same heights. The use of full waveform data should therefore also be suitable to use in 
estimating of the amount of shrubs below a tree canopy. 
 
The possibility of using ALS data for estimation of crown coverage should be studied further in 
order to develop tools for the monitoring of vegetation. It would for instance be of interest to 
study in more detail how well a layer of bushes might be detected, given different types of over 
storey. Since the proportion of laser returns also will be dependent on factors such as sensor 
settings, flight altitudes, etc., there will during the foreseeable future also be a need to use a 
limited set of field data for the calibrations of the measurements and a suitable design for this 
field sample should also be studied. It would also be important to carry out real tests of change 
assessments, where experiments with both increased and decreased canopy coverage between 
several time points of laser scanning is evaluated. 
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Abstract 
 
Boreal forests site types are used to assess the growth potential of the forests and therefore 
provide important inventory information. A new approach is proposed here for the site quality 
assessment of mature forests using airborne laser scanner (ALS) data and the k-NN classifier. 
Both the echo z-value and the intensity value percentiles of different echo types of ALS data 
were used in the analysis. The data comprised 274 forest stands of varying sizes belonging to 
five forest site types varying from very fertile to poor forests in the Koli National Park, Finland. 
The best overall classification accuracy of all the forest site types achieved was 58.0 %, and for 
a single class 73%. It is concluded that this ALS-based data analysis technique is applicable to 
the detection of boreal forests site types in large-scale forest inventories. 
 
Keywords: K-NN Classification; Vegetation. 
 
1. Introduction 
 
In Finland forests are classified into fertility site types according to their underground 
vegetation (Cajander 1926). The current forest site types of Finland have been located and 
mapped in conventional stand-based forest inventories (Poso 1983). Aerial photographs have 
also been used to find different forest habitats, but the results have not been accurate or useful 
enough for large-scale forest inventories (see Uuttera and Hyppänen 1998). However, Airborne 
Laser Scanning (ALS), which provides spatially accurate 3D information on forests and is 
already being applied in practical forestry, could potentially replace conventional field inventory 
methods for determining tree stocking quantities (see Næsset 2004). ALS data are derived from 
the measured travel times of pulses between a sensor and a target, and since ALS echoes from 
targets form three-dimensional point clouds (Lim et al. 2003), they provide accurate information 
on landscapes and forests (see Ritchie et al. 1992; Næsset 1997; Magnussen and Boudewyn 
1998; Maltamo et al. 2006).  
 
Multiple ALS echoes with precise x, y and z coordinates can be identified by processing the 
backscatter energy of a simple pulse. The data yielded by this technology include various echo 
types (e.g. first, last, intermediate and only echoes), z-values and intensity values, where the 
z-value is the height of the echo and the intensity value describes the amount of backscattering 
from it. Height of the above-ground vegetation is usually of greatest interest in forestry 
applications (see Hyyppä et al. 2001; Lim et al. 2003; Maltamo et al. 2006; Hopkinson et al. 
2006). Intensity values have been studied by Brennan and Webster (2006), for example, who 
found them to be suitable for distinguishing between different surfaces, but it is only very 
recently that their applicability to the determination of forest characteristics has been 
investigated (e.g. Hopkinson and Chasmer 2007; Ørka et al. 2007). This is mainly due to 
difficulties in scaling and normalizing these values or in their interpretation (Ahokas et al. 
2006).  
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The ALS technique has already been applied to the determination of site quality indicators  
based on the height distribution characteristics of stands containing certain tree species, which is 
logical since the height characteristics can be obtained accurately from laser data (see Rombouts 
2006; Gatziolis 2007). This can, in fact, be seen as a remote sensing-based modification of 
traditional growth and yield studies in which the classification of sites was based on dominant 
height-age dependences. The site type classification used in Finnish forest inventories, however, 
is based on Cajander's (1926) system of fertility classes, which operates on assessable stand 
characteristics, i.e. ground vegetation characteristics and indicator species, rather than explicitly 
measurable tree variables. 
 
ALS technology should be capable of distinguishing the forest site types because of differences 
in crown structures and vertical profiles that differ between different forest site types. We 
present here an ALS data-based k-nearest neighbour method for doing this employing two 
alternative uses of data, 1) the use of whole data and leave-one-out cross-validation, and 2) use 
of separate model and test data, which will be compared in terms of classification accuracy. 
 
2. Method  
 
2. 1. Study area and forest inventory data 
 
The forest area concerned here is located in the Koli National Park (29°50’E, 63°05’N) in 
eastern Finland, on the borderline between the southern and middle boreal forest vegetation 
zones after Kalela (1970, in Kalliola 1973). The total area of the Koli National Park is about 
3000 hectares. Extensive areas in its northern part have been left unmanaged for decades; 
whereas forest management operations were carried out in the southern part until the early 
1990s. The area is characterized by a highly variable landscape and tree species structure, with 
altitudes varying between 95–347 metres above sea level (Lyytikäinen 1991). Following the 
classification of Cajander (1926), the forest site types identified in the Koli National Park were: 
1) very rich (e.g., Oxalis-Maianthemum type, OMaT), 2) rich (Oxalis-Myrtillus, OMT, herb-rich 
heath forest), 3) medium (Myrtillus type, MT, mesic heath forest), 4) rather poor (Vaccinum type, 
VT/EMT, subxeric heath forest) and 5) poor (Calluna type, CT/MCClT, xeric heath forest). 
 

Table 1. Descriptive statistics for stand areas in hectares by forest site type in the whole data.  
 

Whole data 336.7 ha (N=274) 
Forest site type N % Min Max Sum Mean S.D. 
Herb-rich (1) 61 22  0.03 5.8 44.36 0.73 0.91 

OMT (2) 60 22  0.13 12.13 89.04 1.48 2.12 
MT (3) 60 22  0.16 7.77 82.95 1.38 1.37 
VT (4) 60 22  0.12 6.46 77.7 1.29 1.14 
CT (5) 33 12  0.04 7.02 42.92 1.3 1.58 

N is the number of stands; % is the proportion of site types; Min is the minimum, Max is the maximum, 
Mean is the average area of the forest site types in hectares and S.D. the standard deviation. Herb-rich 

denotes very rich (1), OMT rich (2), MT medium (3), VT rather poor (4) and CT poor (5) forest site types 
(Cajander 1926). 

 
The data were randomly assigned into the modelling data and test data, both of which included 
stands from the northern and southern parts of the National Park. In terms of development 
classes, the stands used in the analyses were either advanced thinning or mature stands, as these 
closed boreal forest stands represented advanced successional stages with an advanced ground 
vegetation and were therefore ideal for site type classification by the method of Cajander (1926). 
The data comprised 274 forest stands covering an area of 337 ha. The modelling data consisted 
of 184 forest stands and comprised an area of 241 ha, while the test data consisted of 90 forest 
stands and covered a total area of 96 ha. The data is presented by forest site types in Table 1. 
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2.2. Airborne laser scanner data 
 
The scanning was performed on 13th July, 2005, using an Optech ALTM 3100 laser scanner. 
Two Global Positioning System (GPS) ground stations were used and a total of nine transects 
were flown at an altitude of 900 metres and a flight speed of 75 m/s. The area covered was 
approximately 2200 hectares. The laser pulse repetition rate was 100 KHz and the scanning 
frequency of a swath was 70 Hz, at an angle of ± 11 degrees. The pulse density of the data was 
3.9/m2, but because of nominal side overlap (35%) and variation in the terrain the actual ground 
hits varied from approximately 3.2/m2 to 7.8/m2. The data echoes collected included 
EUREF-FIN coordinates (x, y and z), flight line numbers, intensity values and echo types in four 
classes: 1 = only echo, 2 = first echo, 3 = intermediate echo and 4 = last echo. The DTM was 
produced by the Finnish Geodetic Institute from the last and only echo data using a pixel size of 
one metre, employing the TerraScan software, which uses the method proposed by Axelsson 
(2000). In order to analyse the ALS data, the first step was to convert the orthometric heights to 
an above-ground scale by subtracting the DTM from the corresponding ALS heights (Hyyppä et 
al., 2005). The laser hits are presented by forest site types in Table 2.  
 

Table 2. Numbers of laser echoes/m2 by forest site types and proportions (%) of the different types of 
echoes including the z value and intensity value in the whole data. The letters f, o, l and i indicate the first, 

only, last and intermediate echoes, respectively, whereas fo is the sum of first and only echoes. 
 

Forest site type all fo  f/fo, % o/fo % l/fo % i/fo % all/fo % 
Herb-rich (1) 7.3 5.0  37.3 62.7 38.0 6.2 144.2 

OMT (2) 7.0 5.0  35.7 64.3 36.3 5.6 141.9 
MT (3) 6.8 4.8  34.9 65.1 35.7 5.1 140.8 
VT (4) 6.4 4.7  32.1 67.9 32.8 4.0 136.8 
CT (5) 6.2 5.0  22.5 77.5 22.9 1.7 124.6 

 
2.3. k-NN classification 
 
Classification of forest site types was obtained by using the non-parametric k-NN classifier. 
Consequently, nearest neighbour methods have been widely used for estimating continuous 
forest variables (e.g. by Moeur and Stage 1995; Holmström et al. 2001; Maltamo et al. 2006), 
although they have not been extensively studied in connection with estimating discrete forest 
variables. 
 
We applied two different ways to use our data. The whole data was divided into reference 
(modelling) and target (test) data; method described below is the same in both approaches, i.e. 
whole data approach and model/test data approach. Then a suitable distance metric is chosen to 
find the nearest neighbour(s). After that the distances between the target units and the reference 
units are calculated and nearest neighbour(s) are assigned to the target units. Finally estimates 
for the target units are calculated based on the attributes of the chosen neighbours. At least three 
issues need to be considered when using the k-NN method: 1) a suitable distance metric, 2) the 
number of neighbours to be used, and 3) the weighting of the neighbours (LeMay and Temesgen 
2005). 
 
A Minkowski distance of order one between the distributions was taken as the distance metric. 
In the case of discrete distributions it can be defined with the equation (Eqn 1): 

i

n

i
ipq qpD −= ∑

=1

   , (1) 

 
where Dpq is the distance between the laser echo distributions to be compared, pi is the 
proportion of observations of target units in class i, qi is the proportion of observations of 
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reference units in class i, and n is the number of classes in the distributions. The value of Dpq 
ranges between 0 (the distributions compared are the same) and 2 (the distributions compared 
have no observations in the same classes). The chosen distance metric is based on the absolute 
differences between the laser echo distributions of the target and reference stands and is suitable 
in situations in which the predictor variables are distributions with unknown characteristics (in 
this case laser echo height and intensity distributions) and it is assumed that the form of the 
distribution contains most of the information on the variables of interest (in this case forest site 
type classes). The distance value can be used in weighting the neighbours by subtracting it from 
the maximum value, which is 2. When using more than one predictor (i.e. distributions of laser 
echoes of different types), the distances are calculated separately for the various distributions 
and then summed using subsequently determined optimal weights. 

 
The classification rule needed for applying the k-NN based classifier was adjusted for the case 
of several neighbours (n) as follows:  

1. n = 1: the value of the predicted variable is the value of the nearest neighbour 
2. n > 1: the weights of the neighbours are summed by class and the estimated class 

for the target unit is the one with the highest sum of weights.  
 

 
 

Figure 1: The k-NN estimation procedure. 
 
For the k-NN classification procedure the laser echo heights were classified into 10 cm classes, 
with the negative echo heights assigned to a class 0 (note that some ALS hits always occur 
below the DTM level). This classification provided enough observations for all the 
approximately 300 classes. The laser echo intensities were thereafter classified with a class 
width that resulted in a corresponding number of classes. The optimal weights for the different 
types of echoes were searched for by optimizing the overall classification accuracy. The 
optimization algorithm weighted the combinations systematically so that every echo type was 
given a weight from 0 to 1 at intervals of 0.1. In addition, all the combinations of weights, 
which summed to 1, were examined. The optimization was performed on the whole data and 
modelling data only and used a leave-one-out cross-validation technique in which the target unit 
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was left out of the reference data. The test stands were classified using the optimal weights 
found from modelling data and the nearest neighbours were searched for only from the 
modelling (reference) data. In the case of several neighbours (n > 1), the procedure provides not 
only class estimates but also an idea of the closeness of the target unit to the other classes. 
However, it should be remembered that the forest site type classes may express the fertility levels 
on an ordinal scale, but the tree cover of those types should be handled as they are in a nominal 
scale. The k-NN estimation procedure applied for in the case of using separate modelling and 
test data is presented in the form of a flowchart in Figure 1. 
 
3. Results  
 
The classification results were calculated with one, three and five nearest neighbours, and 
optimal weights were determined for the accuracy of classification of the stands into all forest 
site types. All the neighbourhood combinations were computed for the stands in the whole data 
as well as to the test data and both z and intensity values were used with different weights 
(Table 3) to optimize the classification results. The z-values have the highest weights with one 
neighbour, whereas the weight of the intensity increases with three and five neighbours. 
 

Table 3: Weights of variable distributions used in the k-NN method with 1, 3 and 5 neighbours in two 
approaches: 1) whole data (N=274) 2) test data (N=90) 

 
Classification Z-values (z)          Intensity values (i)      
method sum z F l i fo lo   sum i f l i fo lo 
1NN – 1) 0.8  0.2  0.1 0.5  0.2 0.1    0.1 
1NN – 2) 0.9 0.1 0.2   0.3 0.3   0.1         0.1 
3NN – 1) 0.4 0.1 0.1   0.2  0.6 0.1 0.1  0.4  
3NN – 2) 0.2   0.2         0.8 0.1 0.1 0.4 0.2   
5NN – 1) 0.5  0.2  0.1 0.2  0.5 0.3  0.1 0.1  
5NN – 2) 0.4 0.1       0.3   0.6 0.2 0.2 0.1   0.1 
f denotes the first pulse, l the last pulse, i the intermediate pulse, fo the first and only pulses together and 

lo the last and only pulses together. 
 
A forest classification percentage matrix for all of the five forest types is presented in Table 4, 
where the diagonal shows the correct classifications. The best overall classification result 
(58.0%) was achieved with the whole data with 5 nearest neighbour and the best single class 
classification (poor, CT 72.7%) with 1 nearest neighbour. In the case of the whole data, the 
decreased numbers of neighbours (1 or 3) altered the classification of some stands and 
decreased the overall classification accuracy (Table 4). The success rates obtained for the 
classification of herb-rich forests, for example, were 52.5% and 62.3% with one and five 
neighbours, respectively. The classification done by the test data gave only slightly worse 
overall classification percentages than with the whole data. In addition, some single class 
classifications were even better when using the test dataset. 
 
With one nearest neighbour the classification percentage was highest (34.4%) in class 3 
(medium, MT) and decreased to classes 1 (17.8%) (very rich, OMaT) and 5 (11.1%) (poor, CT). 
With five nearest neighbours the classification percentage varied more evenly over the five 
classes (Table 4). 
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Table 4: Classification success rates (%) matrix obtained by the k-NN method with 1, 3 and 5 nearest 

neighbours for all forest site types in two approaches: 1) whole data (N=274) 2) test data (N=90) 
 

1NN – 1) 56.6 %   3NN – 1) 56.9 %   5NN – 1) 58.0 % 
  1* 2 3 4 5    1 2 3 4 5    1 2 3 4 5 

1* 52  23  18 2  5  1 59 21 15 2  3   1 62  20 13  0  5  
2 15  45  32 8  0   2 18 47 27 8  0   2 20  43 28  8  0  
3 7 15  63 13  2   3 10 18 60 10 2   3 10  20 58  10  2  
4 2  3  23 57  15   4 0  8  17 65 10  4 0  8  12  68  12  
5 0  0  3  24  73   5 0  0  6  42 52  5 0  0  0  42  58  
 17  19  30 20  14    19 21 27 24 9    20  20 24  24  11  
                                        
1NN – 2) 55.6 %    3NN – 2) 55.6 %    5NN – 2) 54.4 % 
  1 2 3 4 5    1 2 3 4 5    1 2 3 4 5 
1 60  20  20 0  0   1 60 10 30 0  0   1 65  25 10  0  0  
2 10  50  40 0  0   2 25 45 20 5  5   2 20  40 35  5  0  
3 10  15  60 15  0   3 15 15 65 5  0   3 5  30 55  10  0  
4 0  5  35 45  15   4 10 10 20 50 10  4 10  15 15  50  10  
5 0  0  0  30  70   5 0  0  0  40 60  5 0  0  0  30  70  
 18  20  34 17  11    24 18 30 18 10   22  24 26  18  10  

*1 denotes very rich herb-rich forests (e.g. OMaT), 2 rich (OMT), 3 medium (MT), 4 rather poor (VT) 
and 5 poor (e.g. CT), including all poor forest sites (Cajander 1926). 

 
4. Discussion 
 
The aim of this work was to employ ALS data in an automated search for different forest site 
types using the k-NN method to classify forest stands. The method yielded promising results for 
separating forest site types. We used two data approaches and found that the difference between 
the analyses based on the whole data approach and the modelling and test data approach were 
negligible. With the whole data k-NN provided slightly better results in classification with more 
neighbours, whereas if we used separate modelling and test data the best results were achieved 
with only one neighbour. However, there is no major difference depending on which approach is 
used; the larger data provides with more options to choose the “right” site type. 
 
One interesting result was that more fertile site types appeared to have higher proportion of first, 
last and intermediate laser echoes as well as the total amount of echoes. In addition, higher 
proportions of only echoes were observed in stands belonging to the poor forest site types 
(Table 2). 
 
The forests of the southern part of the National Park were subject to forest management 
practices until the mid-1990's and the proportion of forests at early stages in their development 
was higher there than in the northern part. In addition, the variation in altitude was smaller. It 
was not possible, however, to make any division between the northern and southern parts of the 
area when distributing the stands into the modelling and test data, because the number of forest 
stands applicable to the analysis was somewhat limited. It is therefore not completely certain 
how the ALS data-based automated search for forest site types would perform on an 
independent test dataset. However, the whole data approach did not separate different data sets 
and provided only results how the method works if there were larger reference data available. 
We used leave one out method, and in this case every stand had 273 possibilities to the nearest 
neighbours. We found that with larger reference data and appropriate delineation of the forest 
stand the results would be improved. 
 
The method is based on vertical changes in echo clouds in different forest site types. One 
explanation for the significance of vertical indicator characteristics may be that the proportion 
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of deciduous trees, which differ from spruce in the shape of their crowns, for instance, is often 
higher in more fertile forests. It was also observed that the intensity value correlated positively 
with the number of deciduous trees. One explanation for this could be that the laser pulse is in 
the near-infrared part of the spectrum and therefore reflects more strongly from deciduous 
canopies. 
  
One advantageous property of the k-NN estimator is its ability to utilise a high number of 
explanatory variables, so that it uses data efficiently. In most of the cases when classification 
failed the resulting class was, however, in the “nearby” classes with a most similar tree species 
structure and silvilcultural recommendations corresponding to the correct forest type class. This 
result is worthwhile because it shows that ALS data and the k-NN non-parametric classifier are 
suitable for forest site type classification in general. Mistakes in the determination of forest site 
type classes are also possible in a forest inventory by stands, especially in borderline cases. In 
general, nearest neighbour methods are sensitive to the reference data, and biased estimates are 
often obtained for a forest stand with counterparts that are missing from the reference data. 
More emphasis should therefore be placed on the process of choosing the reference data. 
 
The k-NN method was applicable to the selection of mature forests site types, and the results 
show that the success rates were moderate, varying from 54 to 58%. In many cases the 
characteristics used in the forest site type classification were so diverse that at this point it was 
not possible to say whether the subjective stand-wise inventory technique or the objective ALS 
data-based method provides more reliable results. One issue to be also considered is the 
variation within forest stands. It would be possible in future work to divide the stands into more 
homogeneous “micro-stands” or grids, and apply them as the basic units for forest site type 
classification. An overall forest site type map could then be produced by combining adjacent 
grids or micro-stands. In addition, digital aerial images and digital terrain models could give 
valuable additional information for classification purposes. Moreover, our method based on the 
vertical distribution of vegetation and can therefore be used in other vegetation zones where the 
ALS is applicable (e.g., no echoes originate from the ground in dense rain forests). However, 
further studies are needed to ensure the applicability of the method to different local conditions. 
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Abstract 
 
Precise forest inventory and mapping are needed for supervising the different functions of the 
forest (management, planning, biodiversity and carbon stock). The recent improvements in 
remote sensing tools in terms of precision allow the achievement of forest inventory at single 
tree level close to total field inventory. Based on an individual tree crown (ITC) forest inventory 
method using airborne images, the approach has been extended for deriving tree mensuration 
parameters (height and stem volume) thanks to LiDAR data. This methodology has been tested 
in south-eastern Belgium over 1500 hectares of forest combining airborne image, LiDAR and 
field measurements. Forest map and inventory have been produced with information on species, 
density, height, basal area and stem volume. Based on a stratified random sample, the overall 
accuracy of the tree crown discrimination of eight tree species have been assessed to 85 %. 
Forest mensuration parameters have been compared to field measurements over coniferous and 
deciduous stands with high precision in coniferous. Height estimations from LiDAR have been 
compared with ground-based laser-scanning over two stands, proving the robustness of LiDAR 
data over field measurements. These results will still be improved by the development of tree 
mensuration models dedicated to remote sensing approach and better exploitation of LiDAR in 
tree crown delineation processes. 
 
Keywords: Forest mapping, Remote sensing, Image classification, Terrestrial laser-scanning, 
Forest management, Digital orthophotos, Stem volume, Basal area 
 
 
1. Introduction 
 
Forestry requires more and more precise inventory associated with forest map in order to guide 
forest management (wood selling, expertises, appraisal and monitoring), for forest planning 
(assessment of stem volume and its distribution) and specific applications including 
environmental monitoring (natural habitat description for specific management), wood energy 
and carbon stock. Classical forest inventory methods based only on field measurements are 
either (1) statistical inventory based on sample plots or (2) total field inventory. The first 
approach is generally adopted for large regions. However, spatial distribution of volume and 
tree species is lacking and the precision of estimated forest parameters is generally not sufficient 
for precision forestry. The second forest inventory method produces detailed information on 
forest stocks but is time-consuming and thus limited to very limited areas. 
 
Thanks to recent improvements in remote sensing technologies, tree crowns can now be 
distinguished thanks to the very high spatial resolution of airborne or satellite images. The 
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semi-automatic Individual Tree Crown (ITC) forest inventory developed by Gougeon (1995) 
has already proved its efficiency for forest inventory in North America. But, until now, this 
approach has not been assessed over European forests for operational forest management.  
 
The real interest of single tree forest inventory is the estimation of forest mensuration 
parameters including height, basal area and stem volume. The measurement of these parameters 
on the field is quite hard and expensive over large areas. Light Detection And Ranging (LiDAR) 
instruments provides Digital Surface Model (DSM) and Digital Terrain Model (DTM) with high 
precision (below 15 cm). This is an interesting alternative for deriving tree measurements, often 
difficult to measure on the field. Several researches have been done for assessing LiDAR data 
(e.g. Maltamo et al. 2004; St Onge et al. 2004). Leckie et al. (2003a) have combined 
high-density LiDAR (2 points by m²) and multispectral imagery using individual tree crown 
analysis over small Douglas-fir plots. They found that heights derived from LiDAR were 
underestimated versus ground reference with an average error of 1.3 m. The estimation of other 
forest mensuration parameters such stem volume and basal area is quite more complex and can 
be done by at different level, (1) stand level or (2) tree level. A new approach for estimating 
basal area and stem volume based on canopy geometric model is proposed by Chen et al. (2007). 
However, this efficient approach has been evaluated with only one tree species at plot level. 
Dedicated relations between tree crown and stem volum to such applications have been 
investigated but they are generally region-specific (Kalliovirta and Tokola 2005). At single-tree 
level, regional allometric equations (Dagnelie et al. 1999) have been produced but they have not 
been assessed yet with remote sensing data. 
 
The objective of this study is to develop an operational method for estimating forest 
mensuration parameters based on an individual tree crown forest inventory method using 
remote sensing. This approach should combine mapping and inventory at single tree level over 
large areas using remote sensing technologies including airborne images, multi spectral analysis 
and LiDAR surveys, coupled with optimized field data collection by local teams. The 
performance of this methodology will be assessed over Belgian forests using data from airborne 
data acquisition and field survey. 
 
2. Materials and method 
 
2.1. Study area 
 
The study area is located in south-eastern Belgium (50° 12’N; 5° 41’ E). Forest covers about 
1500 ha which accounts for 85% of the region area. The altitude of the study area ranges from 
400 to 600 meters. The study region includes around 650 forest stands with average stand area 
of 2 hectares. The forest consists of mixed deciduous trees (Fagus sylvatica and Quercus spp. as 
dominant tree species) and coniferous trees (Picea abies and Pseudotsuga menziesii as 
dominant tree species). This region has been selected given its accessibility and stand diversity 
(coniferous and deciduous, small and large stands). 
 
2.2 Data acquisition 
 
2.2.1 Airborne survey and pre-processing 
 
One airborne survey was performed for both image and LiDAR acquisition with Falcon II 
system. This combined acquisition limits aerial flight costs and increase the data consistency 
having the same flight configuration. However, an offset should be found for defining 
appropriate acquisition period, between leaves on (for reliable trees species discrimination) and 
leaves off (for producing reliable DTM). The most appropriate period was selected at the start of 
vegetation period for having leaves of deciduous trees but not to dense for acquiring sufficient 
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LiDAR points from the ground. Over the study region, the flight survey was performed in May 
2006 with average flight altitude around 1200 meters.  
 
The airborne image, acquired from line-scanner camera, includes four spectral bands (Blue, 
Green, Red and Near-InfraRed (NIR)) with 50 cm spatial resolution. High quality airborne 
image is crucial for tree crown forest inventory as this image is the key element for tree crown 
delineation and tree species classification. The airborne survey should be done in clear sky 
weather conditions and limited time period. These two conditions are crucial in order to obtain 
aerial image with homogenous radiometry. After data collection, two pre-processings steps are 
required to produce digital orthophotos. First, the orthorectification is based on the DSM 
produced by the LiDAR and some reference points from the field. The precision of planimetric 
accuracy relies on these points. Over the study area, the absolute accuracy of the digital 
orthophotos was below 0.5 m. Secondly, relative radiometric corrections have been performed 
between flight bands in order to obtain homogenous radiometry over the whole region of 
interest.  
 
LiDAR data were acquired with average point density of 4 points by m² and height accuracy 
below 15 cm. The sensor is a discrete return LiDAR system with laser pulse rate of 83 000 Hz. 
Based on point clouds, both DSM and DTM have been produced at 1 m spatial resolution. The 
grid used for processing stages has a higher resolution than the final grid. The elevation 
assigned to the final grid shall be the most relevant, namely the highest value for DSM and the 
lowest value for DTM (Löffler 2003). Due to acquisition in “leaves on” conditions, the raw 
DTM has been interpolated using bilinear interpolation over zones without ground altitude 
information. The Canopy Height Model (CHM) has been derived from the subtraction between 
DSM and interpolated DTM. 
 

 
 

Figure 1: Extract of the airborne data acquisition including LiDAR and imagery 
 
2.2.2 Field survey 
 
Field measurements are required for calibrating the forest inventory method to the region of 
interest. However, the number of sample plots is considerably reduced compared to a classical 
systematic sampling thanks to preliminary photo-interpretation of the aerial image. Plots are 
visually selected in order to cover all species and age classes of interest and to be dispersed over 
the study area. The main purpose of this field survey is to define training sites for the image 
classification. These plots also provide information for forest mensuration estimation using 
LiDAR. Sample plots are circular with average diameter of 40 m (0.12 ha) where its center is 
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localised using GPS. Over the study area, the field campaign has been done in October 2007 
over 42 plots. 
 
2.3 Image processing 
 
The methodology of image processing for identifying tree crowns and their species has been 
adapted from Gougeon (1995, 2000). This method called Individual Tree crown (ITC) analysis 
is based on the delineation of each tree crown prior to tree-species classification. This 
semi-automatic approach is divided in three separate steps: tree crown delineation, classification 
and estimation of some forest inventory parameters.  
 
The tree crown isolation is based on a valley approach which separates shaded areas from sunlit 
areas and then isolates tree crowns based on intensity gradient (Leckie et al. 2003b). This 
algorithm starts with low value areas and follows any valleys in image brightness. Large shaded 
areas without trees are also removed based on specific masks in order to avoid false tree tops. 
Valleys are also created between tree crowns, thus producing segments of valley and crown 
material. Finally, the boundaries of each segment of crown material are refined to produce 
segments or isolations (isols), which generally represent tree crowns and sometimes clusters of 
crowns. 
 
Supervised classification is performed for identifying tree crown species and producing the 
ITC forest map based on tree crown delineation. Spectral signatures are defined using 
information from field survey. The multispectral information of each isol is summarized and 
compare with spectral signatures. The algorithm is based on maximum likelihood classifier 
using minimum and maximum thresholds. The purity of these spectral signatures is crucial 
because it affects the accuracy of the classification. In order to reduce inter-classes confusion, 
the study region can be segmented in sub-regions based on stand composition, topography or 
radiometry differences. Spectral signatures for five coniferous classes (Spruce, Douglas-fir, 
Larch, Fir and Pine) and four deciduous classes (Beech, Oak, Birch and other deciduous trees) 
were computed in study area for producing the ITC forest map. 
 
Several stand-based forest inventory parameters can be derived directly from this ITC forest 
map without LiDAR information. The forest stand can be delineated from the aerial image or 
provide by other GIS data. The estimated parameters include density (number of trees by 
hectares), canopy closure (in percent), species distribution (in cover percentage), and average 
tree crown diameter (in meters). This information is provided both globally at stand level or by 
tree species included in the stand. 
 
2.4 Forest mensuration estimation 
 
LiDAR gives information about forest canopy structure which are used for estimating forest 
mensuration parameters including dominant height, basal area and stem volume. These 
parameters are derived thanks to relations between remote sensing data and field measurements. 
Two types of approach have been assessed using the CHM produced from LiDAR data. 
Relations can be computed at (1) stand level or (2) tree level defined by the ITC tree crown 
delineation.  
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2.4.1 Stand level approach 
 
The stand level approach consists in global estimation of forest mensuration parameters for each 
forest stand. Dominant height is estimated on the field by the height of the 100 higher trees by 
hectares. In order to derive height of the dominant tree over each 100 m², a new CHM, called 
maxCHM, is computed on 10 meters raster cells and deriving the maximum height value. Based 
on stand delineation, dominant height is derived from the mean value of all maxCHM cells 
included in the stand polygon. 
 
Basal area and stem volume are estimated using a new metric called canopy geometric volume 
defined by Chen et al. (2007). This metric is computed by the geometric volume for a polygon 
under the CHM. The regression model is calibrated with field inventory based on local tree 
mensuration method compared on canopy geometric volume based on LiDAR over sample 
stands. Over the study area, two different regressions (one for coniferous and one for deciduous) 
have been derived. 
 
2.4.2 Tree level approach 
 
Starting from the tree crown delineation produced by the ITC classification, tree mensuration 
parameters can be estimated at single tree level using LiDAR information. The estimation of 
tree height can be done by intersecting tree crown delineations over the CHM and deriving the 
highest height value under tree crown shape. Allometric equations are required to derive basal 
area and stem volume from the tree crown diameter. Several relations are provided by Dagnelie 
et al. (2007) for estimating DBH from tree crown diameter and stem volume from DBH and 
height. It is important to note that these allometric equations have been derived from 
on-the-field measurements which were not dedicated to remote sensing applications. The 
species information required for these species-specific relations is provided by the ITC 
classification. Thanks to these relations, basal area and stem volume are computed for each tree 
and summarized by stand. 
 
2.5 Field validation 
 
In order to assess the performance of this methodology, a field survey has been performed in 
November 2007 over several sample plots and some entire stands. The ITC classification has 
been first assessed by visual interpretation using random stratified sampling of 265 sites. A 
subset of 37 validation sites, different from training sites, focused on sites hard to qualify by 
photo-interpretation, has been described on the field. For assessing the accuracy of tree 
mensuration parameters, total inventories have been performed on entire stands, both coniferous 
and deciduous. Total inventories were preferred to plot inventory in order to avoid errors due to 
extrapolation of plot information. 
 
The assessment of tree height estimations is complex and three methods of height estimation 
have been compared. First, height can be estimated thanks to LiDAR data extracted at tree top. 
Second, a classical and rapid method for height measurement on the field is performed with a 
laser instrument called vertex. Finally, height can be measured thanks to terrestrial laser scanner 
survey providing 3d information from the ground. 
This last technique of height estimation can be considered as the reference as it provides very 
high precision measures. The equipment included Leica HDS 300 laser-scanner, theodolite and 
RTK-GPS. The measurements have been performed over two different stands, coniferous and 
deciduous. The laser-scanner point density is about 400 points by m² at a distance of 30 meters 
from the laser source. The theodolite measurements provide information of the tree location at 
breast height. The laser-scanner information has been analysed for deriving tree heights which 
have also been estimated by vertex instrument on the field. 
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4. Results 
 
4.1 Individual tree crown forest inventory 
 
A detailed forest inventory has been produced over an operational study case in eastern Belgium 
(Figure 2). This individual tree crown inventory is georeferenced, identifies tree location and 
species and provides tree mensuration estimations. Information is summarized at stand level for 
forest management and stored in database linked to cartographic data. Among numerous forest 
parameters provided by the inventory, tree species distribution, stem density, dominant height, 
stem volume and basal area are the main parameters. The estimation accuracy of these 
parameters has been assessed based on field validation survey. 

 

 
 

Figure 2: Forest map extract showing tree crown with color linked to species and stand-based forest 
mensuration parameters (Area in hectares (ha); Density (Den) in trees by ha; Dominant height (Hdom) in 

m; Volume (Vol) in m³ by ha and basal area (G) in m² by ha) 
 
4.2 Tree species classification 
 
The performance of the ITC classification has been assessed by comparing its tree crown 
species with trees analysed on sample field plots. Eight tree species, 5 in coniferous and 3 in 
deciduous, have been distinguished. High classification overall accuracy (85 %) has been 
obtained by the ITC classification assessed on more than 2000 tree crowns (Table 1). The 
accuracy is better for coniferous which have lower omission and commission errors than 
deciduous trees. 
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Table 1: Confusion matrix from the accuracy assessment of the ITC classification using field reference on 

sample plots (based on tree crown number; C.E. = Commission errors)  
 Field reference         

ITC Classification SP DO LA FI PI BE OA BI OD Total C.E. (%)
Spruce - SP 729 51  8  11 1   800 8.9 

Douglas-Fir -DO  448  14  1    463 3.2 
Larch - LA   86       86 0.0 

Fir - FI    167      167 0.0 
Pine - PI 8    136  11   155 18.6 

Beech - BE 139 2 7 8  21 2 4 7 190 88.9 
Oak - OA 5 3 1   2 25 12 14 62 59.7 
Birch - BI        230  230 0.0 

Other Decid. - OD  12        12 100.0 
Total 881 516 94 197 136 35 39 246 21 2165  

Omission Errors 
(%) 17.3 13.2 8.5 15.2 0.0 40.0 35.9 6.5 100.0  85.1 

 
 
4.3 Tree mensuration estimation 
 
Estimations of forest parameters using stand level and tree level approaches based on remote 
sensing data have been compared to total field inventory over two representative stands, one 
coniferous and one deciduous (Table 2). The assessed parameters included stem density, 
dominant height, stem volume and basal area. The deciduous stand has been evaluated using 
only the stand level approach given the lack of tree mensuration models for some species which 
are required for the tree level approach. 
 
For both stands, tree density measured on the field was very close to measurements by the ITC 
approach. Dominant height was also correctly estimated by the ITC approach and was even 
better using tree level approach than the stand level. The analysis of the other tree mensuration 
parameters, namely basal area and stem volume, revealed large differences between each forest 
inventory techniques. Stem volume of coniferous stand estimated from ITC-Stand was very 
close from field estimations. These differences are larger for the deciduous stand than for the 
coniferous one.  
 
Table 2: Comparison of forest mensuration parameters estimated by the stand-level (ITC-Stand) and tree 

level (ITC-Tree) approach with total field inventory data from two validation stands. 
 

Stand Coniferous (8.6 ha) Deciduous (2.5 ha) 

Inventory method ITC-Stand ITC-Tree Field ITC-Stand Field 

Density (nb trees/ha) 519 519 512 120 119 

Dominant height (m) 25.1 25.6 25.8 28.5 28.2 

Basal area (m²/ha) 28.5 24.4 31.4 34.1 22.3 

Stem volume (m³/ha) 343 244 340 171 136 
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The tree level approach has been evaluated by comparing ITC-Tree estimations with field 
measurements. Large differences were found for basal area and stem volume estimations. The 
Diameter Breast Height (DBH) classes distributions have been analysed for both ITC-Tree and 
field inventories (Figure 3). The shift of DBH classes distribution of ITC-Tree to lower values 
can be explained by underestimation of the crown diameter having a direct impact on the 
estimations of basal area and stem volume. 
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Figure 3: Comparison of stand distributions of Diameter Breast Height (DBH) derived from the ITC-Tree 

inventory and the field inventory over the coniferous validation stand. 
 
 
4.4 Tree height comparison with terrestrial laser-scanner 
 
The comparison of tree height estimations from LiDAR and field measurement based on vertex 
instrument have been compared with information extracted from high precision terrestrial laser 
scanner survey (Table 3). This comparison shows discrepancies in height estimations. These 
differences and RMSE are lower using LiDAR (mean height difference below the meter) than 
using vertex on the field. This proved the interest of using LiDAR for more robust height 
estimation required for reliable forest mensuration. Finally, these differences are smaller for 
coniferous than for deciduous.  
 
Table 3: Comparison of tree height estimations based on (1) airborne laser scanner (LiDAR), (2) Vertex 

with terrestrial laser scanner measurements (RMSE: Root Mean Square Errors). 
 

 Coniferous (0.14 ha, n=14) Deciduous (0.44 ha, n=44) 

 
Mean height 

difference (m) RMSE 
Mean height 

difference (m) RMSE 
1) Airborne - Terrestrial laser scanner 0.31 1.45 -0.71 3.95 
2) Vertex - Terrestrial laser scanner -1.18 2.09 -1.61 5.24 

 
 
5. Discussion and conclusion 
 
The originality of the present study is the integration of several new technologies in an 
operational tool for producing georeferenced forest inventory. The developed methodology 
includes individual tree crown forest inventory, optimized field survey with GPS and LiDAR. 
This first assessment of ITC technique over European forests is promising given its high 
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classification overall accuracy (85%) for eight tree species. This study also has evaluated the 
potential of LiDAR data for deriving forest mensuration parameters based on relations between 
remote sensing and field information. Several parameters including stem density, dominant 
height, stem volume and basal area have been estimated with good accuracy at stand level by 
comparison with ground truth measurements. 
 
This forest inventory methodology could still be improved at tree level for reaching higher 
precision thanks to new technologies or dedicated relations. Classification could use new 
hyperspectral sensors in order to cover larger range of tree species. The integration of LiDAR 
data together with the aerial image in tree crown isolation could also improve tree crown 
delineation and thus related forest mensuration estimation. Finally, specific field measurements 
are needed for developing tree mensuration models dedicated to remote sensing technologies. 
The proposed methodology is not focused only on forest management but also provides 
valuable information for several applications as the assessment of biodiversity reduction or the 
integration of the global warming impacts in adaptable forest management system. 
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Abstract 
 
A full automated classification of tree species was tested on single tree level. This approach 
intends to classify without any parameter input or predefined knowledge. In the forerun it was 
therefore necessary to build algorithms which combine the LiDAR data based 2D single tree 
delineation with the spectral information from colour infrared (CIR) images. During the tree 
species classification the LiDAR based classification is improved by means of spectral 
information. The overall accuracy of the classification is more than 83 % for the tree types 
beech, oak and conifer and more than 90 % for deciduous trees and conifers. Splitting LiDAR 
based single tree polygons by spectral features improves the results by 7.42 %. 
 
Keywords: tree species, single tree delineation, laser scanning, aerial photographs, data fusion 
 
1. Introduction 
 
Single tree based parameter extraction from airborne laser scanner (ALS) data is of increasing 
importance for forestry applications. Under special circumstances and for certain questions 
single trees are the only reliable units to work on. Where several tree species with a different 
growing behaviour occur within one stand, like in temperate forest, a stand-wise approach is 
often very difficult and needs a lot of a-priori knowledge (Koch et al. 2006). The tree species 
itself is highly correlated to a large number of other forestry parameters. It is a pre-requisite 
necessary to derive information like biomass and tree damage. 
 
Tree delineation provides the system with objects that can be further classified. Numerous 
approaches have been undertaken, which make use of different data types and techniques. First 
techniques were based on multispectral data and are still being developed (Wang et al. 2004, 
Leckie et al. 2005, Wang et al. 2006). LiDAR predicated methods can be subcategorized by the 
usage of first and last pulse data, which mainly find use in 2D delineations (Koch et al. 2006, 
Tiede et al. 2006), and full waveform data, which allows to gain more exact 3D models of the 
crowns (Rossmann et al. 2007, Wang et al. 2007). In comparison there are only few attempts, as 
done by Leckie et al. (2003) and Wolf et al. (2007), to combine multispectral and LiDAR data. 
 
Comparable data types have been used for the classification of tree species on single tree level. 
Multispectral based methods mostly build on thresholds of the spectral data or derived 
information (Koch et al. 2002, Leckie et al. 2005). Bohlin et al. (2006) work with crown 
templates which are matched to the trees on the image. Most of these operations use training 
samples and are therefore semiautomatic. Liang et al. (2007) and Reitberger et al. (2006) 
achieve good results in distinguishing coniferous and deciduous trees with LiDAR based 
attempts. Ørka et al. (2007) test the significance of intensity from multiple return data for 
classifying tree species. One of the few authors who tested a combination of laser data and 
multi-spectral images were Persson et al. (2006). They achieved an improved accuracy due the 
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combination. Most procedures have in common that they work well for a number of about three 
species. The average accuracy ranges from 50 to 80 % of correctly classified objects from which 
the best results are achieved in distinguishing coniferous and deciduous trees. 
 
The method developed in this study is structured in three main steps. (1) First the LiDAR based 
delineation of single trees is conducted with an algorithm developed by Koch et al. (2006). (2) 
Second the full automated tree species classification is done with spectral data and (3) third the 
LiDAR based delineation is corrected. 
 
2. Method 
 
2.1 Study areas 
 
The first study area is located in the forest district ‘Milicz’ in Poland. The method was 
developed on a test site with a side length of 500 m which covers an area with the most variety 
and best mixture of tree types (see Figure 1). The algorithm was later tested on a second site 
with same dimensions. It contains four sample plots with field measured trees, but is 
characterised by more difficulties like large shadowed areas and more tree height levels. 
 

 
Figure 1: Left: location of the work sites in the ‘Milicz’ forest district, 
middle: CIR aerial photograph of the test site, right: CIR aerial photograph of 
the reference site with sample plots. 

 
A second study area with a side length of 500 m was selected in the black forest in southern 
Germany close to the city of Freiburg. The developed method was severely tested under very 
different conditions and with good single tree reference data. In comparison to the Polish area it 
is characterised by high relief energy of 242 m in a low mountain range, a different time of the 
year and a lower resolution of the CIR images. Both are mixed forests. 
 
2.2 Data 
 
On the Polish sites LiDAR data and multispectral images have been captured simultaneously 
with a Falcon II system from TopoSys in 2-3 May 2007 while trees being in a full on-leaf state. 
The LiDAR raw data consists of first- and last pulse reflections with an average point density of 
7 points/m². Due to the structure of the sensor, the points are irregularly spaced in a line pattern. 
CIR true ortho images with 25 cm pixel resolution were used as spectral information source. 
Further within 25 sample plots reference data on single tree level was forthcoming. Every 
circular plot has a radius ranging from 7.98 m to 12.62 m depending on the stand’s age and was 
measured in the field in 2006. The contour of each tree crown was obtained from the ground by 
orthogonal surveying eight vertices of its borderline. Other parameters are the crown’s layer in 
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the vertical structure, the tree species and tree height. Because only crowns were used that are 
visible from above, the hidden border polygons were deleted manually. We chose different sites 
for algorithm development and referencing due to the irregular distribution of the sample plots. 
From the LiDAR raw data three different surface models with 0.5 m and 1 m resolution were 
calculated. These are the digital terrain model (DTM), the digital surface model (DSM) and the 
vegetation height model (nDSM). Filtering and interpolation of the raw data was performed 
with the “active Contour Algorithm” implemented in the software package TreesVis (Weinacker 
et al. 2004). 
 
The data for the German study area was captured with a Falcon I system from TopoSys in 2002. 
Last pulse LiDAR reflections were acquired on 4 March and first pulse together with spectral 
data on 22 July. Average point density is 10 points/m² and CIR true orthophotos have a pixel 
resolution of 50 cm. A DTM, DSM and nDSM with 1m resolution were calculated from the 
LiDAR raw data. As reference data tree crowns were manually digitised within a 200*200 m 
field from stereo images taken in June 2001. The digitisation was transferred into 2D with 
higher trees covering lower trees and showing the tree outlines like seen from above. A visual 
classification of the tree types broad-leaved and conifers was carried out. Further subdivision of 
the species was not possible, but due to the dry conditions of midsummer damaged deciduous 
trees could be spectrally separated. From the forest management plan the following species 
composition on the test site is given: Broad-leaved trees 57.84 % with beech 48 %, oak 8 %, 
sycamore 2 % and conifers 42 % with fir 27 %, spruce 4 %, douglas fir 10 %. 
 
2.3 LiDAR based single tree delineation 
 
The 2D single tree delineation was conducted with a parameter reduced program executing the 
algorithm developed by Koch et al. (2006). The input data given to this program are the DSM 
and the DTM. Setting program internal height class thresholds for trees was abdicated and 
substituted by a new method to improve the results. Therefore a supplemental program module 
was developed in C++ with use of the Halcon 8.0 image processing library (MVTec 2007).  
 
From the nDSM a histogram of the gray values was calculated and its local minima were used 
as thresholds for the height classes. In the case of the Polish test site, two classes could be 
separated at a height of 2114 cm (see Figure 2 and Figure 3). 
 

 
 

Figure 2: Local minimum separating height classes in 
the gray value histogram of the nDSM. The abscissa 
indicates the gray values (heights in cm), the ordinate 
indicates the number of occurrence for every value 
interval. 

 
Figure 3: nDSM classified in two 
height classes. High regions are white 
low regions black colored (the top left 
corner is out of the valid area and 
defined as no data). 

 
The 2D delineation program is then run with a 0.5 m and a 1 m resolution DSM. The more 
generalized lower resolution DSM achieves better results for the high trees and the higher 
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resolution DSM for the low trees. Larger crowns are represented by more pixels and are 
therefore more structured. A DSM with a lower resolution works similar like a higher smoothing 
of the crowns. The delineation algorithm (Koch et al. 2006) itself works by finding local 
maxima on a Gaussian smoothed image, from which regions are extended until neighbouring 
pixels with a lower or the same height value are met. From this first approximation of the tree 
shape several morphological corrections are conducted. Finally the actual crown-edge is 
determined by separating the tree from neighbouring canopy gaps. A vector starts from the tree 
top to each border point and stops at the inflexion point or at a local minimum. 
 
As result one delineation for each DSM resolution is achieved. Together with the determined 
height threshold these are used as input images for the new algorithm. Each tree is defined as a 
region with a certain height value. Referring to this, the tree regions are taken from the 
concerning delineation (see Figure 4 and Figure 5) and copied into a new image (see Figure 6). 
The result allows single lower trees to be placed between higher trees which is not the case 
when large connected height level regions are used instead. After combining the tree regions 
several small regions, derived from intersections, occur at the borderlines. They are iteratively 
reallocated to neighbouring larger polygons corresponding to spectral, height concerning and 
morphological conditions. If these requirements are fulfilled the small region is allocated to that 
neighboured region with the least spectral difference, which is defined as the mean value of all 
spectral bands. 
 

 
Figure 4: Delineation with 0.5 
m DSM 

 
Figure 5: Delineation with 1 m 
DSM 

Figure 6: Combined delineation 
for both height classes 

 
On the German study area only one main height level occurs and all the delineation is done with 
a 1 m resolution DSM. 
 
2.4 Tree species classification 
 
The LiDAR data derived single tree polygons are classified by species according to their 
spectral features. In advance some pre-processing has to be done. To enhance the contrast of the 
CIR image its histogram is linearised after equation (1) (Gonzales et al. 2002, p 115). 
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kr = pixel in the input image, ks = pixel in the output image, k = discrete pixel value, L = total number 

of possible gray levels in the image, rp = probability density function of variable r , n = total number 

of pixels in the image, kn = number of pixel that have gray level kr  
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Then the spectral bands are separated into near infrared (NIR), red and green and further 
transformed into the channels hue (H), saturation (S) and intensity (I). The HSI colour model is 
used due to its ideal applicability to describe colours intuitively to human perception. Hue 
describes the pure colour, like yellow or red, saturation indicates to which degree the pure 
colour is diluted by white light and intensity is an achromatic measure of what the human 
interpreter calls brightness (Gonzales et al. 2002, p 317). Prior to classification the tree 
polygons are fitted to the usable spectral data and too shaded areas are removed. This is done by 
subtracting pixels with an intensity value between 0 and 100 from the tree polygons. Colors 
within that intensity interval are defined to be too dark for any interpretation. The contour of the 
resulting regions is smoothed with a morphological opening operation. 
 
The classification itself is divided into two steps (see Figure7). Within both, classes are 
separated relative to histogram features and the according tree species is assigned later due to 
the reference data. 
 

 
 

Figure 7: Hierarchy of the tree species classification 
 
During the first cycle two classes can be separated at the local minima from the due-channel’s 
histogram (see Figure 8). The thresholds are determined automatically by smoothing the 
histogram with a Gaussian function as long until the number of local minima is appropriate. 
 

 
 

Figure 8: First classification 
threshold. Smoothed histogram of 
the hue-channel with gray values 
on the abscissa and frequency on 
the ordinate. Class 1 and class 2 
are separated at the local minima 
and indicated by color. 

 
Figure 9: Second classification threshold. Global maxima from 
single polygons. The position in the left diagram belongs to class 
2.1, the position in the right to class 2.2. Abscissa and ordinate 
same as in Figure. 

 

 
The second classification cycle subdivides class two as shown in Figure 9. It is carried out by 
calculating the global maximum position of the NIR band within each tree polygon (see Figure 
9). From these values a function is derived that describes the frequency of the maximum 
distribution for all trees. The discrimination threshold is gained from the local minimum of the 
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automatically smoothed function. 
 
On a first approach the classification results were visually compared to the reference sample 
plots located on the reference site for the Polish dataset and visually interpreted based on the 
known species composition for the German dataset. From this comparison it was possible to 
allocate all classes to certain tree species or compositions of them. The resulting classes from 
the first classification match with the following species: 
 
Poland: Class 1: oak/hornbeam Germany: Class 1: deciduous healthy 
 Class 2: beech/conifers  Class 2: conifers/ dec. damaged 
 
The subdivision of class 2 refers to the following species: 
Poland: Class 2.1: beech Germany: Class 2.1: deciduous damaged 
 Class 2.2: conifers  Class 2.2: conifers 
 
Finally a total of 3 classes could be separated (see Figure 10). 

 
Figure 10: Final tree species classification (Poland). Left figure shows the complete test site, right figure 

shows a subset. 
 
2.5 Multispectral correction of the single tree delineation 
 
The original LiDAR-based 2D delineation was improved and corrected by multispectral data. 
These corrections are calculated simultaneously with the spectral adaption of the polygons and 
the species classification. 
 
While fitting the LiDAR derived polygons to the spectral information certain polygons are 
divided into two and more crowns. This happens when a polygon contains two or more crowns 
which are divided from their neighbors by a gap in spectral intensity. Small residual connections 
between the new splitted polygons are broken by a morphological opening operation in 
advance. 
 
The crowns of mature deciduous trees are often interlocked and not always possible to delineate 
with geometrical information. On the Polish test site this was the case with the crowns from 
oaks and beeches. Due to the spectral domain of each species, which is detected automatically 
in the hue channel, it is possible to separate beeches from oaks as well as conifers from oaks 
within one polygon (see Figure 11). On the German study area it was the same for the 
corresponding classes. For separation further conditions must be fulfilled and a minimum 
relative area of at least 20 % from the original polygon is required. A series of morphological 
opening and closing operations smoothes the borders and fills gaps within the new polygons. 
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Figure 11: Separation of tree crowns by information of the hue channel (Poland). Here the beech crown is 
delineated from the neighbored oaks. The blue arrows point to the LiDAR derived polygon on the left and 

the separated polygons on the right. 
 
On the German study area the problem occurred that different spectral regions can be within a 
single tree crown. This is due to partly damaged tree crowns or differences in illumination. If 
the algorithm would be run without an adaption to this situation, single LiDAR based polygons 
could be divided though they only contain one crown. Because the differences within one crown 
are in most cases significantly smaller than between two crowns of different classes a sensitivity 
factor was implemented. This factor refers to a minimum distance of the mean spectral values 
from divided subparts of a polygon. It ranges from 0 (no reduced sensitivity) to 1 (completely 
reduced sensitivity) where polygon splitting is not possible anymore. If it is undercut the two 
neighbored subparts are merged again (see Figure 12). 
 

 
Figure 12: Left figure shows a split crown when not using a reduced sensitivity. Right figure shows the 

same crown with half sensitivity (Germany). 
 
2.6 Assessment of the classification 
 
The tree type classes are determined automatically by features of the image histograms. An 
allocation to certain species and an accuracy assessment is done with help of the reference 
sample plots in the case of the Polish study area and for the German area by the visual 
interpreted stereo delineation. Therefore the developed algorithm was executed on the reference 
sites and the classified crowns are compared to the species or damage degree of the reference 
crowns. Because the automatic delineation doesn’t fit completely to the reference delineation in 
all cases, it is visually determined to which reference polygon they accord. If a polygon is not 
possible to assign this is recorded in the statistics and it is not further considered. 
 
On the German test site additionally the single tree delineation was verified. According to 
Leckie et al. (2003) six grades of matching with the corresponding reference crowns (refs) were 
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defined for the automatic isolated crowns (isols): perfect match (one-to-one correspondence), 
good match (one-to-one, but overlap less than 50 %), grouped (isols with more than one ref), 
split (more than one isol per ref), commission error (isol without ref) and not detected (ref 
without isol). 
 
3. Result and discussion 
 
The main aim of this study was to use LiDAR data based single tree delineation for a fully 
automated multispectral tree species classification. Due to the adaption of the LiDAR polygons 
to the spectral data and the following classification procedure it was also possible to improve 
the delineation results. For the Polish site the delineation improvement was only evaluated 
visually as stated above and occurs in every polygon were the described conditions are fulfilled. 
For the German site verification was conducted with 579 reference crowns on an area of 
200*200 m. 
 
The accuracy assessment of the tree species classification showed an overall accuracy of 
83.87 % of correctly classified polygons for the Polish and 90.79 % for the German site. The 
total number of delineated trees is 31 with 26 correctly classified and 467 with 424 respectively. 
Two reference polygons on the Polish and 31 on the German site were not assignable. The 
confusion matrices in Table 1 and Table 2 additionally show the wrong classified crowns and 
their classes. 
 

Table 1: Total statistics for accuracy assessment (Poland) 
 

 
Table 2: Total statistics for accuracy assessment (Germany) 

 

 
In both matrices most frequent failures happen in classifying class 2.1 (beech/deciduous 
damaged) as class 2.2 (conifer). This shows that the threshold for distinguishing classes in the 
NIR band seems to be some weaker than the first classification with the hue band. The current 
state of algorithm development needs a forest composition with all three tree types being 
present and a minimum contingent of about 20 % for each species. This value is empirical and 
not fixed. It depends on the overall gray value distribution of the used images. 
 
Two definite and stable spectral features have been determined which allow a classification of 
mixed forest even under different conditions. The content of the derived classes must be 
referenced on the used dataset whereas the base classes “conifer” and “deciduous” seem to be 
constant. Since full automation was the aim of this study no standard classification methods like 

 Automatic classification 
Class Oak/hornbeam Beech Conifer ∑ 

Oak/hornbeam 16 0 1 17 
Beech 1 8 3 12 

Conifer 0 0 2 2 

Reference 
data 

∑ 17 8 6 31 

 Automatic classification 
Class Deciduous healthy Deciduous damaged Conifer ∑ 

Deciduous healthy 221 7 5 233 
Deciduous damaged 4 68 18 90 

Conifer 4 5 135 144 

Reference 
data 

∑ 229 80 158 467 
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nearest neighbor were used. Most of them need interaction by setting training samples. 
 
The LiDAR based single tree delineation shows an overall accuracy of 43.87 % when 
comparing perfect and good matches of isols to the total number of refs and 56.95 % compared 
to the total number of isols. After spectral correction of certain polygons the overall accuracy is 
51.29 % (isols from refs) and 60.37 % (isols from isols) (see Table 3). 
 

Table 3: Statistics for the single tree delineation (Germany) 
 

 
 Perfect 

match 
Good 
match Grouped Split 

Comission 
error 

Not 
detected

Total 
number 
of isols 

Total 
number 
of refs 

LiDAR 
delineation 165 89 95 95 2 16 446 579 

After 
spectral 

enhancement 213 84 79 90 6 31 492 579 
 
From the statistics an improvement of 7.42 % can be calculated when comparing the number of 
matches with the number of reference trees. Considering the low accuracy of the LiDAR 
polygons and the fact that only certain polygons are corrected this is a remarkable number. The 
low accuracy of LiDAR delineation reflects the study of Heurich (2006) who describes an 
average accuracy of 40 % with similar delineation algorithms in the Bavarian forest. Difficulties 
are made by dense forest stands and interlocking tree crowns as they occur in temperate mixed 
forest. Since the spectral improvement is applied to the LiDAR delineation it cannot completely 
change the result but it is a good tool for corrections. 
 
Further development should be invested in finding new approaches for the LiDAR based 
delineation algorithm. Spectral correction could be improved by finding more stable features for 
class separation. Maybe the spectral and the LiDAR data can be directly combined in one 
process. 
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Abstract 
 
This study investigated the potential of fusing low laser-sampling density LiDAR data with 
QuickBird panchromatic imagery for estimating stand volumes. The study area was in 
closed-canopy, mountainous Japanese cedar (Cryptomeria japonica) plantations in Japan. Stand 
volume in the area ranged from 250.5 to 913.1 m3/ha and terrain was undulating with an 
elevation ranging from 135 to 391 m above sea level. A total of 13 circular sample plots (0.04 
ha) were established and stand volume within the plots was measured as validation data for 
evaluating stand volume estimates derived from the fused data through a regression model. The 
independent variables of the empirical model were individual tree height and crown projection 
area and the dependent variable was individual stem volume of Japanese cedar. To estimate 
stand volume with the fused data, LiDAR-derived tree heights and panchromatic 
imagery-derived crown projection areas were computed for individual tree crowns delineated by 
the Voronoi tessellation. All results of this study revealed that fusing low laser-sampling density 
LiDAR data (e.g. 1 point/4 m2) with QuickBird panchromatic imagery (0.6-m resolution) would 
have great potential to estimate stand volume precisely in Japanese cedar plantations regardless 
of different footprint sizes (e.g. 0.16–0.47 m). 
 
Keywords: LiDAR, QuickBird, panchromatic, data fusion, Voronoi tessellation 
 
1. Introduction  
 
Many previous studies have revealed that small-footprint airborne scanning LiDAR (Light 
Detection and Ranging) can estimate or measure tree and canopy heights accurately in a variety 
of forest types (e.g. Hyyppä et al. 2001; Næsset 2002; Persson et al. 2002; Popescu et al. 2002; 
Holmgren et al. 2003; Yu et al. 2004; Takahashi et al. 2005a, 2008a). Although acquisition of 
high laser-sampling density LiDAR data (e.g. over 10 points/m2) in vast forests is expensive, 
such data can provide accurate information on individual tree numbers and crown properties 
such as diameter and projection area of upper-storey trees. Some research has shown the 
feasibility of estimating stem or stand volumes accurately from LiDAR-derived tree heights and 
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crown properties in some coniferous forests (Hyyppä et al. 2001; Persson et al. 2002; Holmgren 
et al. 2003; Takahashi et al. 2005b). Although the number of detected trees and the 
measurement accuracy of the properties apparently deteriorate with decreasing laser-sampling 
density, the estimates of tree heights with varying laser-sampling density data (i.e. laser shot 
spacing ranging from less than a meter to a few meters) reported in much of the previous 
research seem to be comparable with field-measured tree heights. In contrast, high spatial 
resolution satellite imagery with less than 1-m resolution, such as IKONOS and QuickBird 
panchromatic images, can cover local/regional scale forests with fine spatial resolution. As 
QuickBird panchromatic imagery has approximately 0.6-m resolution at nadir, there is a 
possibility of extracting by image processing individual tree crown properties for upper-storey 
trees with crown diameters exceeding approximately 1.8 m. Therefore, laser shots of at least 
approximately 1 point/4 m2 could hit each crown that can be identified in the panchromatic 
imagery and so provide approximate estimates of individual tree heights. Assuming that fusion 
of such low laser-sampling density data with the panchromatic imagery has potential to estimate 
stem and stand volumes adequately, we therefore attempted to estimate by data fusion stand 
volumes of Japanese cedar (Cryptomeria japonica) plantations in a variety of stand conditions. 
 
In this study, we investigated (1) the potential of high-laser sampling density LiDAR data alone 
for stand volume estimation and (2) the potential of fusing low laser-sampling density LiDAR 
data with a QuickBird panchromatic imagery for stand volume estimation. Because laser 
footprint sizes might affect the tree height estimation (Yu et al. 2004; Andersen et al. 2006; 
Takahashi et al. 2008b), LiDAR data with different footprint sizes were used for the 
investigation of (2). A previously constructed regression model whose independent variables 
were individual tree height and crown projection area and whose dependent variable was 
individual stem volume of Japanese cedar (Takahashi et al. 2005b) was used to estimate stand 
volumes.   
 
2. Method  
 
2.1 Study area  
 
The study area of approximately 75.2 ha was located in a national forest in Ibaraki Prefecture in 
central Japan (lat. 36˚ 10’ N, long. 140˚ 10’ E). More than 80% of the area is dominated by 
plantations of evergreen coniferous Japanese cedar and hinoki cypress (Chamaecyparis obtusa) 
trees, with the remainder dominated by several broadleaved deciduous tree species. Stand age in 
the coniferous forests ranged from 20 to 100 years. Terrain is undulating with an elevation 
ranging from 135 to 391 m above sea level. During the fall and winter of 2006, we established 
13 circular sample plots (0.04 ha) within the closed-canopy Japanese cedar plantations. All plots 
consisted purely of planted Japanese cedar and dense understorey vegetation consisting of 
Aucuba japonica and Eurya japonica, which are evergreen shrubs with a height of less than 
approximately 3–5 m.  
 
To locate the center of each sample plot, global positioning system (GPS) surveys were 
conducted under the static survey performance using a single-frequency ProMark2 receiver 
(Magellan, Santa Clara, CA, U.S.A.). Details of the GPS surveys are shown in Takahashi et al. 
(2008b). Within each sample plot, all trees with a diameter at breast height (DBH) > 4 cm were 
callipered. Tree heights were measured for sample trees within plots in young and middle-aged 
forests using a Häglof Vertex hypsometer (Häglof, Langsele, Sweden). For the young and 
middle-aged forests, the sample trees (> 50% of the trees within each plot) were selected with 
equal probability. Next, height-diameter curves were produced for each plot and unmeasured 
tree heights were estimated from each model. In mature forests, tree heights of all standing trees 
within each plot were measured using the hypsometer. Trees with heights exceeding the 
arithmetic mean tree height within each plot were regarded as dominant trees in the present 
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study. Individual stem volumes were calculated from tree height and DBH using standard 
two-way volume equations for Japanese cedar (Forestry Agency, Japan, 1970). Finally, stand 
volume (m3/ha) in each plot was calculated by summing stem volumes of all standing trees 
within each plot. Summary statistics for 13 field sample plots are shown in Table 1. 
 

Table 1: Summary of field plot data 
 

Plot A B C D E F G H I J K L M 

Stand age 20 20 23 25 25 29 40 41 43 59 59 100 100 
Stand 
density 
(trees/ha) 

2000 1725 2800 2675 2725 1375 1200 2125 475 925 875 1075 1050 

No. of 
trees 80  69  112  107  109  55  48  85  19  37  35  43  42  

No. of 
dominant 
trees 

49  36  57  53  58  24  29  49  9  16  19  21  22  

Mean 
DBH 
(cm) 

17.9  16.3  13.9  16.6  17.0  22.1  25.2  16.4  37.1  29.5  31.0  28.9  26.6  

Basal 
area 
(m2/ha) 

52.8  37.6  44.0  61.2  65.1  55.3  62.9  47.1  54.1  65.3  71.3  76.8  62.8  

Mean 
tree 
height 
(m) 

13.9  13.5  10.8  14.3  14.5  19.3  20.8  12.6  24.8  22.6  23.6  24.6  22.6  

Dominant 
tree 
height 
(m) 

14.9  14.7  11.5  15.4  15.4  20.7  22.4  13.4  26.4  24.4  25.1  26.8  24.5  

Stand 
volume 
(m3/ha) 

387.1  270.3  250.5  461.5 490.6 539.0 653.8 310.8 605.3 725.3  794.8  913.1  700.0 

 
2.2 LiDAR data 
 
The LiDAR data used in the analysis were those of Takahashi et al. (2008b), acquired on 31 
August 2006 by Aero Asahi Co., Ltd., Japan. A helicopter-borne laser scanner (Optech ALTM 
3100), which is a multi-return system that also collects intensity data, was used. The study site 
was sampled at three different flight altitudes; 500 m, 1000 m and 1500 m above ground level 
(a.g.l.). The beam divergence of 0.31 mrad produced footprint diameters of 0.16 m, 0.31 m and 
0.47 m, respectively. At each flight altitude, several parallel flight paths were recorded to cover 
the entire area with average overlapping of 64% between adjacent flight paths. Transmitted laser 
pulses with scan angles exceeding 8˚ were excluded from the final analysis to avoid the 
inclusion of inferior quality data at the edge of strips. Although the laser-sampling densities 
were approximately 57, 25 and 9 points/m2, respectively, at each flight altitude, the densities of 
all datasets were thinned out and finally converted into approximately 1 point/4 m2. The 57 
points/m2 dataset at 500-m flight altitude was defined as the high-density LiDAR dataset and the 
1 point/4 m2 datasets at three flight altitudes were defined as the low-density LiDAR datasets. 
 
2.3 Processing high-density LiDAR data for delineating individual tree crowns and 
estimating stand volumes 
 
The high-density (57 points/m2) LiDAR dataset was used to create a canopy height model 
(CHM) with a pixel size of 0.25 m (see Figure 1). The CHM was generated by subtracting a 
digital terrain model (DTM) from a digital surface model (DSM) produced by assigning the 
height value of the highest laser reflection point within each pixel using only first pulse data. 
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The DTM was generated by a conventional human-assisted method in which an operator 
visually inspected the elevations of the DTM after an initial automated filtering (Takahashi et al. 
2008b). Hereafter, the DTM is defined as DTMref. Through refining by the maximum filter with 
variable window sizes (3 x 3 window for CHM ≤ 20 m; 5 x 5 window for CHM > 20 m) and 
smoothing with a 3 x 3 low-pass filter (Hyyppä et al. 2001) for the CHM, the watershed method 
(e.g. Wang et al. 2004) was then applied to delineate individual tree crowns. Next, individual 
tree stem volume was estimated using the regression model presented in Takahashi et al. 
(2005b). The empirical model consisted of LiDAR-derived tree height and crown projection 
area as follows: 
 

ln V = ln β0 + β1 ln H + β2 ln CA     (1) 
 
where V (m3) is estimates of individual stem volume, H (m) is LiDAR-derived tree height, and 
CA (m2) is LiDAR-derived crown projection area. The values of ln β0, β1 and β2 were –8.312, 
2.282 and 0.389, respectively. Adjusted coefficient of determination of the model was 0.734. 
The value of H was assigned to the highest value of the CHM within each segmented crown and 
the value of CA was the segmented crown area. Finally, stand volume estimates (m3/ha) in each 
plot were calculated by summing the individual stem volume estimates of all segmented trees 
within each plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The images of QuickBird panchromatic (0.6-m resolution) and canopy height models (0.25-m 
resolution) derived from different flight altitude LiDAR data. High and low-densities are approximately 
57 points/m2 and 1 point/4 m2, respectively. The circle denotes plot C (0.04 ha; 11.28 m radius) and the 

segmented individual tree crowns were produced by the Voronoi tessellation on the panchromatic 
imagery. 

 
2.4 Processing low-density LiDAR data and panchromatic imagery for delineating 
individual tree crowns and estimating stand volumes 
 
The low-density (1 point/4 m2) LiDAR datasets at three flight altitudes were used to create 
CHMs with a pixel size of 0.25 m (see Figure 1). To create the CHMs, DSMs were created 
through interpolation by the natural neighbour method (Bater and Coops 2006). Because the 
number of ground return laser data was poor at all flight altitudes in the study area, as shown in 
Takahashi et al. (2008b), it was difficult to distinguish ground return laser data from overstorey 
and understorey vegetation return laser data. Therefore, in the present study, if the difference 
between the elevation of a given laser data in each altitude dataset and the elevation of the 

QuickBird Panchromatic High-density LiDAR (500m-altitude) Low-density LiDAR (500m-altitude)

Low-density LiDAR (1500m-altitude)Low-density LiDAR (1000m-altitude)

50m

QuickBird Panchromatic High-density LiDAR (500m-altitude) Low-density LiDAR (500m-altitude)

Low-density LiDAR (1500m-altitude)Low-density LiDAR (1000m-altitude)

50m
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DTMref at the same horizontal location did not exceed 1 m (absolute value), then such laser data 
were regarded as ground return data. DTMs at all flight altitudes were then created through 
interpolation by the natural neighbour method.  
 
The panchromatic imagery (11-bit data) used in the analysis was acquired on 4 February 2006. 
The imagery was orthorectified using both the CHM derived from the high-density LiDAR 
dataset as ground control points (GCP) and a digital elevation model (DEM). The resampling 
method used in the orthorectification was the cubic convolution method and the resolution of 
the orthorectified imagery was 0.6 m. Through refining by a 3 x 3 median filter and 3 x 3 local 
maximum filtering (Wulder et al. 2000) to detect local maximum pixel, which can be regarded 
as individual tree apex or near apex pixel, the Voronoi tessellation (e.g. Worboys and Duckham 
2004) was then applied to delineate individual tree crowns (see Figure 1). Next, individual tree 
stem volumes were estimated by using equation (1). The value of H was assigned to the highest 
value of the CHMs within each segmented crown on the panchromatic imagery and the value of 
CA was the segmented crown area. Finally, stand volume estimates (m3/ha) in each plot were 
calculated by summing the individual stem volume estimates of all segmented trees within each 
plot. In addition to fusing these low-density LiDAR datasets with the panchromatic imagery, the 
high-density LiDAR dataset were also fused with the panchromatic imagery to investigate the 
effects on the volume estimation of height difference between the low- and high-density LiDAR 
datasets.  
 
2.5 Validation of stand volume estimates 
 
Before evaluating stand volume estimates, we first investigated the number of detected tree 
crowns derived from the high-density LiDAR dataset and the panchromatic imagery. The biases 
and root mean square errors (RMSE) of the dominant mean tree height estimates were computed. 
Next, to evaluate the accuracy and precision of the stand volume estimates, the systematic errors 
(i.e. bias), random errors and RMSEs were computed. The relationships between field-measured 
and estimated stand volumes were investigated by regression analysis, in which models were 
fitted to the data using the least-squares method. 
 
3. Result 
 

Table 2: Number of detected tree crowns derived from high-density LiDAR data and QuickBird 
panchromatic imagery 

 
Plot A B C D E F G H I J K L M 
LiDAR-detected 61 59 66 63 65 39 31 56 20 25 27 20 24 
QB-detected 27 30 32 29 34 23 21 27 21 21 25 20 24 

High density means 57 points/m2. QB denotes QuickBird imagery. The watershed and Voronoi 
tessellation methods were applied for the high-density LiDAR data (0.25-m resolution) and the 

panchromatic imagery (0.6-m resolution), respectively. 
 
The number of detected tree crowns derived from the high-density LiDAR dataset and the 
panchromatic imagery is shown in Table 2. The differences in the number of detected crowns 
between the two sets of data are large in dense forests (more than 1200 trees/ha) and small in 
non-dense forests (less than 1200 trees/ha). The errors in dominant tree height estimates are 
shown in Table 3. Both the high- and low-density LiDAR datasets underestimated dominant 
mean tree heights. The tree height estimates with each low-density LiDAR dataset were 
approximately 1 m less than those derived from the high-density LiDAR dataset. 
 
The errors of stand volume estimates are shown in Table 4. The systematic errors of the 
estimates were negative values for all datasets. As seen in Figures 2 and 3 and Table 4, the 
random errors were small for all datasets and there was a strong liner relationship between 
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field-measured and estimated stand volumes for all datasets. According to the regression 
analysis, the slopes for all regression equations could be regarded statistically as one (p < 0.05). 
 

Table 3: Errors of dominant tree height estimates (m) 
 

 Bias RMSE 
High-density LiDAR    (500 m a.g.l.) -0.69 1.19  
Low-density LiDAR    (500 m a.g.l.) -1.47 2.09  
Low-density LiDAR    (1000 m a.g.l.) -1.85 2.61  
Low-density LiDAR    (1500 m a.g.l.) -1.60 2.27  

High and low-densities mean 57 points/m2 and 1 point/4 m2, respectively. QB denotes QuickBird imagery 
and the parenthetic values denote flight altitudes. 

 
Table 4: Errors of stand volume estimates (m3/ha) and the results of regression analysis 

 
 Systematic 

error 
Random 

error 
RMSE RMSEr Slope Intercept Ajusted 

R2 

High-density LiDAR    (500 m 
a.g.l.) 

-47.2  46.9  66.6  12.2 % 0.880**  18.52 NS 0.946 

QB + high-density LiDAR (500 m 
a.g.l.) 

-124.5  57.5  137.2 25.1 % 0.989** -118.64* 0.915 

QB + low-density LiDAR (500 m 
a.g.l.) 

-182.3  44.1  187.5 34.3 % 0.899** -126.88** 0.951 

QB + low-density LiDAR (1000 m 
a.g.l.) 

-200.1  44.8  205.1 37.5 % 0.861** -123.98** 0.957 

QB + low-density LiDAR (1500 m 
a.g.l.) 

-188.8  42.0  193.4 35.4 % 0.878** -122.17** 0.960 

High and low-densities mean 57 points/m2 and 1 point/4 m2, respectively. QB denotes QuickBird imagery 
and the parenthetic values denote flight altitudes. RMSEr means a relative RMSE divided by average 

field-measured stand volume. ** (p < 0.01); * (p < 0.05); NS (p > 0.05) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The relationship between field-measured and estimated stand volumes from high-density 
LiDAR data 

 
4. Discussion 
 
Figure 2 and Table 4 indicate that the high-density LiDAR dataset could estimate stand volumes 
accurately. Although the number of LiDAR-detected tree crowns was less than the number of 
field-measured tree crowns, the sum of individual stem volumes estimated by the regression model 
could explain most of the total volumes within each plot, except for two plots (plots J and L). This 
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result indicates that a large portion of the LiDAR-detected trees had larger individual stem volumes 
than the undetected trees in each plot. Moreover, these results indicate that the empirical model (Eq. 
1) is very useful for estimating stand volumes of Japanese cedar stands with a variety of stand 
conditions in Japan, despite the model having been constructed within a restricted forest area (stand 
density; 800–1227 trees/ha, stand volume; 504.8–602.9 m3/ha). One weakness in the present study is 
that only 13 field plots were used although the 13 plots cover a good range (250.5–913.1 m3/ha). We 
should have increased the number of field sample plots to examine the variability of volume 
estimates among plots with nearly the same volume. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: The relationship between field-measured and estimated stand volumes from fused data. Solid 

circles, 500-m low-density data; square, 1000-m low-density data; cross, 1500-m low-density data; open 
circles, 500-m high-density data 

 
By contrast, all the fused datasets produced large negative systematic errors in the estimates of 
stand volumes, although the random errors were as small as those of the non-fused LiDAR 
datasets. As seen from Figure 3, the dataset (open circles) made by fusing the high-density 
LiDAR dataset with the panchromatic imagery hardly improved estimates of stand volumes in 
plots A, B, C, D, E and H (stand volume < 500 m3/ha: dominant mean tree height < 16 m), 
whose crown numbers detected by the panchromatic imagery were almost half those detected by 
LiDAR; however, the fused dataset improved the estimates of stand volumes in some plots 
(stand volume > 500 m3/ha: dominant mean tree height > 20 m) whose crown numbers detected 
by the panchromatic imagery were similar to those detected by LiDAR. This result indicates 
that the cause of the negative systematic errors in the three fused datasets would be based on an 
interaction of the omission errors of panchromatic imagery-detected crown numbers (Table 2), 
the underestimations of LiDAR-derived tree heights (Table 3), and the characteristic/behavior of 
the logarithmic regression model. Although the reason why the slopes of all regression 
equations of the fused datasets were regarded statistically as one remains unknown, the three 
fused datasets could provide almost the same accuracy of stand volume estimates in this study 
area. These results demonstrate that high-density LiDAR is not needed for all applications, such 
as estimation of stand volume, especially when fused with other optical remote sensing 
technologies and over large areas. Also, there seems to be a misconception that one needs near 
perfect one-to-one correspondence between field data and those predicted empirically from 
LiDAR. 
 
All results of this study revealed that data fusion of low laser-sampling density LiDAR data (e.g. 
1 point/4 m2) with QuickBird panchromatic imagery would have a great potential for estimating 
stand volume precisely in Japanese cedar plantations regardless of different footprint sizes (e.g. 
0.16–0.47 m). Moreover, if the systematic errors in the estimates were revealed as 
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site-independent values, we would be able to estimate stand volume accurately and precisely 
with LiDAR data acquisition at a lower cost in vast Japanese cedar forests by using methods 
presented in this study.  
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Abstract 
 
With the present number of forestry remote sensing and field plot survey methods several data 
sources can be combined to potentially achieve a higher accuracy than with a single data source. 
Some of these datasets contain single tree information and it would be of great value when 
designing survey techniques if one could automatically link data from different sources 
belonging to the same tree. In this paper such a method for linking field-surveyed and aerial 
detected trees is described and evaluated. A simulation study and experimental data show the 
accuracy of the algorithm at different settings. The method correctly links >90 % of the trees if 
the corresponding datasets have a position error standard deviation of 1 [m] and 10 % omission 
and commission errors.  
 
Keywords: LiDAR, digital aerial images, data fusion, field plots, single tree detection and 
linking.  
 
1. Introduction 
 
New remote sensing technology allows for high precision measurements of vegetation. Low 
resolution airborne laser scanner (ALS) data can be used to establish statistical models for the 
prediction of biophysical properties, e.g. stem volume and mean tree height, on a raster cell 
level (e.g. Means et al. 2000; Næsset 2002). In high resolution ALS data, individual trees are 
identified which makes it possible to establish statistical models on the tree level (e.g., Hyyppä 
et al. 2001; Persson et al. 2002; Solberg et al. 2006). The size of the random errors for statistical 
models will become a problem if there is a poor co-registration of field surveyed data and 
remote sensing data and this will affect the quality of remote sensing based forest inventories. 
High precision position measurements can be achieved with advanced GPS equipment but only 
below a clear sky where no canopy obscures the satellite signal. The GPS errors will be large 
within a forest stand with a high basal area (Næsset and Jonmeister 2002). Thus there is a need 
for an automatic tree linking algorithm that rectifies poorly registered coordinates in raw data. 
This paper presents a method for the automatic co-registration of field surveyed and remotely 
sensed data. The performance of the method was tested by using simulations. The algorithm was 
tested empirically in a forest in west Sweden. 
 
2. Method 
 
Linking field surveyed and aerial detected trees requires input data from a remote sensing single 
tree detection method (e.g., Gougeon, 1995; Holmgren and Wallerman 2006; Hyyppä et al. 
2001; Korpela 2004; Persson et al. 2002; Pinz, A., 1989; Pollock 1996; Solberg et al. 2006). In 
the empirical study in this paper the ALS single tree detection method developed by Holmgren 
and Wallerman (2006) has been used. Single tree data collected from a field plot is also 
necessary.  
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The method for linking field surveyed and aerial detected single trees is a two stage process: 
first, the field plot coordinate-system is rectified to the aerial data coordinate-system, and 
second, the field surveyed trees within the plot are linked to the most probable candidates of the 
aerial detected trees positioned nearby.  
 
2.1 Field data 
 
The study area is located in the west of Sweden (lat. 600 43’ N, long. 150 10’ E). The dominating 
tree species are Norway spruce (Picea Abies), birch (Betula spp) and Scots pine (Pinus 
Silvestris). Field reference data was collected in 155 field plots with 10 m radius each. The 
position of the field plots were measured using a Global Navigation Satellite System (GNSS). 
Within the plots, all trees with a stem diameter larger than 50 mm were callipered and tree 
species was recorded. The positions of the trees were registered relative to the centre of each 
plot by measuring azimuth and distance. 
 
2.2 ALS data 
 
The laser data was acquired using an Optech scanner with a scan density of approximately 10 
points/m2. The flying height was 900 m, the pulse repetition rate 100 kHz and the field of view 
340. The ALS single tree detection method used is developed by (Holmgren and Wallerman 
2006). 
 
2.3 Rectifying the field plot coordinate system 
 
Usually field plot measured tree positions have good precision but lower accuracy. The data is 
biased. Therefore, the two coordinate systems need to be rectified before the field plot trees can 
be linked to the aerial detected trees. The algorithm in this study uses an estimated position of 
the field plot centre to start the search, and a search area that contains the real field plot centre. 
The search area is set depending on the expected bias error in the experimental setup. From the 
start position, aerial single tree data from within the search area is collected as a list. This list 
must contain the tree position coordinates, x and y, and a variable that represents the tree size, 
e.g. the tree height, H, or the crown diameter, D. In this study the tree height was used. For the 
field plots a similar list is required with the positions of the trees and a size variable. In this 
study the stem diameter at breast height, DBH, was chosen to represent the size of the tree.  
 
The tree lists are used to create two single tree position images, figure 1. Within the image, each 
tree is displayed as a Gaussian surface where the x and y coordinates determine the position 
within the image, the tree size variable determines the amplitude of the Gaussian function, and 
the standard deviation is set to the expected tree position precision, figures 1 and 2. Since large 
trees often are detected from above whereas small trees often are hidden, the maximum surface 
is used; from all of the Gaussian functions that cover the same area, the highest value is chosen, 
figure 2.   
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Figure 1: Two single tree position images where each tree is modelled as a Gaussian surface with the 

amplitude proportional to the tree size and the standard deviation equal to the radial position error. LEFT: 
The position image of a circular field plot where the stem diameter at breast height is used as amplitude. 

RIGHT: The position image of an area with aerial detected trees, with the tree height as amplitude.  
 
The two single tree position images are then cross correlated to find the closest match between 
the patterns in the two images. The field plot image can be rotated a few degrees between each 
correlation run, in order to compensate for possible compass errors. The normalized correlation 
coefficient, cc (Gonzalez and Wintz, 1987) is defined as:  
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where g is the aerial position image, k is the field plot position image, k  is the average 
intensity of k and g (x,y) is the average intensity of g of the region coincident with k(x,y). The 
position and rotation with the highest correlation coefficient, equation 1, is assumed to be the 
place where the real field plot center is located. The greater the position image resolution results 
in the higher accuracy of the field plot matching achieved.  

 
Figure 2: [DOTTED CURVES]:  Three field plot trees with a stem diameter at breast height (DBH) of 

100, 300, and 250 [mm] and positions in the x-direction of 4.5, 5 and 7.5 [m], displayed as Gaussian 
functions with the DBH as amplitude and the position error (1 [m]) as standard deviation. [SOLID 

CURVE]: The maximum surface of all trees in the plot.   
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2.4 Linking field surveyed and aerial detected trees 
 
The algorithm uses the tree heights for both the aerial detected trees and the field surveyed trees. 
If the tree height is not sampled by the single tree detection method or the field survey – if for 
instance the crown diameter and the DBH is used instead – the tree heights must be estimated 
from the size parameters used. In order to get an estimate of the tree height, when the 
information is missing, a regression function from an area with similar climate and similar 
forest types is necessary. These size parameters to tree height functions can be pre-calculated in 
a database or curve fitted prior to a large scale experiment. In this study the single tree detection 
method samples the tree height directly but the field survey only samples the DBH. The field 
tree heights were estimated by a hyperbolic tangent function: 
 

)*tanh(* DBHpCH =        (2) 
 
where C is the tree height amplitude parameter and p is the tree height phase parameter. C and p 
were estimated by a non linear regression of data from forest areas similar to the one used in the 
experiment. 
 
For every field surveyed tree the algorithm calculates the radial ground distance, r, and the 
normalized Euclidian distance of the tree tops, d’: 
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where Haerial is the height of the aerial detected tree, Hfield is the height of the field surveyed tree, 
σr is the estimated radial error and σh is the estimated height error, figure 3. To limit the size of 
the calculation only aerial detected trees close to field trees are used. The largest distance to 
accept an aerial tree is defined as:   
 
 

DBHfbrAccept *+=        (4) 
 
where the parameters b and f should be set to include a reasonable number of trees. All aerial 
trees inside this radius are added to a list of tree links. To get an indication of how good a link is, 
a weight based on the normalized Euclidian distance of the tree tops is set to every tree link:  
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The weight is higher the closer the linked trees are; a zero tree top distance gives a weight of 
one. 
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Figure 3: Two field plot trees (gray) with possible links to an aerial detected tree (dotted lines) with 
position and height errors. The tree top distances d1 and d2, the radial distances r1 and r2, the height error 

standard deviation σh and the radial error standard deviation σr, are used by the linking algorithm to 
determine which tree to choose.   

 
In the tree link list the algorithm then searches for connected tree clusters, i.e. a group of field 
surveyed and aerial detected trees that are linked together. Each link only contains one field 
surveyed tree and one aerial detected tree, but since each field tree can be linked to several 
aerial trees and each aerial detected tree can be linked to several field trees, a network of 
connections can become a cluster of trees – a tree list graph.  
 
Since every field surveyed tree should only be connected to one aerial detected tree, multiple 
links must be removed from the list. The algorithm solves this by trying every possible 
combination of links in a tree cluster. Combinations with multiple links are discarded. The link 
combination with the highest sum of weights is the solution that is chosen for each tree cluster. 
All other links are removed from the list. This brute force method can be time consuming if the 
tree clusters are large and therefore the problem was minimized by only trying aerial detected 
trees standing close to a field surveyed tree.  
 
2.5 Simulations 
 
To get an estimate of how well the method works, the matching and linking algorithm were 
applied to 1125 simulated field plots.  
 
2.5.1 Generating simulated trees 
 
In order to have a realistic virtual tree lists, distribution generating functions were curve fitted 
from the field data. The relative frequency distributions of the DBH were modelled by 
two-parameter Weibull functions, f(DBH; k,λ), for the three dominating species: pine, spruce 
and birch; equation 6. 
 

( ) ( )kDBH
k

eDBHkkDBHf λ

λλ
λ /

1

,; −
−

⎟
⎠
⎞

⎜
⎝
⎛=      (6) 

 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 100

The simulated field tree DBH to height curves were modelled as hyperbolic tangent functions, 
equation 2, with added residuals calculated from a Gaussian distribution with standard 
deviations also modelled as hyperbolic tangent functions, equation 7,  
 

( )DBHpCH ⋅⋅= Residualtanhresidualσ      (7) 
 
where σΗ is the simulated field tree height standard deviation, DBH is the field surveyed stem 
diameter at breast height, Cresidual is the tree height residual amplitude parameter and pResidual is 
the tree height residual phase parameter. The settings for the distribution generating functions 
are shown in table 1. 
 
Table 1: Simulation settings for the different tree species: the scale and shape parameter for equations 6, 

the C and p parameters for equation 2 and the Cresidual and pResidual parameters for equation 7.   
 

 Pine Spruce Birch 
k, scale 286.0 252.0 206.0 
λ, shape 2.69 2.46 2.77 
C 24.0 28.0 22.0 
P 0.0042 0.0035 0.0075 
CResidual 3 2.7 1.8 
pResidual 0.01 0.01 0.01 

 
Since the field surveyed data had an approximate ratio of 45 % pine, 45 % spruce and 10 % 
birch this setting was chosen for the simulation. When generating a tree, the function first 
chooses a species. Then a DBH is generated from equation 6 with parameters corresponding to 
the chosen species. Finally the tree height is calculated from equation 2; with a residual 
calculated from equation 7. 
 
2.5.2 Simulation of field plot and aerial single tree data 
 
To create a field plot, the algorithm was used to add trees, until the correct number of trees per 
hectare (SPH) was achieved. The stem diameter at breast height was saved as field data and the 
tree height was saved as aerial data. The position was saved in both the aerial and the field data. 
To simulate position errors the coordinates of the aerial data was translated in a random 
direction in the ground plane, with a radial magnitude generated by a Gaussian distribution. If 
the tree crowns (modelled as ellipsoids of revolution) of two specimens were intertwined (had a 
cross section radius overlap of more than 30 % of the distance between the trees) the algorithm 
discarded the solution and tried a new tree. If the tree had a DBH < 50 mm it was discarded 
since the field plot sampling had 50 mm as a lower size limit. To get the correct number of 
omissions, some of the trees were not saved in the aerial data, and to get the correct number of 
commissions some trees were added only to the aerial data. To get a larger search area, trees 
outside of the field plot were added to the aerial data. Each tree in the field data and aerial data 
had a label to make it possible to identify a correct link. The simulation was run with three 
different numbers of stems per hectare (SPH), 300, 600 and 900; with five different position 
error standard deviations, 0, 0.5, 1, 1.5 and 2.0; and with three combinations of commission and 
omission errors, 0/0, 10/10 and 20/20 %. For each setting 25 plots were tested giving a total of 
1125 plots in the simulation. The field plot radius was set to 10 m for all plots.  
 
2.5.3 Configuration of the software 
 
In order not to use the same field plot data for both the simulation and for the DBH-height 
estimate in the field plot matching software, forest data from other areas in the same climate 
zone was used to calibrate the algorithm. The parameters C and p in table 2 was estimated this 
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way. The other parameters were set to values estimated to be feasible in an inventory of a real 
forest. 
 

Table 2: The settings of the configuration file for the software. A = size of search area, Δθ = field plot 
rotation angle increment, min/max θ = field plot rotation end values, b = tree position search bias, eq 4, f 
= tree position search factor, eq 4. C = tree height estimation amplitude parameter eq 2, p = tree height 
estimation phase parameter, eq 2. σh = height residual error,  σr =ground distance radial error. mpp =  

correlation image resolution.  

 
2.6 Empirical tests 
 
To support the simulation study a small empirical test was performed. In this test the trees did 
not have labels as in the simulation study so the number of correct links were not possible to 
achieve but it was possible to see if the method had a high connection rate. That is, if it 
managed to connect all the trees in the plot. This would be difficult if the tree position patterns 
differed too much between the field plot and the aerial data. It was also possible to see if the 
rectified field plot coordinate systems had a large bias and a large compass error. Since the field 
plot centres were measured using a Global Navigation Satellite System (GNSS) the expected 
bias and compass error was small. However if the found plot is not the correct one, any compass 
direction and bias within the search space is equally possible. Therefore small bias and compass 
errors indicate that the true field plots have been located.   
 
The field plot matching algorithm was applied to the material both for original field data 
coordinates and for data where the coordinates of each tree had been deliberately displaced 60 
m, in order to have two datasets: one set containing field plots and one set not containing any 
field plots. The proportion of connected trees for each aerial detected tree within the plot and the 
average bias of the field plots were calculated for different search area sizes and field plot 
rotation. 
 
3. Results 
 
3.1 Simulation results 
 
Results from the simulation show that the method has a high connection rate if the position 
radial error standard deviations are 1 [m] or smaller, figure 6. Even with as high omission and 
commission errors as 20 % the method still links more than 70 % of the trees correctly. When 
the position errors increase, the connection rate decreases, especially for dense forests and a 
single tree detection method with large omission and commission errors.  
 

A  Δθ  min / 
max θ  

b  f  C  p  σr  σh  mpp 

[m2] [°] [°] [m] [m]/[mm] [m] 1/[mm] [m] [m] [m]/pixel 
3600 2 ±16 1.5 0.002 25.5 0.0036 1.0 3.0 0.5 
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Figure 4: Simulation of the expected amount of correct links between field trees and aerial detected single 

trees for 300, 600 and 900 stems per hectare, 0, 10 and 20 % omission and commission errors, and 0.0, 
0.5, 1.0, 1.5 and 2.0 [m] radial position error standard deviations.  

 
3.2 Results empirical test 
 
Table 3 shows the results of the empirical tests for different search area sizes and field plot 
rotation, both for search areas containing field plots and for search areas without field plots.  
 
 

Table 3: The results for the empirical test of the automatic tree linking algorithm  
 

 Search 
areas 

with field 
plots 

Search 
areas 

without 
field plots 

Search 
areas with 
field plots 

Search 
areas 

without 
field plots 

Search 
areas with 
field plots 

Search 
areas 

without 
field plots 

Search area [m2] 1600 1600 3600 3600 10000 10000 
Min/max 
compass search 
angles [deg] 

±8 ±8 ±16 ±16 ±16 ±16 

Proportion of 
connected aerial 
trees 

92.9%  76.9%  93.1%  79.5%  93.5%  84.5% 

Average field 
plot radial bias 
displacement 
[m] 

1.68  7.94  3.06  15.81  5.42  31.83 

Average 
compass angular 
displacement 
[deg] (absolute 
values) 

2.23  5.56  2.95  9.14  3.24  7.96 

 
 
Table 3 shows that the search areas with field plots have a higher connection rate than the search 
areas without field plots. That is they connect more trees even though they are not necessarily 
the correct ones as indicated in the simulation study. In the case with the search areas without 
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field plots of course none of the tree links are correct. The radial displacements and the compass 
shifts are also fairly small and constant for the search areas containing field plots whereas for 
the search areas without field plots the displacements increase with increasing search area, 
indicating that the algorithm manages to find a field plot if it is present in the search space.  
 
4. Discussion and conclusions 
 
A new method for automatically linking of field-surveyed and aerial-detected individual trees 
was implemented and tested by using simulations and an empirical field data set with high 
accuracy GPS measurements. The method could be used for any remote sensing method that 
produces a map with tree positions and relative tree sizes. The simulation results show that a 
high proportion of correctly linked trees can be obtained if the chosen single tree detection 
method has a small tree position random error (≤1m standard deviation) and less than 20 % 
commission and omission errors. With a higher random error of the tree positions the 
performance of the method will become more affected by a greater omission and commission 
error. The empirical results also indicate that the algorithm manages to find and connect trees in 
a field plot if it is present in the search space.  
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Abstract 
 
In the present study we tested the performance of different combinations of airborne laser 
scanning (ALS) and aerial photograph-based features in the estimation of forest variables. The 
combinations were subsets of a total of 172 features extracted from the remotely sensed material. 
The subsets were based on expert judgment or a genetic algorithm (GA). The non-parametric 
k-nearest neighbour (k-NN) algorithm was applied to derive the estimates. The best performing 
feature set was obtained after four consecutive steps of GA, each starting with the best features 
found in the previous step. The best set contained 11 features, 8 of them originating from the 
ALS data. This set was further weighted with a downhill simplex algorithm, and a relative mean 
volume RMSE of 27.1% was obtained. The results were slightly worse than in other Finnish 
ALS studies, most probably due to a larger amount of deciduous trees and greater variation of 
forests in the study area.  
 
Keywords: k-NN, feature selection, genetic algorithm, species-specific estimates 
 
1. Introduction 
 
The main approaches to deriving forest information from small-footprint airborne laser scanning 
(ALS) data are plot-level estimation based on features derived from height information (e.g., 
Næsset 1997, Suvanto et al. 2005) and individual tree detection (e.g., Hyyppä and Inkinen 1999, 
Maltamo et al. 2004). The latter method is computationally heavier and requires greater pulse 
density; thus in large-area inventories the plot-level approach can, at least currently be 
considered more cost-efficient.  
 
Estimation accuracies can typically be improved with a combination of data sources with 
complementary properties. Examples are datasets comprising of Landsat-type satellite images 
with good spectral resolution, and colour-infrared aerial photographs (Haapanen and Tuominen 
2008) or even black-and-white photographs, with good spatial resolution (Tuominen and 
Haakana 2005). 
 
High spatial resolution, a property of e.g., aerial photographs and ALS data, allows the use of 
two-dimensional (2D) textural features - even three-dimensional (3D) in the latter case. 
Generally, adding more features in the estimation process improves the output accuracy, but 
with increasing dimensionality the distinctive capacity of the data may weaken, with increasing 
noise. Therefore, the dimensionality of large datasets must be reduced. The usefulness of any 
input variable can be studied by measuring the correlation between the image features and forest 
attributes. In cases of large feature sets this is extremely tedious. Furthermore, the image 
features are often highly correlated, and adding additional variables having high correlation with 
the other variables does not generally improve the estimation accuracy (although it is still 
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possible). Guyon and Elisseef (2003) showed that even a useless variable may be useful when 
taken with others, and two useless variables can be useful together. Thus, filters that rank 
features based on correlation coefficients are not sufficient and subset selection algorithms or 
feature transformation is needed. Principal component analysis is one example of feature 
transformation, while e.g., stepwise regression (backward or forward selection) or genetic 
algorithms (GAs) can be used to construct subsets of features. GAs are search algorithms that 
mimic natural selection and natural genetics (Goldberg 1989). Kudo and Sklansky (2000) 
compared several feature selection algorithms and concluded that sequential floating search 
methods worked best for small- and medium-scale problems, whereas for problems with a large 
number of dimensions (>50), the GAs worked best. 
 
In model construction, it is important to base the feature selection on the researcher's knowledge 
of the phenomenon and the variables affecting it; thus the use of stepwise selection methods is 
generally discouraged. However, there are situations in which the superiority of variables A and 
B over C and D is not clear. In remote sensing (RS), the relationships of recorded radiation or 
returned laser pulses and forest variables are not too straightforward (the exception being the 
canopy surface generated from laser height readings) and there are numerous potentially useful 
statistical/textural variables that can be extracted from the data. Therefore, the use of automated 
selection methods is justified to a certain extent. 
 
In the present study, we examined the predictive capacity of several feature sets extracted from 
aerial photographs and low-pulse ALS data. While it is known, that the laser-based features 
perform far better than the aerial photograph-based features when estimating mean height, mean 
volume, etc., a combination is better when detecting tree species (Maltamo et al. 2006; Packalén 
and Maltamo 2006, 2007). One of the tested feature sets was based on automatic selection with 
GAs, others on expert knowledge. The estimation was carried out with the nonparametric 
k-nearest neigbour (k-NN) algorithm and we operated at the field plot level. The forest variables 
estimated included the mean volume of growing stock (m3/ha), basal area (m2/ha), height (m), 
diameter at breast height (DBH; cm), and the volumes of Scots pine (Pinus sylvestris L.), 
Norway spruce (Picea abies H. Karst.), and deciduous trees (m3/ha). 
 
2. Material and methods  
 
2.1 Study area and field measurements 
 
The study area is located in Evo, Finland (61.19ºN, 25.11ºE) and it consists of approximately 
2000 ha of managed boreal forest. The average stand size in the area was slightly less than 1 ha. 
Field measurement data from 282 fixed-radius (9.77 m) field plots were collected from the 
study area in summer 2007. The sampling of the field plots was based on prestratification of 
existing stand inventory data. There was a 1-year gap between the acquisition of RS data (see 
section 2.2) and field data measurements; only plots that had remained untreated during the year 
were measured and the latest growth in height was subtracted. The plots were located with 
Trimble's GEOXM 2005 Global Positioning System (GPS) device (Trimble Navigation Ltd., 
Sunnyvale, CA, USA), and the locations were postprocessed with local base station data, 
resulting in an average error of app. 0.6 m. The following variables were measured of trees 
having a DBH of over 5 cm: location, tree species, crown class, DBH, height, lower limit of 
living crown and crown width. The volumes were calculated with standard Finnish models. 
Plot-level data were obtained by summing the tree data. The values of forest attributes of plots 
located in clear-cut areas or treeless mires were set at zero. The basic characteristics of the field 
data are presented in Table 1. Of the mean volume, 40% was Scots pine, 35% Norway spruce 
and 24% deciduous trees, mainly birch (Betula L.).   

 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 107

Table 1.  Characteristics of the field plots. 

 Mean Min Max Std 

Basal area-weighted mean height, m 17.0 0 30.5 6.7 
Basal area-weighted mean DBH, cm 21.1 0 50.3 9.4 
Basal area, m2/ha 19.9 0 45.5 10.3 
Mean volume of growing stock, m3/ha 179.0 0 575.4 115.4 
Mean volume of pine, m3/ha 69.9 0 560.6 89.8 
Mean volume of spruce, m3/ha 63.5 0 575.4 94.8 
Mean volume of deciduous trees, m3/ha 42.9 0 302.2 51.2 
Mean volume of other tree species, m3/ha 2.7 0 210.1 19.0 

 
2.2 Remote sensing material 
 
The ALS data were acquired in midsummer 2006. The flying altitude was 1900 m. The density 
of the returned pulses within the field plots was 1.8/m2 (only, first, intermediate or last; 1.3/m2 if 
only or first pulses were considered). A digital elevation model (DEM) and consequently, 
heights above ground level, were computed by the data provider. Same-date aerial photographs 
were obtained with a digital camera, as well. The photographs were orthorectified, resampled to 
a pixel size of 0.5 m and mosaiced to a single image covering the entire area. Only near-infrared 
(NIR), red (R) and green (G) bands were available. 
 
Several statistical and textural features were extracted from the RS material. The extraction 
window was generally 20 x 20 m, which was proved suitable in earlier studies (e.g. Holopainen 
and Wang 1998). The features included means and standard deviations of spectral values and 
ALS height and intensity, Haralick textural features (Haralick et al. 1973; Haralick 1979) 
derived from spectral values, ALS height and intensity, and 'standard texture' referring to a set of 
averages and standard deviations of spectral values, ALS height and intensity calculated within 
a 32 x 32 pixel window. In the case of ALS, these were derived from the first pulse data only. 
The Haralick textural features were computed from 4 directions: 0, 45, 90 and 135˚. 
Additionally, the height statistics for the first and last pulses (F, L) were calculated as in Suvanto 
et al. (2005): mean and maximum height (hmea, hmax), standard deviation and coefficient of 
variation of height (hstd, hcv), heights where certain relative amounts of laser points had 
accumulated (p05-p95), as well as percentages of laser points accumulated at various relative 
heights (r05-r95). Only pulses exceeding a 2 m height limit were included in order to remove 
hits to ground vegetation and bushes. Finally, percentages of points under 2 m in height were 
added (Fvege, Lvege; in Suvanto et al. 2005 the opposite, percentages of points over 2 m in 
height, was used). Means and standard deviations of ALS height were included only once in the 
final dataset, where the total number of features was 172. All features were standardized to a 
mean of 0 and std of 1. 
 
2.3 Methods 
 
2.3.1 Estimation algorithm 
 
The estimation method was k-NN, which has long been used in Finnish RS-aided forest inventory 
applications (e.g. Kilkki and Päivinen 1987; Muinonen and Tokola 1990; Tomppo 1991). The 
nearest neighbours were determined by calculating the Euclidean distances between the 
observations in the n-dimensional feature space. The nearest plots were weighted with inverse 
squared distances. The number of nearest neighbours was set at 5. Leave-one-out cross-validation 
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was applied to calculate the results within the field dataset. The accuracy of the estimates was 
assessed by calculating the root-mean squared error (RMSE) of the studied variables.  
 
2.3.2 Feature selection 
 
Nine feature sets were created for tests: 

• A: all aerial photograph features (72) 
• B: all laser features (100) 
• A + B (172) 
• C: aerial photograph spectral features from three bands + their std's (6) 
• D: ALS hmea, hmax, hstd, hcv, and vege of first and last pulse separately (10) 
• C + D (16) 
• E: D + local homogeneity of ALS height of first pulse (four directions) (14) 
• F: D + ALS intensity and its std of first pulse (12) 
• GA1-GA4: features selected by a genetic algorithm, starting from set A+B (all 172 

features). From each step, the best features were fed to next step, e.g., from GA1 to GA2. 
Feature sets A, B and A+B were created for benchmarking the results. Sets C, D and C+D were 
small feature sets containing simple statistics such as averages and variations. Set E was 
constructed of central laser height features and one height-based Haralick texture, local 
homogeneity, which performed well in an earlier study by Tuominen and Pekkarinen (2005), 
when derived from aerial photograph features. At this point in our project, the intensity values 
were not calibrated in any way, and thus little was expected from them. However, we created a 
subset containing two ALS intensity-based features, as well (F). 
 
Automatic feature selection was carried out using a simple GA presented by Goldberg (1989), 
implemented in the GAlib C++ library (Wall 1996). It performed well in an earlier feature 
selection study by Haapanen and Tuominen (2008). The GA process starts by generating an 
initial population of strings (chromosomes or genomes), which consist of separate features 
(genes). The strings evolve during a user-defined number of iterations (generations). The 
evolution includes the following operations: selecting strings for mating using a user-defined 
objective criterion (the better the more copies in the mating pool), letting the strings in the 
mating pool to swap parts (crossing over), causing random noise (mutations) in the offspring 
(children), and passing the resulting strings into the next generation.  
 
In the present study, the starting population consisted of 300 random feature combinations 
(genomes). The length of the genomes corresponded to the total number of features in each step, 
and the genomes contained a 0 or 1 at position i, denoting the absence or presence of image 
feature i. The number of generations was 30. The objective variable was a weighted 
combination of relative RMSEs of total volume, volume of pine, volume of spruce, volume of 
deciduous trees, diameter and height, with total volume having a weight of 50%, and the 
remaining variables 10% each. Genomes that were selected for mating swapped parts with each 
other with a probability of 60%, producing children. Occasional mutations (flipping 0 to 1 or 
vice versa) were added to the children (probability 1%). The strings were then passed to the next 
generation. The overall best genome of the current iteration was always passed to the next 
generation, as well. Four successive steps (all including 30 generations) were taken to reduce 
the number of features to a reasonable minimum (GA1-GA4). Only features belonging to the 
best genome in each step were included in the next step. The parameters used were selected via 
some explorative tests.   
 
Even after careful selection, the features are not equally important in describing the forest 
attributes and should be weighted. Here we searched for optimal weights for the best subset of 
features by a downhill simplex method (Nelder and Mead 1965). In the search, the objective was 
to minimize the RMSE of the mean volume estimates.   
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3. Results 
 
Estimation errors (RMSE%) obtained using the studied datasets are presented in Table 2 for 
mean total volume, mean height, basal area, mean DBH and species-specific mean volumes. 
The  results are as follows: 

• The ALS-based features (sets B, D, E, F) performed far better than aerial 
photograph-based features (sets A and C).  

• Simply adding aerial photograph features into laser feature sets (A+B, C+D) gave worse 
results than the laser sets in question (B, D), except in the case of species-specific 
volumes.  

• No expert judgment-based selection was able to surpass the set of all extracted laser 
features (B), when all variables were considered. 

• However, even the first round of the GA produced lower RMSEs for most of the 
variables compared with full laser feature set B, by combining ALS- and aerial 
photograph-based features in a successful way. 

• When all variables were considered, the most usable results were already obtained in 
step 3 of the GA process (GA3) with 19 features. Therefore, both GA3 and GA4 were 
weighted. 

• After feature weighting, GA4 produced the lowest RMSEs and the weighted set of 11 
features represents our final result. Both ALS and aerial photograph-based features were 
included. A test was also run without the aerial photograph features, but the accuracies 
then again lowered. 

 
The 11 features selected into the final set were Fvege, Hvege, Fp30, Lp30, Fp90, mean height in 
the 32 x 32 pixel window, angular second moment 45˚ of intensity, local homogeneity 90˚ of 
height, average NIR, std of NIR of 64 blocks within the 32 x 32 pixel window, and std of G of 
1024 blocks within the 32 x 32 pixel window. 

 
Table 2: K-NN estimation results obtained with tested datasets. The feature set giving the best results 

(GA4 weighted) is in bold face.  
 

  RMSE, % 

Dataset Bands Mean 
height BA Mean 

DBH 
Mean 

volume 
Pine 

volume 
Spruce 
volume 

Deciduous 
volume 

A 72 30.9 44.4 35.5 57.2 111.2 120.8 104.0 
B 100 17.9 28.1 23.6 32.2 88.5 106.9 89.2 
A+B 172 20.0 30.5 26.1 34.7 87.4 93.2 83.0 
C 6 33.6 44.2 39.1 57.1 106.7 124.3 95.3 
D 10 19.1 26.7 25.2 32.7 96.0 97.9 92.7 
C+D 16 19.5 30.1 25.2 35.1 89.3 91.5 80.8 
E 14 18.7 26.1 24.4 31.6 92.2 97.0 90.2 
F 12 19.6 26.8 25.4 32.4 95.0 98.2 94.0 
GA1 85 19.6 27.6 25.8 31.6 82.9 90.0 78.5 
GA2 41 18.3 26.1 24.8 29.0 85.5 89.1 79.6 
GA3 19 17.2 23.9 23.0 27.9 81.8 86.5 81.0 
GA3 
weighted 19 17.2 23.3 23.2 27.1 82.1 84.2 83.2 

GA4 11 17.5 24.2 24.5 28.4 82.1 84.4 79.2 
GA4 
weighted 11 16.9 23.2 23.8 27.1 81.4 84.6 79.6 
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4. Discussion 
 
In the present study, we tested the estimation of the most important forest attributes with a 
combination of ALS and aerial photograph data, using feature selection and the nonparametric 
k-NN algorithm. Based on our results, the lowest RMSEs, all variables considered, were 
obtained with a relatively small subset of the original features, comprising of both ALS and 
aerial photograph-based features. It was found via a GA-based feature selection process. Further 
weighting of the features was able to slightly lower the RMSEs of most of the variables. Our 
final RMSE for the mean volume was 27.1% of the mean. In comparison to results obtained 
using purely aerial photograph-based features, the drop in RMSE% was app. 30 percentage 
points and in comparison to other ALS-based results, 5-6 percentage points. The poor 
performance of aerial photograph-based features was in line with earlier studies (e.g. Haapanen 
and Tuominen 2008). The low spectral and radiometric resolution of these optical area data 
cannot distinguish forest characteristics: the grey values saturate at relatively low forest volumes 
(approx. 250 m3/ha in this study). Even when complemented with textural features, the RMSEs 
tend to be only slightly lower than with Landsat-type satellite images, which in turn produce 
field plot level RMSEs of 60% or greater (Haapanen and Tuominen 2008). Naturally, this 
applies only to large-scale forest inventories based on two-phase sampling, and the situation in 
applications based on single tree detection is different.     
 
Aerial photograph-based features lowered the estimation accuracies of general forest variables 
in sets A+B and C+D, which were constructed in a straightforward way. However, the 
species-specific accuracies were improved, compared with laser-based (or aerial 
photograph-based features). After the feature selection and weighting, all variables were more 
accurately estimated with a combination of laser and aerial photograph-based features, than with 
solely laser-based features. This implies that some aerial photograph-based features can improve 
the estimation of general forest parameters, as well. 
 
Our results were poorer than the plot-level ALS results in a study area in eastern Finland 
presented by Suvanto et al. (2005), obtained by regression functions, or by Packalén and 
Maltamo (2007), obtained with a k-most similar neighbour (k-MSN) method using ALS features 
and aerial photographs. Our study area had greater variation in forest parameters and a larger 
proportion of deciduous trees, both being properties that reduce the estimation accuracy 
(Naesset 2004a; Maltamo et al. 2004). In comparison to the results in a study area in southern 
Finland (Maltamo et al. 2004), where the amount of deciduous trees is larger and understories 
denser than in eastern Finland, the relative mean volume RMSEs were similar (25% vs. our 
27%). However, Maltamo et al. (2004) were able to reduce the relative mean volume RMSE to 
16% by predicting the small trees separately.  
 
To improve the estimation in forest areas with deciduous stands, stratification by cover types 
(Næsset 2004a) was suggested and later implemented based on aerial photograph-aided 
prestratification (Næsset 2004b). Aerial photographs were also integrated into the estimation 
process (Maltamo et al. 2006; Packalén and Maltamo 2006, 2007). Our approach resembled 
those of the latter studies: we fed the aerial photograph features together with the ALS features 
into a feature selection process. The feature selection criterion was tailored to take the tree 
species-specific volumes into account.  
 
The large amount of deciduous trees is again seen in the estimation accuracies of the 
tree-species specific volumes: our accuracies for pine and spruce were lower, but for deciduous 
trees higher than in the studies by Packalén and Maltamo (2006, 2007). Packalén and Maltamo 
(2007) obtained RMSEs of 20.5%, 51.2%, 55.7% and 102.8% for mean total volume and mean 
volumes of pine, spruce and deciduous trees, respectively. Clear-cut areas or small seedling 
stands were excluded (minimum volume was 54 m3/ha). When we removed volumes under 50 
m3/ha, our corresponding results were 25.6%, 75.7%, 77.9% and 74.7%, respectively. Weighting 
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had no effect on these results.   
 
Regression, in which each variable is separately modelled, produces more accurate 
variable-specific results than k-NN. However, k-NN and its special case k-MSN (based on 
canonical correlations and Mahalanobis distance; Moeur and Stage 1995) have the property of 
predicting all required variables simultaneously, preserving the concordance between variables. 
The k-MSN method is probably able to perform better than the k-NN method. 
 
We did not perform extensive sets of GA runs with varying parameters and repetitions in this 
study. Since the k-NN is sensitive to a large number of features, which is the case at the upper 
levels of GA runs, our next step will be to test the feature selection separately within both 
datasets. Better feature sets can probably be found by continuing these efforts. However, our 
results were promising, and the features selected are a logical mixture of ALS and aerial 
photograph-based features. Of these features, Fvege and Lvege appeared in all but one of the 
regression models by Suvanto et al. (2005), as well: mean volume, basal area, stem number and 
mean diameter (it was not needed in the height model). Various height statistic features were 
selected in both studies. Three aerial photograph features were selected for our final set: mean 
of NIR values and two standard texture features based on NIR and G. The presence of NIR is 
logical, since it helps to separate deciduous trees from conifers. The mean of R could also have 
entered into the final dataset, but the proportion of ALS hits of under 2 m in height (Fvege, 
Lvege) apparently described the amount of vegetation biomass better than the R band. 
 
Our study provides ALS data-based accuracy estimates from a relatively heterogeneous area in 
southern Finland. In conclusion, we can say that the accuracies were in line with other Finnish 
studies operating on low pulse density data (Suvanto et al. 2004; Maltamo et al. 2006; Packalén 
and Maltamo 2007), but slightly poorer. In our data, the proportion of deciduous trees was 
considerable, and forests of all development classes were included, as well as both mineral soil 
and mire sites. This method is suitable for large area forest inventories, since it works with low 
pulse density and is simple. The feature selection algorithm tested (GA) worked well, 
outperforming the selections made by the researchers. However, stepwise regression could have 
performed as well (Haapanen and Tuominen 2008). The ALS data were superior to aerial 
photograph data (which in turn are slightly better than Landsat-type satellite image data; 
Haapanen and Tuominen 2008). However, some aerial photograph features were selected to the 
best performing feature set. More elaborate processing of intensity data (calibration) or higher 
pulse density of ALS data may eliminate the need for aerial photographs. Bearing in mind the 
further use of the resulting estimates, the species-specific estimates are a disappointment. If the 
estimates are to be used as input data in decision-making, or when simulating forest 
development, far more accurate estimates are needed. However, these figures concern the plot 
level only, and stand level estimates have typically been better, and similar or even more 
accurate than those obtained by field inventory of forest stands (Packalén and Maltamo 2007). 
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Abstract 
 
Riparian zones are exposed to increasing pressures because of disturbance from agricultural and 
urban expansion and overgrazing. Accurate and cost-effective mapping of riparian environments 
is important for managing their functions associated with water quality, biodiversity, and 
wildlife habitats. The objective of this research was to integrate Light Detection and Ranging 
(LiDAR) and high spatial resolution QuickBird-2 imagery to estimate riparian zone attributes. A 
digital terrain model (DTM), a tree canopy model (TCM) and a plant projective cover (PPC) 
map were first obtained from the LiDAR data. The LiDAR-derived products and the QuickBird 
bands were then combined in an object-oriented approach to map riparian vegetation, streambed, 
vegetation overhang, bare ground, woodlands and rangelands. These products were also used to 
assess the riparian zone width. The overall result was a combined method, taking advantage of 
both optical and airborne laser systems, for mapping riparian forest structural parameters and 
riparian zone dimensions. This work shows the accuracy able to be obtained by integrating 
LiDAR data with high spatial resolution optical imagery to provide more detailed information 
for riparian zone management. 
 
Keywords: LiDAR, QuickBird, Riparian zone, Object-oriented image analysis 
 
1. Introduction 
 
Riparian zones are defined as the interface of terrestrial and aquatic ecosystems and constitute a 
rich ecosystem both in terms of biomass and biodiversity. Several riparian health indicators can 
be employed when assessing the riparian zone condition. The most commonly used are 
compositional and structural parameters, such as dominant vegetation community, PPC, riparian 
zone width, presence of vegetation overhang, tree crown size, large trees and bank stability.  
 
Optical remotely sensed data have been used to map these parameters (Congalton et al., 2002; 
Johansen and Phinn, 2006; Johansen et al., 2007a; Johansen et al., 2007b). These studies have 
been hampered by a missing third dimension in terms of structural information on the forest 
height and vertical distribution of foliage. Optical sensors often have difficulties distinguishing 
between canopy cover and ground cover (e.g. grass versus trees). Moreover, they cannot detect 
features underneath area of dense canopy cover. 
 
LiDAR introduces the possibility of three-dimensional analysis of vegetation and terrain 
features. The validity of airborne laser scanning to retrieve forest parameters has been widely 
tested (Lefsky et al., 2001; Persson et al., 2002; Zimble et al., 2003; Clark et al., 2004; Suarez 
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et al., 2005; Popescu and Zhao, 2008). LiDAR techniques provide useful information on forest 
structural attributes, encouraging the incorporation of LiDAR data to the riparian zone analysis.  
 
The aim of this paper was to integrate LiDAR and QuickBird data to estimate structural 
parameters of the riparian zone and its component vegetation. Object-oriented classification was 
used for the analysis, given its ability to integrate and process data with very different properties. 
Both data sets were employed in order to accurately map: PPC; the river’s streambed; the 
riparian zone width; a land-cover map; a DTM and a TCM. As a result, a combined 
methodology, taking advantage of the benefits of both optical and airborne laser systems, was 
developed.  
 
2.  Data and Methodology 
 
2.1 Study area 
 
The study area was located within the Fitzroy catchment in Queensland, Australia (Figure 1). It 
covered a 5 km stretch of Mimosa Creek and associated riparian vegetation situated upstream of 
the junction with the Dawson River (24º31’S; 149º46’E). The riparian vegetation was mainly 
surrounded by rangelands used for cattle and some agriculture, but also showed some remnant 
patches of woodland vegetation.  
 

 
 

Figure 1: Location of the riparian zone study area in the Fitzroy catchment, central Queensland, Australia. 
 
2.2. Data acquisition and processing 
 
A QuickBird image was captured of the study area on 11 August 2007 with an off-nadir angle of 
14.6º. The image was first radiometrically corrected to at sensor spectral radiance using the 
pre-launch calibration coefficients provided by DigitalGlobe Inc. The FLAASH module in 
ENVI 4.3 was then used to atmospherically correct the image to at-surface spectral reflectance. 
A total of 18 ground control points derived in the field were used to geometrically correct the 
image (root mean square error (RMSE) = 0.59 pixels for the multi-spectral bands). 
 
Data acquired by the Leica ALS50-II LiDAR sensor on 15 July 2007 were provided in 
American society for Photogrammetry and Remote Sensing (ASPRS) Lidar Exchange Format 
(LAS), specification 1.1. LiDAR returns were classified as ground or non-ground by the data 
provider using proprietary software. Four products were derived from this dataset according to 
the methods described below: DTM, TCM, PPC and a streambed map. 
A 0.5 m DTM was produced from the Leica ALS50-II data by inverse distance weighted 
interpolation of returns classified as ground with an exponent of two. Elevation of the ground at 
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the position of non-ground returns was also estimated using the same interpolation technique. 
The DTM and a slope image obtained from the DTM were employed for the location of the 
streambed within the study area. 
 
The height of all first returns above the ground was calculated by subtracting the ground 
elevation from the first return elevation. These estimates of first returns were then aggregated 
into 2.4 m x 2.4 m data bins to match the QuickBird multi-spectral spatial resolution and 
employed for the derivation of the TCM and the PPC. The TCM is a representation of the top of 
the canopy (Suarez et al., 2005) and it was calculated as the maximum height of first returns in 
each bin. PPC was estimated from the LiDAR cover fraction, defined as one minus the gap 
fraction probability, Pgap, at a zenith of zero. This was calculated from the proportion of counts 
in each data bin by 
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where CV(z) is the number of first return counts above z metres, CV(0) is the number of first 
returns above the ground and CG is the number of first return counts from the ground (Lovell et 
al., 2003). z was set to 2 m. The fraction of LiDAR pulses intercepted by the canopy above a 
height of z is determined by the PPC, but calibration is required to account for the sampling 
properties of the sensor (Goodwin et al., 2006). The calibration of LiDAR cover fraction to PPC 
was developed using independent LiDAR survey data from an Optech ALTM3025 with the 
same flying altitude and beam divergence settings used in this study. The minimum intensity 
required to register a return at the sensor was assumed to be the same. A total of 47 field 
measurements of PPC were acquired coincident with these LiDAR data. These LiDAR and field 
surveys were used to develop a calibration curve from LiDAR fractional cover to PPC and are 
described in detail by Armston et al. (2008). Using the same procedures as Armston et al.(2008) 
and Johansen et al. (2008), a simple power function was found to fit the scatter well (RMSE 
3.33) and had the property of being bounded 0–100 %, 
 

6447.0
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Since there was excellent agreement between the field estimates of PPC and LiDAR derived 
fractional cover and the residuals were consistent with a binomial sampling distribution, the 
LiDAR cover fraction estimates were calibrated to estimates of PPC using equation (2). 
 
2.3. Land cover classification 
 
All the above information (four multi-spectral bands, DTM, PPC, TCM and streambed map) 
was incorporated into a Definiens project for object-oriented image processing. Two processing 
steps were applied. One is the segmentation of the data into homogenous segments (image 
objects); and the other is the assignment of these objects to discrete classes.  
 
Segmentation is controlled by scale, colour, and shape. A stepwise approach was chosen here 
due to the very different information content of the different data sets. An initial segmentation 
was carried out on the basis of the LiDAR-derived information (using PPC and TCM products). 
Those objects that showed low and similar TCM values (areas with no vegetation or low 
vegetation) were merged into bigger segments. Then, a second segmentation was performed 
using the optical information. The location of the streambed was also incorporated into the 
segmentation, to make sure that there were no objects covering areas from both the streambed 
and the riparian zone. 
 
After segmentation, objects can be classified on the basis of spectral values, spectral variability, 
size, shape or in relation to neighbouring objects. In this case, both multi-spectral and 
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LiDAR-derived information were used to define the following six classes: riparian vegetation, 
woodlands, rangelands, bare ground, streambed without vegetation overhang and streambed 
with vegetation overhang. Four types of features were used for the classification: mean, 
standard deviation, context information and the normalised difference vegetation index (NDVI). 
Mean refers to the mean value of all pixels within an object, e.g. mean RED is the mean spectral 
value of the red band of all pixels within an object. The standard deviation features were 
employed as an estimation of the level of variability within each object. For instance, rangeland 
areas, which characteristically showed smooth surfaces, displayed low values of standard 
deviation in the near infrared (NIR) band. Context information refers to features such as 
“existence of streambed”, used in the description of overhanging vegetation, or “distance to 
riparian vegetation”, used to discard isolated forested areas misclassified as riparian vegetation. 
The NDVI values were calculated for each object as a new arithmetical feature, using the mean 
spectral values of the red and NIR bands. Each class was described by one or more of these 
features. Table 1 shows an overview of the features used for each class. The classification was 
performed in a hierarchical manner, with objects of one level informing the classification of 
other-level objects.  
 

Table 1: Object and class related features used for the object-oriented classification. 
 

Class Features used 
Bare ground Mean RED; Mean TCM 
Riparian vegetation NDVI; Number of neighbour "Riparian vegetation" objects; 

Enclosed by class "Riparian vegetation"; Distance to “Streambed” 
Rangelands NDVI; Standard deviation NIR; Mean TCM 
Woodlands NDVI; Relative border to "Riparian vegetation" 
Streambed without veg. Mean RED; Presence of "Streambed" 
Vegetation overhang NDVI; Presence of "Streambed" 

 
2.4. Riparian zone and streambed widths estimation 
 
The riparian zone width was estimated as the perpendicular length from the toe of the stream 
bank to the external perimeter of the riparian vegetation zone, where abrupt change in 
vegetation height and density occurred (Johansen and Phinn, 2006). The land-cover 
classification was employed to establish this distance. All the riparian vegetation objects were 
first subdivided into objects consisting of one pixel and only those ones corresponding to the 
edge of the riparian vegetation were considered for the analysis. The riparian zone width was 
then extracted from the value of the feature “Distance to class”. Definiens’ “Distance to class” 
feature measures the distance from the centre of each object to the closest object of the specified 
class. In this case, the distance of every pixel from the edge of the riparian vegetation to the 
streambed was extracted. The same approach was employed for the streambed width. 
 
2.5 Validation 
 
Field sampling was conducted between 28 May and 5 June 2007. Coincident field 
measurements of vegetation structural properties for image calibration and validation were 
derived along 25 m wide and 70 – 100m long transects located perpendicular to the stream at 
each of five field sites. Each site had six transect lines each separated by 5 m starting at the edge 
of the streambed, going through the riparian zone and finishing 10-20 m beyond the external 
perimeter of the riparian zone. Quantitative field measurements of PPC were derived along each 
of the six transect lines from upward looking photos taken at 5 m intervals (figure 2). The 
photos were subsequently classified into canopy photosynthetic and non-photosynthetic 
elements and sky to calculate the plant projective cover within the field of view using the 
approach by van Gardingen et al. (1999). Riparian zone width and streambed width were 
directly measured to the nearest meter using a measuring tape. 
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Figure 2: Example of the quantitative field measurements of PPC from upward looking photos. Photos 

(left) were classified (right) into canopy elements (black) and sky (white). PPC corresponds to the relative 
area of canopy elements in the classified photo (0.49 in this example) 

 
The LiDAR-derived PPC estimations were validated using the actual field PPC measurements. 
To allow this validation, each field site was subdivided into smaller plots of 225 m2. This plot 
size (15 x 15 m) is equivalent to the area covered by nine photos (3 x 3 photos) and represents a 
feasible compromise to allow geographic correspondence between both data sets. The average 
of the LiDAR-derived PPC values for each plot was then compared to the average of the 
corresponding nine field PPC measurements. A total number of 48 plots were used. 
 
An error matrix was constructed to estimate the land cover classification accuracy. Sixty 
randomly selected objects were visually classified using both the multi-spectral and the 
panchromatic bands from the QuickBird image and employed as reference sites. The overall 
accuracy of the classification and the Kappa statistic were calculated. 
 
Field measurements of streambed width were compared to those automatically obtained from 
the land cover classification. Since the streambed was frequently hidden underneath the canopy 
cover of the riparian vegetation, visual assessment of the streambed width from optical 
information was unreliable. Hence, only field measurements were employed for streambed 
validation. In the case of the riparian zone width measurements, a set of 34 visually assessed 
measurements of the riparian zone width was also produced from the multi-spectral and the 
panchromatic QuickBird bands. They corresponded to 17 sites located along the river where the 
riparian zone width was measured from both edges of the streambed (right and left hand side of 
the river) to the external perimeter of the riparian zone. Both in-situ and image-based riparian 
zone width measurements were compared to the automatically obtained riparian zone widths. 
 
3. Results and Discussion  
 
The 0.5 m DTM extracted from the LiDAR data revealed a fairly flat area, with a total height 
difference of only 25 m (Figure 3a). This information was employed for mapping the streambed 
of the river according to its geomorphology (Figure 3b). The high precision of this 
LiDAR-derived streambed map allowed very accurate estimation of the streambed width. Thus, 
the streambed width measurements obtained from the LiDAR-derived streambed map and the 
ones measured in the field showed a very high correlation, with a correlation coefficient (r) of 
0.98 (RMSE = 1.53). 
 
The PPC product showed the percentage of land covered by green foliage and 
non–photosynthetic vegetation (branches, trunks, dead leaves) (Figure 3c). This is an important 
riparian zone health indicator that is difficult to estimate by means of optical information. The 
comparison between the estimated PPC and the field measurements of PPC also showed a 
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strong correlation (Figure 4; r = 0.86). Previous studies based on optical information (QuickBird 
imagery) had revealed that the presence of dense grass cover heavily affects the accuracy of the 
optical-based PPC estimates (Johansen and Phinn, 2006). In this sense, the use of LiDAR data 
represents a benefit for the riparian zone analysis.  
 
A TCM estimating the heights of the top of the canopy was also derived from the LiDAR data 
(Figure 3d). The canopy height ranged from 0 to 41.35 m. This layer of information facilitated 
the image segmentation and land cover classification. The TCM was useful for tree crown 
identification and tree height estimation.  
 

 
 

Figure 3: LiDAR-derived products: (a) DTM; (b) streambed map (in blue); (c) PPC and (d) TCM. Bright 
areas correspond to high values for the terrain elevation (a, b), PPC (c) and tree heights (d). 
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Figure 4: Scatter plot of the PPC estimations from the LiDAR data vs the PPC measurements extracted 
from upward looking photos. 

 
Image segmentation was carried out using the LiDAR-derived information first (Figure 5a). 
This information on its own was useful for the tree identification, but it was insufficient for 
segmenting cover types with similar heights (such as bare ground and grasslands). The second 
level was created by incorporating the multi-spectral information (Figure 5b), and the result was 
a more suitable separation of tree crowns and other features. Here, the multi-spectral 
information allowed identification of features such as bare ground and grasslands. Finally, the 
incorporation of the streambed boundaries assisted the land cover classification and allowed the 
estimation of the riparian zone width.  
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Figure 5: Segmentation levels: (a) LiDAR-derived segmentation and (b) incorporating optical 
information. 

 
Classification was performed on the final segmentation level using the parameters defined in 
Table 1. The combined use of LiDAR, spectral and context information allowed accurate 
identification of the six land cover classes (Figure 6). Fifty-two out of sixty objects were 
correctly identified as one of the six land cover types, which provided an overall classification 
accuracy of 88% (Table 2). The Kappa value for the land cover classification was 85%. Riparian 
vegetation and woodland classes were predicted with the lowest accuracy (63 and 69% 
respectively), due to the high level of spectral and positional similarity between them in the 
transitional area between riparian and woodland vegetation.  
 
The LiDAR-derived streambed map was essential for correct identification of vegetation 
overhang and riparian zone width. A total area of 4.1 hectares of streambed (83.5% of the total 
streambed mapped for this study area) were located underneath vegetation overhang and would 
have been impossible to map by means of optical sensors alone. Accurate location of the 
streambed was also necessary for the riparian zone width estimation. At the same time, the 
spectral information improved the LiDAR-derived streambed map, which was underestimated 
in some areas. The original streambed map, derived only from LiDAR data, was missing 4.5% 
of the final streambed area, mapped after including the QuickBird multi-spectral bands. This 
confirms the feasibility of combining both sensors for the riparian zone analysis, rather than 
selecting one over the other.  
 

Figure 6: Land cover classification: (a) Subset of the study area (bands green, red and NIR) and (b) 
classification result for the same subset. 

 
Measurements of the riparian zone width and the streambed width were derived from the land 
cover classification map (Figure 7). By reducing the size of the objects to one single pixel, we 
ensured a reliable measurement of both the riparian zone width and the streambed width. The 
distance in Definiens is estimated from the centre of each object, being influenced by its shape 
and orientation. This bias was eliminated by working with individual pixels. The average 
riparian zone width and streambed width for the study area were 57.11 m and 13.23 m 
respectively.  
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Table 2: Error matrix of the land cover classification for bare ground (BG), riparian vegetation (RV), 
woodlands (WL), rangelands (RL), streambed without vegetation overhang (SC) and streambed with 

vegetation overhang (VO). 
  Reference Data User’s 

 BG RV WL RL SC VO Sum Accuracy
  BG 6 0 0 0 0 0 6 100% 
  RV 0 12 4 0 2 1 19 63.2% 
  WL 0 0 9 0 0 0 9 100% 
  RL 0 0 0 7 0 0 7 100% 
  SC 0 0 0 0 9 0 9 100% 
  VO 0 0 0 0 0 10 10 100% C

la
ss

ifi
ed

 D
at

a 

Sum 6 12 13 7 11 11 60  
Producer’s Acc. 100% 100% 69.2% 100% 81.8% 90.9%   
Overall Classification Accuracy =     88.3%           

 
Forty nine measurements of the riparian zone width (five measured in the field and 34 visually 
assessed from the optical information) were employed for the validation of the riparian zone 
width assessment. Comparison between the reference and estimated riparian zone widths 
showed a strong correlation (r = 0.82; RMSE = 13.9), with an overestimation of the automatic 
assessment in some areas (Figure 8). This overestimation was linked to the presence of 
woodland areas close to the riparian zone, which were in some cases misclassified as riparian 
vegetation, and therefore included in the riparian zone width estimation. Because the riparian 
zone width estimation was based on the land cover classification map, the results relied heavily 
on the image classification accuracy. Even though establishing the boundary between riparian 
vegetation and woodlands is challenging (even when it is performed in the field), the overall 
accuracy of the automatic estimation was high, with an average error of 3.9 m, equivalent to less 
than 2 pixels in the image.  
 

 
 

Figure 7: Riparian zone width estimation. Pixels representing the edge of the riparian zone are presented 
in different colours according to their distance to the streambed.  
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Figure 8: Scatter plot of the riparian zone width estimations vs the reference values (i.e. measured in the 
field and visually assessed from the optical information). The red ellipse shows examples of 

overestimation of the riparian zone width. 
 

Conclusions 
 
Several parameters of the riparian zone have been accurately mapped by combining LiDAR and 
high spatial resolution optical data. These include PPC, streambed with vegetation overhang, 
streambed without vegetation overhang, the riparian zone with, the streambed width and a land 
cover map.  
 
Combining LiDAR and high spatial resolution satellite imagery can significantly improve the 
mapping and assessment of vegetation structure and condition of the riparian zones in 
Australian tropical savannas. The integration of both sources of information produced an 
accurate land cover map, despite the high heterogeneity of the riparian landscape. This allowed 
accurate identification of riparian vegetation, vegetation overhang and the streambed, all of 
which are commonly used indicators of the riparian zone condition. Moreover, the analysis 
developed allowed an accurate estimation of the riparian zone width and improvement of the 
streambed map.  
 
The object-oriented image analysis was appropriate for this type of data integration. This 
approach also assisted the classification by allowing the incorporation of context information to 
the classes’ definition. Our results have implications for riparian management in tropical 
savannas as a tool for monitoring vegetation structure and composition remotely. Further 
research in this direction should be focused on the estimation and incorporation of other 
remotely-derived riparian health indicators, such as bank stability and weed mapping. 
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Abstract  
 
Vegetative composition (e.g., conifer and deciduous trees) and structure (e.g., over- and 
under-story tree densities and heights) are among the most important factors affecting habitat 
selection by wildlife, particularly breeding birds in forest ecosystems.  Estimating the 
composition of vegetation can be done using high resolution digital imagery for each mapping 
unit (e.g., forest stands) across the entire landscape.  However, current imaging systems do not 
provide a mechanism for estimating vegetation structure for each mapping unit.  Such 
information has to be collected by intensive and extensive ground surveys, which are 
impractical for large landscapes, especially where a complete census is required.  Therefore, 
the challenge is to estimate vegetation structure in a spatially explicit manner at every mapping 
unit across the entire landscape that can then be used to assess and predict habitat for wildlife.  
LiDAR offers an opportunity to capture and model vegetation structure across entire landscapes.  
These estimated structural metrics, which are typically the same metrics of interest to foresters, 
can then be used as explanatory variables in various empirical models for predicting wildlife 
species occurrences, or other demographic metrics (e.g., densities, nest survival).  Here we 
describe the utility of LiDAR, combined with imagery, in predicting wildlife demographics and 
discuss many applications, not in only forest ecosystems but also in riparian, shrubland, and 
urban (i.e., urban forestry) ecosystems. 
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Session 3: Ecological applications & habitat mapping 
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Abstract  
 
Characterising forest structure is an essential part of any comprehensive biodiversity assessment. 
In this study, the utility of LiDAR for characterising the ecological structure of a dry Eucalypt 
forest landscape was examined. An eight class scheme derived from LiDAR point density is 
proposed. This was validated using a network of field sites that recorded commonly used 
metrics of biodiversity. The proposed categories allow for the mapping of gaps (both above bare 
ground and low vegetation), canopy cover and its density as well as the presence of various 
canopy strata (low, medium and high). Regression analysis showed a high correlation between 
LiDAR derived variables and field recorded variables reporting the highest R-square 0.82 
between LiDAR derived presence of low vegetation and field derived LAI for low vegetation. 
Although some refinement is necessary, the proposed scheme clearly shows the potential of 
LiDAR to provide information on the complexity of habitat structure.  
 
Keywords: LiDAR, point density, canopy cover, ecological structure 
 
1. Introduction  
 
Characterising forest structure is an essential part of any comprehensive biodiversity assessment. 
There is often a good correlation between biodiversity and measures of the variety and / or 
complexity of arrangement of structural components within an ecosystem (Mac Nally et al., 
2001). Furthermore, the habitat complexity of a forest can be used to predict the occurrence of 
some species, since such information provides locally specific descriptions of faunal habitat 
(Catling and Burt, 1995; Jorgensen, 2002).  
 
In order to characterise the ecological structure of forests, a series of generally applicable, 
robust, reliable measurements are required. LiDAR (Light Detection and Ranging) has been 
recognized as a powerful tool for forest structure characterisation. Numerous papers have 
documented the utility of LiDAR for the estimation of forest attributes. Næsset (1997) showed 
the potential of LiDAR to estimate fractional cover. Næsset derived fractional cover from 
LiDAR as the ratio of canopy returns to the total number of returns per unit area. Similar 
methods utilising the point density of LiDAR returns to estimate fractional cover were presented 
in other studies (e.g. Coops et al., 2007; Hopkinson and Chasmer, 2007; Morsdorf et al., 2006; 
Riaño et al., 2004; Solberg et al., 2006) and showed promising results. Hopkinson and Chasmer 
(2007) also incorporated the intensity of LiDAR returns into this algorithm. These authors 
estimated gap fraction calculating the ratio of the sum of all ground level return intensities to the 
sum of total return intensity, and achieved a high correlation with gap fraction recovered from 
ground-based digital hemispherical photography. Vertical forest structure is also an important 
component. Zimble et al. (2003) used LiDAR derived tree height variance to differentiate 
single-storey and multi-storey vertical structural classes with a 97% accuracy. Riaño et al. 
(2003) used a cluster analysis of LiDAR height information to discriminate between overstorey 
and understorey canopies. Maltamo et al. (2005) tested the existence and the number of 
understorey trees by analysing the height distribution of LiDAR returns. These authors found 
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that multi-layered stand structures can be recognised and quantified, however, the accuracy of 
the results depends on the density of the dominant tree layer. The main focus of many previous 
studies has been on forest resource measurement rather than ecological applications. The later 
requires an assessment of complexity of habitat structure at a landscape scale.  
 
The purpose of this paper is to present a draft methodology for characterising the ecological 
structure of a dry Eucalypt forest landscape using LiDAR data alone. An eight class scheme is 
proposed and validated using a network of field sites that recorded commonly used metric of 
biodiversity. 
   
2. Method 
 
2.1 Study area  
 
The study area (Upper left S 41.12º, E 146.45º; Lower right S 41.32º, E 146.58º) covers the 
Rubicon catchment in the Cradle Coast Region of Tasmania, Australia and is approximately 
20,000 ha. The area is classified as Eucalyptus amygdalina coastal forest and woodland. The 
forests are dry sclerophyll communities dominated by E. amygdalina and have heathy, sedgy 
and shrubby understorey variants (Harris and Kitchener, 2005). In this area, the human 
population is growing in coastal towns such as Devonport which is one of the two major centres 
in this region. Most people are employed in primary industries (agriculture, forestry and fishing), 
mining, manufacturing, retail and tourism. As the population grows, change in land use such as 
land clearing for grazing, and conversion of native forest to plantation is causing terrestrial 
habitat loss or modification. Subdivision for urban or industrial development in areas of high 
vegetation conservation values has also become an issue. This is the major threat to biodiversity 
in this area (The Cradle Coast Natural Resource Management Committee, 2005). Assessment of 
the present state of ecological structure in forests is useful to make conservation strategy. 
 
2.2 LiDAR data 
 
LiDAR data was acquired over the study area using a RIEGL LMS-Q560 sensor in February 
2007. This is a waveform system and was configured to record up to six returns for this study. 
The scan angle for this mission was set to ±22.5º. The flying height was 500m above the ground, 
yielding a footprint of approximately 20cm in diameter. For this study, the pulse repetition 
frequency was 100 kHz and the wavelength of interaction was 1500 nm. The overall survey was 
coordinated using static and rapid static GPS methods. This was undertaken to establish a small 
accurate network of points.   
 
2.3 Field data 
 
Fieldwork was conducted in February 2007 and 2008. Initial ground data collection assessed 
native vegetation condition using the ‘Biometric’ tool – a generic plot-based ecological survey 
method designed to guide natural resource managers (Gibbons et al., 2004). Subsequently, an 
additional ground survey was developed and implemented specifically to collect ecological 
structural information. In this paper, the later information is used to validate the LiDAR data. 
 
Fourteen plots were surveyed within remnant dry Eucalypt forests across the study area. A 25m 
radius circular plot was established by defining a centre point and taking a hand-held GPS 
(eTrex of GARMIN Corporation) measurement. This includes resident positional error ± 5.5m 
of x y on average. Five transects running from East to West, parallel to each other were 
deployed in each plot (Figure 1). Assessment points were located every 7m along each transect, 
comprising twenty seven assessment points in a plot. Canopy Cover (CC) as a percentage was 
recorded in two ways. The first method (CC_1) assessed only photosynthetic elements and was 
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conducted in situ with the aide of reference photographs. The second method (CC_2) assessed 
both photosynthetic and non-photosynthetic facets by acquiring vertical images from a 1.7m 
vantage point and calculating CC later in the laboratory. Bare ground cover, grass cover, litter 
cover and low vegetation (Low veg; 0-1m from the ground) cover were also recorded as a 
percentage within a 3.5m radius of each assessment point. Coarse woody debris on the ground 
(defined as woody components ≥10cm in diameter) was recorded noting the diameter and length 
of logs on each transect. The Leaf Area Index (LAI) for low vegetation was measured using 
LAI2000 Plant Canopy Analyzer of LI-COR, INC for each plot. It should be noted that the LAI 
values recorded using this instrument include non-leaf elements such as stems and branches. 
Tree top and the height to the first branch were measured using a Total Station, TCR705 of 
Leica Geosystems. All tree height information was then classified into two classes. First, the 
height information was divided into two categories (vegetation upto 5m and vegetation greater 
than 5m). Next the relative proportion of each of these categories was calculated by comparing 
them to the total number of height records. It is noted that the height to the first branch was not 
recorded for all trees due to the field of view being obscured at times. In this case, only tree top 
height information was used for the classification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Each field plot comprises five transects running from East to West, parallel to each other, with 

assessment points located every 7m. In total this yields twenty seven assessment points for each plot. 
Small circles (only two shows for clarity) indicate the 3.5m radius assessment areas for understorey cover 

measurement (these were recorded for each assessment point).  
 
3. Proposed forest characterisation  
 
In order to create a scheme to characterise the ecological structure of a dry Eucalypt forest 
landscape, LiDAR data was first classified into four groups; Ground, Low vegetation (Low veg, 
0-1m from the ground), Medium vegetation (Medium veg, 1-5m from the ground) and High 
vegetation (High veg, 5m<) using TerraScan software of Terrasolid, Ltd. The number of singular 
(Type 1), first of many (Type 2), intermediate (Type 3) and last of many returns (Type 4) was 
calculated for each of the four groups and divided by the total number of returns in each plot. 
Type 1 and Type 2 returns are the result of the first interaction with objects, which suggests that 
there is opening above this pulse interaction (i.e. no interaction above these points). The number 
of returns in Low veg, Medium veg and High veg groups suggests presence of vegetation in each 
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of these strata. Of particular importance is the presence of Type 3 and Type 4 returns in High 
veg strata, since these indicate a dense canopy. Using calculated ratios, we propose the 
following scheme (Table 1). Where, 1) Ground Type 1; opening above the ground. 2) Low veg 
Type 1 & 2; opening above low vegetation. 3) Low veg total (Type 1, 2, 3 & 4); presence of 
understorey vegetation. 4) Canopy cover (CC) is defined as the following equation; 
 
    

∑
∑

+++

+
=

2&12&12&11
2&12&1

eHighVegTypypeMediumVegTLowVegTypeGroundType
eHighVegTypypeMediumVegT

CC     (1)                

 
5) Medium veg Type 1 & 2; opening above medium vegetation. 6) Medium veg total (Type 1, 2, 
3 & 4); presence of mid-storey vegetation. 7) High veg Type 3 & 4; dense canopy of high trees. 
8) High veg total (Type 1, 2, 3 & 4); presence of high trees. This scheme was subsequently 
compared to the field data to validate its utility in characterising ecological structure. 
 

Table 1: Forest characterization scheme 
 

 LiDAR return ratio Description 

1 Ground Type 1 opening above the ground 

2 Low veg Type 1 & 2 opening above low vegetation 

3 Low veg total (Type 1, 2, 3 & 4) presence of understorey vegetation 

4 See equation (1) canopy cover 

5 Medium veg Type 1 & 2 opening above medium vegetation 

6 Medium veg total (Type 1, 2, 3 & 4) presence of mid-storey vegetation 

7 High veg Type 3 & 4 dense canopy of high trees 

8 High veg total (Type 1, 2, 3 & 4) presence of high trees 

 
4. Result  
 
The comparison between the LiDAR derived structural characterisation scheme and the field 
data is shown in Figure 2. In this paper, we will focus on four variables only; canopy cover, low 
vegetation, medium vegetation and high vegetation. 
 
4.1 Canopy cover 
 
Figure 2(a) and (b) show LiDAR derived CC (scheme 4) was strongly correlated with the two 
ground-based measures of CC (photosynthetic / photosynthetic and non-photosynthetic), with an 
R-square value of 0.78 and 0.77 respectively. As displayed in Figure 2(a) and (b), LiDAR CC 
and Field CC were highly correlated across a broad range of CC values. It was noted that the 
ground-based measures consistently reported a lower CC than LiDAR derived measures. This 
will be discussed in section 5. Both CC_1 and CC_2 report an anomaly whereby the canopy 
cover for plot 4a was higher in LiDAR CC. This can be explained by the difference in canopy 
cover estimation between LiDAR and field methods. LiDAR CC assessed vegetation cover 
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higher than 1m from the ground, while field CC was recorded at the height of 1.7m from the 
ground. If there are dense vegetation components between 1m and 1.7m, field measured CC 
estimation would miss this strata and therefore underestimate CC. Our field data confirms that 
plot 4a has extremely dense mid-storey vegetation; 553 trees (mostly shrubs, Melaleuca 
squarrosa and Leptospermum scoparium, approximately 98% of the trees in the plot) are less 
than 5m in height and with less than 30 cm DBH.  
 
4.2 Low vegetation 
 
LiDAR derived Low veg presence (scheme 3) showed strong correlation with field recorded 
LAI for Low veg (R-square value 0.82), and moderate correlation with field recorded mean Low 
veg cover (R-square value 0.58) (Figure 2(c) & (d)). As can be seen in Figure 2(c), LiDAR 
derived Low veg presence and Field LAI for Low veg were significantly correlated across a 
range of LAI values. Comparison between LiDAR derived Low veg presence and field recorded 
mean Low veg cover reveal that plot 13a was underestimated in the LiDAR. Plot 13a has grass 
and blackberry as understorey vegetation. It was noted in the field that the southern half of the 
plot was covered with very short grass. This could lead to misclassification of LiDAR returns. 
The grass is too short to be classified as Low veg and the LAI2000 is not designed to measure 
such low vegetation. This explains the good correlation between LiDAR derived Low veg 
presence and Field LAI for Low veg.  
 
4.3 Medium vegetation 
 
LiDAR derived Medium veg presence (scheme 6) displayed a good correlation with field 
recorded Medium veg class with R-square value 0.66 (Figure 2(e)). Again, this association was 
observed across a range of Medium veg class ratios. Plot 6a was underestimated by LiDAR. In 
this plot, significant recruitment of small trees and annual growth was noted in the field for all 
52 trees (average height 2.27m with less than 10cm DBH) in Medium veg. Since there is a one 
year difference between the LiDAR acquisition date and tree height measurement, these trees 
would have been much smaller and classified as Low veg when the LiDAR data was acquired.  
 
4.4 High vegetation 
 
LiDAR derived High veg presence (scheme 8) showed moderate correlation with field recorded 
High veg class with R-square value 0.46 (Figure 2(f)). Comparison between the field derived 
height measurements and LiDAR derived High veg presence scheme proved problematic. This 
could be due to a number of issues. 

• Problems with field measurement, in particular siting true tree top height 
• Problems in categorising the field data into height classes (canopy strata) 

Further work is being undertaken to resolve these issues. 
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Figure 2: Linear regression between LiDAR derived structural characterization scheme and field data 
with 95% mean prediction interval. The labels are surveyed plot names. 
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5. Discussion  
 
In the comparison between LiDAR derived CC and the two field measured CC assessments, 
strong correlation was observed. Interestingly, the two different assessment methods of canopy 
cover described in section 2.3 showed the similar results (R-square 0.77 and 0.78). One would 
expect higher correlation between LiDAR CC and Field CC_2, since both variables measure all 
perturbing canopy objects from laser pulse or sun light, while Field CC_1 measures only some 
portion of these objects. In our study site, the vegetation community of the canopy strata is all 
evergreen and dominated by Eucalypt species. The ratio of leaf area to non-photosynthetic 
elements (stems and branches) should be consistent unless there is defoliation caused by disease. 
In fact, CC_1 and CC_2 were significantly correlated with each other presenting Pearson 
Correlation Coefficient value 0.903 (P≤ 0.01) in our companion study. In terms of CC values, 
Field CC reports a consistently lower value than LiDAR CC. We assume that ground based 
measurements underestimate “true” CC. Since field derived measures are based on twenty seven 
independent observations over an approximately 0.2ha plot area, while LiDAR derived 
measures are based on more than seven thousand returns in average over the 0.2ha plot. LiDAR 
would be more capable of assessing CC at a landscape scale.  
 
The result of regression analysis between LiDAR High veg presence and Field Hig veg class 
provided relatively lower R-square value (0.46). The method to classify field tree height 
information (see section 2.3) may not represent vertical structure of the plots sufficiently. 
Further improvement would be required to validate LiDAR scheme.  
 
In conclusion, the proposed method to characterise the ecological structure of a dry Eucalypt 
forest landscape was promising. Regression analysis reported high correlation between LiDAR 
derived variables and field recorded variables across a different range of forest structural types. 
Although some refinement is necessary, particularly in the high vegetation class, the proposed 
scheme clearly showed the potential of LiDAR to provide information on the complexity of 
habitat structure. Future work will concentrate on examining the applicability of this scheme to 
develop habitat suitability models. 
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Abstract 
 
In this paper we explore the potential of Airborne Laser Scanning to measure the understorey 
vegetation in variously composed Alpine forests, proposing an innovative method of laser 
scanning data processing to automatically determine the spatial distribution of the dominated 
layer. To this aim, a complete processing chain was developed, starting with the point cloud as 
input data and ending with derived three dimensional parameters for each single tree. First, the 
dominant trees are detected by means of a mathematical morphology approach. Afterwards, the 
laser points belonging to the single crowns are clustered and crown shapes are delineated. To 
enhance the quality of the calculated crown parameters (area, base height, volume), a statistical 
analysis of the height frequency distribution is performed which allows the re-filtration of the 
low vegetation (border or under-canopy vegetation). The extracted data, integrated in a GIS 
environment in order to create a database for the forestry sector, integrate the information on the 
vertical structure of the forest. A field survey campaign in some mountainous geo-referenced 
plots was performed in coniferous and mixed forests characterized by mono-storey and 
multistorey canopies. The results highlighted interesting performances of the re-filtering method 
as far as the automatic detection of the dominated vegetation in both forest typologies are 
concerned.  
 
Keywords: LiDAR, Forestry, Tree extraction, Cluster analysis, Vertical structure, Understorey 
 
1. Introduction 
 
Monitoring of the forestry ecosystem is a current topic in the wooded resources sustainability 
debate. To characterize the vegetation from an ecological state and biomass content point of 
view, a detailed knowledge of the vertical structure is needed. In actual fact, the vertical 
structure of forest plays an important role in determining microclimatic conditions, the 
availability of niche space, habitat quality, the distribution of fuels and subsequent fire risk 
(Hill, 2007). Moreover, even if the majority of the above ground biomass is stocked in the 
dominant layer, information on the understorey layer can be essential to determine the carbon 
content of an ecosystem and is very important for forestry inventories (Patenaude et al., 2005).  
There are numerous case studies involving airborne laser scanning for the extraction of forest 
parameters at tree level (Andersen et al., 2001; Pyysalo and Hyyppä, H., 2002; Morsdorf et al., 
2003; Hyyppä et al, 2004; Pitkänen et al, 2004; Weinacker et al., 2004, Tiede et al., 2005; 
Barilotti et al., 2007a). In these studies, the attention has been focused on assessing the 
dominant vegetation layer while, recently, a trend toward the undercover has been noticed 
(Zimble et al., 2003; Hyde et al., 2005; Maltamo, 2005; Barilotti et al., 2007b; Hill, 2007; Wang 
et al., 2007). Forests belonging to the alpine and boreal latitudes can have simple mono-storey 
structures or more complicated bi-storey or multistorey structures. In forests characterized by a 
heterogeneous vertical structure, photogrammetry and, in general, remote sensing techniques 
can have some limits concerning their capacity to furnish information on single trees. This is 
particularly true when understorey vegetation has no direct access to light and grow underneath 
a relatively close canopy (bi-storey forests). The structure in which the dominated vegetation 
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can have free access to light, even if it does not occupy the upper canopy (co-dominant layer) is 
relatively simpler. In this case, the laser scanning technique can be useful in order to distinguish 
single trees and, consequently, classify the stand structure.  
 
In Maier et al. (2006) for instance, the authors developed an automatic approach for assessing 
and quantifying forest structure using landscape metrics on height class patches of the 
normalized crown model (nCM). Previously, Zimble demonstrated that differences between 
mono-storey and multistorey vertical structural classes could be detected with 97% of accuracy 
by analysing LiDAR-derived tree height variance. However, a common limit highlighted in 
these studies is that where the dominant trees form a dense and closed canopy it is not possible 
to distinguish the smaller trees and, consequently, the different forest structures. This is 
probably due to the fact that these approaches are essentially based on the LiDAR-extracted 
Crown Height Models. Consequently, the morphology of the canopy is the main source of 
information used. Maltamo et al. (2005) developed a histogram threshold method to calculate 
the distribution of LiDAR canopy height returns. The method (HistMod) was applied to the 
height distribution of laser points in order to classify them as uni or bi-modal distribution. In 
such a way they separated different forestry storeys. The results showed that multi-layered stand 
can be recognised and quantified using quantiles of laser scanner height distribution data. In this 
work, the analysis is carried out by using a plot-level approach. 
 
It is clear that the method used and the plot compositions are not the only factors affecting the 
accuracy of the forestry parameters to be estimated. Goodwin et al. (2006) for instance 
investigated the effect of a number of intrinsic LiDAR survey specification by comparing the 
results from three different platform altitudes (up to 3000 meters), two different scan angles at 
flight altitude of 1000 m, and three footprint sizes (0.2, 0.4, and 0.6 m). The authors found that 
higher platform altitudes record a lower proportion of first/last return combinations, with the 
direct effect of reducing the number of laser points available for Digital Elevation Models and, 
subsequently, for forestry structure assessment. 
 
The work reported in this paper makes use of multipulse LiDAR data acquired in leaf-on 
conditions in two different study sites. The method implemented for the understorey detection is 
based on firstly identifying the single trees and crowns belonging to the dominant storey. A 
subsequent algorithm makes it possible to automatically determine a local threshold value for 
filtering the clustered crowns and, at the same time, classifying the understorey point cloud. 
Field data is surveyed and used ad hoc for this study, both in mono-storey and in bi-storey 
forestry plots, enabling the method setting and the verification of the results obtained. 
 
2.1 Study area 
 
Two different study areas located in some mountainous sectors of the Friuli Venezia Giulia 
Region (N-E Italy) were investigated in this paper. The first area (MB) is essentially 
characterized by spruce, and spruce-fir, with a sparse presence of beech (Figure 1). As far as the 
vertical structure is concerned, the area is a managed mono-storey forest (zone marked as A2 in 
the image), without the presence of vegetation under the canopy. Significant for the aim of this 
study is the extensive presence of growing vegetation along the border line between forest and 
adjacent open stand (zone A1 in the image). 
 
The second area (BA) is a bi-storey forest in which the higher level is dominated by black pine 
with a population density of about 530 trees/hectar (Figure 2). The dominant layer has a 
homogeneous stand structure and the canopy is relatively closed. The lower level is 
characterized by a natural regeneration of different species: hop hornbeam, pubescent oak, 
flowering ash. In this area different population densities are to be found with the result that two 
different sub-zones can be distinguished within this forest: one with dense homogeneous low 
vegetation (B1) and the other with more sparse vegetation (B2).  
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Figure 1: MB area, characterized by a mono-storey spruce forest. The average of crown base height is about 

7-8 meters inside the forest (A2). The area shows the presence of border vegetation (A1). 
 

    
Figure 2: BA area, characterized by bi-storey black pine forest with different low vegetation population 

density. In the B1 part the understorey vegetation has a regular pattern while in B2 it is irregular (patched). 
 

Within these areas some sub-zones of interest have been located and geo-referenced using 
topographic total station and GPS. This has allowed the precise and accurate determination of the 
coordinates of 6 circular plots (transects), with radius ranging between 12 and 25 meters. The 
general forestry characteristics of these plots are reported in Table 1.  
 

Table 1 – Summary of the geo-referenced forestry plot characteristics in the MB forestry area.  
 

Plot ID trees /ha Area (m2) Management type Age Composition Structure 

MBA 619 450 stand mature mixed mono-storey 

MBB 1525 450 stand juvenile spruce mono-storey 

MBC 575 450 stand juvenile spruce mono-storey 

MBD 463 2000 stand mature spruce mono-storey 

BAA 536 2000 stand  mature black pine bi-storey 

BAB 510 450 stand mature black pine bi-storey 

A1 A2

B1 B2
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As far as the BA forestry area is concerned, the low vegetation was detected at area-level using 
GPS, enabling the detection of the small broad-leaved clumps of trees. In particular, two types of  
undercover were surveyed: regular pattern and patched.   
 
The principal characteristics of the LiDAR datasets are reported in Table 2. As shown in the table, 
the datasets were surveyed in leaf-on condition. This must be taken into consideration, especially 
in the cases of beech forests because the presence of foliage decreases the capacity of the laser 
beam to penetrate the canopy and detect the intermediate strata (Barilotti et al. 2006). 
 

Table 2 – Summary of the laser data characteristics for each forestry transect. 
 

Plot_ID Period of survey N° of echoes Local point density 

MBA June Multiple 6 pt/m2 

MBB June Multiple 7 pt/m2 

MBC June Multiple 8 pt/m2 

MBD June Multiple 10 pt/m2 

BAA June Multiple 5 pt/m2 

BAA June Multiple 6 pt/m2 

 
The datasets were detected using a multiple pulse laser scanner (Optech ALTM 3100) that 
increases the capacity to sample the intermediate layers of the vegetation if compared to the First 
& Last instrument. The flight altitude was about 1000 m above ground and the laser beam 
divergence was 0.2 mrad for both campaigns. 
 
3. Method 
 
A complete processing chain was developed, starting with raw laser points as input data and 
ending with derived tree parameters for each single tree of the dominant layer. The procedure is 
composed of a series of elaborations and transformations that can be schematically related to the 
following methodological aspects: 

• Application of mathematical morphology algorithms, following a dynamic approach, to 
extract the canopy apexes (Barilotti et al, 2007a); 

• Identification of the laser points belonging to the single crowns by means of a cluster 
analysis algorithm (Barilotti et al, 2007b). 

 
Resuming this last point, the single crowns are identified by means of a region growing algorithm. 
Starting from the apexes previously extracted, the algorithm classifies the vegetation points 
according to the criteria defined below: 

• If the points located in the proximity of the starting apex are lower (height difference) 
than a fixed threshold, these are marked as belonging to the same cluster; 

• When the same laser point is marked as belonging to different apexes (this is particularly 
true when the forest is characterized by close vegetation), the algorithm associates the 
point to the nearest apex. 
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An example of clustered data resulting from this method is given in Figure 3.  

  

Figure 3: Example of clustered laser data in the ecotone of MB area. The red colored cluster emphasizes the 
cases in which the same cluster contains both dominant tree and dominated vegetation undercover. 

 
As can be noticed, the cluster shape is not predefined but is closely related to the vertical 
distribution of the LiDAR point cloud. For this reason, if points reflected by low vegetation are 
recorded, they are located within the dominant clustered tree. A method for cluster filtering was 
implemented to isolate these low points. First, the histogram of the height frequency distribution 
of points is calculated cluster by cluster. Afterwards, a polynomial regression function is used to 
interpolate frequency histograms, obtaining a curve of frequency distribution for each one. 
Finally, the curves are explored by means of a study function looking for the presence or absence 
of a local frequency minimum. If this value is present, this is used as a threshold to perform a local 
filtering of the cluster, making it possible to eliminate those points that have less height than the 
class corresponding to the function minimum. An example of this process is given in Figure 4. 
The figure shows some different clusters of the MB area reported with their relative height 
frequency distribution (blue histograms) which was calculated using a height class of 1 meter. 
The first cluster is located within a mono-storey forested area (see figure 1-A2) while the other 
two clusters are located in the ecotone (see fig. 1-A1 and fig. 3). In the histogram images, the 
respective interpolating curves (in black) are reported as well.  
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Figure 4: Cases of clustered trees located in different positions in the forest. From the top to the bottom 
respectively: tree within close vegetation and two trees dominating low vegetation. On the right the relative 
height frequency distribution of clusters is reported (blue line). For each frequency diagram, the polynomial 
regression is calculated (black line) and then it is used to re-filter the sub-clusters after its minimum (in red) 

is calculated by means of a study function. 

In the three examples, the minimum of interpolated curves is reported in red. In the first cluster 
the minimum is found in the lower height classes and the curve shows an increasing trend. In this 
case, the tree seems to be well clustered and just a few low points are filtered. On the contrary, the 
other two examples (cases 2 and 3), showing a bi-modal trend, indicate the presence of anomalies 
in the height frequency distribution (higher point density in the lower classes of points). Such 
anomalies are evidently caused by the presence of vegetation under the dominant tree. Those 
points can be re-filtered and classified as low vegetation by using the curve minimums as local 
threshold value. 
 
3. Results  
 
Starting from this re-filtering approach on single clustered crowns, it is possible to obtain a zonal 
distribution of laser points belonging to the undercover vegetation. Two examples of the 
elaboration process are given in Figure 5 and 6. The left side shows in a green ramp color the 
clustered dominant layer while the re-filtered points, classified as belonging to the undercover 
vegetation, are shown in red. Those points are highlighted on the right side in the image sequence. 
The right side of the two figures also highlights the peculiar parts of the study areas:  

1. the ecotone (A1) and the georeferenced transect (A2) in the mono-storey forest; 
2. the dense undercover vegetation (B1) and the sparse one (B2) in the bi-storied forest. 
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Figure 5: Example of cluster re-filtering method to locally isolate the low vegetation (red colored points) 
under dominant trees (green colored cluster) in the MB area. The ecotone (A1) and the mono-storey MBD 

transect (A2) are shown in white in the image on the right. 
 

   

Figure 6: Example of cluster re-filtering method to locally isolate the low vegetation (red colored points) 
under dominant trees (green colored cluster) in the BA area. A dense understorey zone (B1) and a sparse 

one (A2) are shown in white in the image on the right. 
 
Some qualitative considerations are possible by comparing the LiDAR-extracted forestry layers 
and the corresponding field evidences. In the MB area, the first part of the ecotone is directly 
individuated by the tree extraction process, as a matter of fact that here the vegetation has a 
direct access to the light. The second part, composed by co-dominant trees (red points in the 
fig.5), was correctly individuated by means of the re-filtering process. As expected, in the 
mono-storey transects (e.g. A2) just few isolated points were removed from the clusters of the 
dominant storey. The elimination of these points does not seem to reduce the quality of 
dominant crown shape. On the contrary, those points can be considered as outliers because 
resulting from some random reflections on the lower part of the dominant layer (e.g. trunks or 
branches).  
 
As far as the BA area is concerned, the re-filtering method enables the localization of the second 
storey. Differences between the two different composed areas (B1 and B2 in Fig. 6) are also 
mapped in terms of consistency: in B1 the low re-filtered points assume a homogeneous 
distribution, corresponding to the rather spread density of the understorey vegetation. 
Differently, in B2 just few clusters of points are filtered given that in this area the second storey 
assumes a patched distribution. In this cases, confronting the field surveyed area of the 
dominated vegetation with the correspondent area resulting from the filtered points, an 
underestimation of about 15% was observed. This is probably due to the poor density of the 
LiDAR point clouds used in this work. 

A2

A1

B1

B2
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4. Discussion and conclusions 
 
In this paper we explored the potential of Airborne Laser Scanning to measure the understorey 
vegetation in variously composed Alpine forests. A complete processing chain was developed, 
starting with the point cloud as input data and ending with derived three dimensional parameters 
for each single tree of the dominant layer as well as the automatic individuation of the 
understorey cover. As far as the dominant storey is concerned, the accuracy level of the 
extracted parameters is generally high as reported in the previously cited works. 
 
Concerning the understorey, a statistical analysis of the height (z) frequency distribution was 
performed allowing the local (single tree level) re-filtration of the low laser points that belong to 
the forestry ecotone or to the under-canopy vegetation. The method enables the automatic 
determination of the spatial distribution of the dominated layer, without a-priori knowledge of 
the forestry structure.  
 
Comparing the approach shown in this paper with the one presented in Maltamo et al. (2005), 
follows that both are based on the analysis of histogram of height frequency distribution of laser 
point cloud. However, in this paper a tree level analysis is used whereas a plot level analysis 
was performed in the paper by Maltamo et al. (2005). This could give significant differences 
when the study site is composed by heterogeneous bi-storey structure, particularly when the 
dominated level is characterized by different population heights. In these cases, the analysis 
carried out by the single tree approach should increase the capacity of the histogram method to 
find gaps between the two structural storeys. 
 
A field survey campaign in some mountainous geo-referenced plots was performed in 
coniferous and mixed forests characterized by mono-storey and bi-storey structures. The 
analysis of the extracted data highlighted that the method is able to correctly individuate the 
areas characterized by the presence of dominate forestry layers. Moreover, the method does not 
introduce false positive vegetation layer in the mono-storey transects, as expected. 
 
However, some problems in finding bi-modal frequency distribution has been noticed when the 
branches of under-storey are very close to the crowns of dominant layer. Moreover, the reduced 
penetration capacity of the laser beam in correspondence of very dense dominant storey 
contributes to affect the results in terms of understorey discrimination. Further studies will 
concern the application of the re-filtration method to the full waveform data that increases the 
capacity of LiDAR technique to collect data on lower vegetation strata. 
 
The approach presented in this paper gives information on the existence and the area covered by 
the dominated tree layer. These information are of primary interest for forestry assessment an 
planning, due to high naturalistic value of bi-storied areas as peculiar habitats and also because 
of their relatively higher fire risk, compared to the mono-storey areas.  
 
Starting from here, further works will be also devoted to investigate the possibility to obtain 
quantitative information on the number, size and composition of suppressed trees, which could 
be of interest in the determination of carbon content of the above ground biomass. 
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Abstract 
 
Forest measurement using airborne laser scanner makes it possible to obtain detailed 
information of canopy surface including its roughness and its applicability for the studies of gap 
dynamics in natural forest is considerably high. This study aims to compare multi-temporal 
canopy surface conditions using multi-temporal airborne laser scanner data and to extract gaps 
in a canopy for the clarification of gap dynamics in a temperate deciduous forest. The study was 
conducted in the 6-ha (300m*200m) permanent plot in the Ogawa Forest Reserve. The laser 
scanner data were acquired on 24 August 2001, 14 April 2002 and 9 August 2005. Digital 
canopy models (DCM) were created from the data in 2001 and in 2005. Gaps were extracted 
from each DCM using the threshold, which was decided from the vertical distribution of heights 
above the ground where lasers reach. Gap dynamics are classified into four patterns, i.e., 
appearance, enlargement, reduction, and disappearance, and the number of gaps for each pattern 
was strongly affected by the gap size. For the gaps that were classified into the reduction and the 
disappearance, their annual decreased areas (Sdiff) could be described using their gap sizes (Sgap) 
as Sdiff =1.03Sgap

0.64 (R2=0.75). 
 
Keywords: airborne laser scanner data, canopy, digital canopy model, gap dynamics 
 
 
1. Introduction 
 
Natural disturbance is one of most important factors for the structure and succession of forest 
communities (White, 1979; Pickett and White, 1985). Gaps in a canopy that occur after natural 
disturbance alter light condition in a forest stand. Crown growth of trees that consist of canopy 
layer in the edge of gaps and height growth of trees consist of second layer are promoted by the 
appearance of gaps. Nevertheless the importance of gaps to understand forest dynamics, it is 
difficult to evaluate them quantitatively from the ground observation. In previous studies, the 
methods to detect gaps from multi-temporal DSM derived from stereo-pair aerial photographs 
(Nakashizuka et al., 1995; Tanaka and Nakashizuka, 1997; Itaya et al., 2004; Ticehurst et al., 
2007) and from the difference between a past aerial photograph and a late high-resolution 
satellite image (Clark et al., 2004) were proposed. In these methods, however, there is a 
likelihood that the difference of shade between aerial photographs or images in different seasons 
leads to mis-interpretation of gaps particularly in steep slopes. Measurement of forest using 
airborne laser scanner makes it possible to obtain detailed information of canopy surface 
including its roughness and its applicability for the studies of gap dynamics is considerably high. 
This study aims to compare multi-temporal canopy surface conditions using multi-temporal 
airborne laser scanner data and to clarify gap dynamics in a temperate deciduous forest. 
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2. Methods 
 
2.1 Study area 
 
This study area was located in the Ogawa Forest Reserve at the southern end of Abukuma 
Mountains, central Japan (36°56’ N, 140°35’ E, 610 - 650 m above sea level). The mean annual 
temperature is 9.0 °C, with the highest monthly mean of 20.5 °C in August and the lowest one 
of –1.6 °C in February. Annual precipitation is about 1750 mm, concentrated in August and 
September, and there is little rainfall in December and January. Maximum snow depth is 
occasionally 50 cm in winter, but it usually melts away in a few days. The forest has been 
protected from human impact for 80 years or more. There are more than 50 woody species in it, 
dominated by Quercus serrata Murray, Fagus japonica Maxim., and Fagus crenata Blume. 
 
2.2 Plot description and field data 
 
The study was conducted in the 6-ha (300m*200m) permanent plot in the Reserve. This 
permanent plot has been established since 1987 for the long-term ecological research 
(Nakashizuka et al., 1992). All trees with 5cm of the diameter at breast height (DBH) in the plot 
were identified, tagged and measured. The plot was divided into 10m*10m quadrats and a pole 
has been put at each corner of quadrat. All trees were remeasured every four years. Detailed 
delineations of the stand structure and dynamics of the community are available in Masaki et al. 
(1992), Nakashizuka et al. (1992), and Abe et al. (1995). 
 
Geographic coordinates at pole positions established at four corners of the plot and those of 
every 100 m-interval were positioned using a differential GPS (Ashtech Solution, USA) and 
they were calculated as the UTM coordinates (datum: WGS84) with the measurement data and 
the data of electric ground control point, which were offered by the Agency of Geographic 
Survey, in post-processing. Other poles were measured using a laser range finder (LaserAce 300, 
Measurement Devices, UK) and their geographic coordinates were calculated with the results. 
The data concerning individual trees in 2001 were used for the study. Positions of trees, which 
formed canopy layer, were measured from a nearest pole using the laser range finder. 
 
2.3 Airborne laser scanner data 
 
The ALMAPS (Asahi Laser Mapping System), which consists of the ALTM 1225 or ALTM 
3100 laser scanning system produced by the Optech, Canada, the GPS airborne and ground 
receivers, and the inertial measurement unit (IMU) reporting the helicopter’s roll, pitch and 
heading, was used to acquire the laser scanner data. The laser scanner system transmits the laser 
pulse at 1064 nm (near-infrared) and receives the first and last echoes of each pulse. The elapsed 
time between transmittance and receipt is measured to calculate the distance between the system 
and the object. 
 
The laser scanner data were acquired on 24 August 2001and 14 April 2002 using ALTM 1225, 
and 9 August 2005 using ALTM 3100. For the measurement in 2001, the flight altitude of the 
helicopter above the ground was about 250 meters and the average of the flight speed was 
approximately 13.9 m/sec. The pulse repetition frequency was 25 kHz and the scan frequency 
was 25 Hz. Maximum scan angle (off nadir) was 12°. The beam divergence was 1.0 mrad. 
Measurement density was 25.0 points/m2. Therefore, the footprint diameter was approximately 
25 cm and the distance between neighbouring footprints was about 20 cm. For the measurement 
in 2002, the flight altitude of the helicopter above the ground was about 300 meters and the 
average of the flight speed was approximately 13.9 m/sec. The pulse repetition frequency was 
25 kHz and the scan frequency was 30 Hz. Maximum scan angle (off nadir) was 10°. The beam 
divergence was 1.0 mrad. Measurement density was 31.9 points/m2. Therefore, the footprint 
diameter was approximately 30 cm and the distance between neighbouring footprints was about 
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18 cm. For the measurement in 2005, the flight altitude of the helicopter above the ground was 
about 500 meters and the average of the flight speed was approximately 19.4 m/sec. The pulse 
repetition frequency was 70 kHz and the scan frequency was 27 Hz. Maximum scan angle (off 
nadir) was 18°. The beam divergence was 1.2 mrad. Measurement density was 50.2 points/m2. 
Therefore, the footprint diameter was approximately 60 cm and the distance between 
neighbouring footprints was about 14 cm. Both first pulse and last pulse were acquired to 
extract forest canopy and topography in rugged terrain. 
 
Digital elevation model (DEM) and digital surface model (DSM) for the plot were prepared 
from the airborne laser scanner data with 25cm cell size (Figure 1). DEM was generated from 
the last pulse data acquired in the leafless season in 2002. Digital surface model (DSM) was 
generated as assigning highest value of first pulse data of each full-leaved season in 2001 and 
2005 involving in each cell to the cell value.  

 
 

Figure 1: DSM and DEM of the study area derived from airborne laser data. 
 
 
2.4 Data Analysis 
 
Clarification of gap dynamics requires understanding of multi-temporal canopy surface 
condition. Digital canopy model (DCM), which delineates canopy height from the ground, was 
created by subtracting the DEM from each DSM of full-leaved season. The canopy heights 
using DCM in 2001 and 2005 were compared and change of canopy heights for 4 years from the 
difference between them was investigated. 
 
Gap is defined as “open hole in canopy which occurs due to loss of crowns that consist of 
canopy”. While gaps appear owing to the death, uprooting, stem breakage and so on, definitions 
such as the size and the height are not clear (Nakasizuka et al., 1995). In this study, we defined 
the gap as the area where canopy height is lower than a certain height above the ground. Here, 
we assumed three thresholds to extract gaps from DCM, that is, 15 m, 10 m and 5 m. Gap size 
was defined as more than 1 m2 for noise reduction. An area, which was extracted as a gap, was 
converted to a polygon of vector format. The area of gap of each polygon was calculated and the 
number of gaps and the total area in 2001 and in 2005 were investigated.  
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The gap dynamics are classified into four patterns, that is, appearance (Figure 2 (a)), 
enlargement (Figure 2(b)), reduction (Figure 2(c)) and disappearance (Figure 2(d)) in 
comparison with gaps of two periods. Gaps, which occur newly, come from death, uprooting, 
stem breakage and so on. Enlargement of an existing gap is caused by death, uprooting, stem 
breakage of trees around the gap and isolated tree in the gap. Reduction of a gap results from 
both the height growth of trees in second layer in the gap and the enlargement of crown of trees 
around the gap. Finally, this reduction leads to the close of gap, that is, disappearance. We 
investigated the gap dynamics of the study area from these patterns and the speed of gap closing 
against gap size. 
 
 
3. Results and discussion 
 
Mean heights of canopy derived from the DCM and their standard deviations in 2001 and 2005 
were shown in Table 1. The difference of mean canopy heights was 0.48m and its slight growth 
was identified. While the increase of canopy height arises from height growth of individual trees 
as well as closing process of gaps due to enlargement of crowns that are located around gaps, 
the decrease of canopy height results from occurrence of new gaps. The growth of canopy 
height comes from the balance of them. 
 
The number and total area of extracted gaps by threshold was shown in Table 2. The number of 
extracted gaps by area class using the threshold below 15 m was shown in Table 3. The number 
of gaps, which area was less than 5 m2, is more than half of the total number, and the area class 
of 10 to 50 m2 was next to that.  
 
The summary of gap dynamics by area class was shown in Table 4. We selected larger area of a 
gap in 2001 and the same in 2005 as “area of a gap” in Table 4. We found from Table 4 that a 
large gap with the area of more than 100 m2 appeared during the period. We confirmed that this 
gap was caused by the uprooting of F. Japonica M. and some stem breakages of surroundings, 
which resulted from the uprooting from field survey. In general, the appearances of gap, which 
are caused by uprooting or stem breakage near the ground trend to become large in comparison 
with ones from death of standing trees. Enlargement of gap could be found in all area classes, 
and the ratio of the number against the total number of gaps in area class was smaller in small 
area class. Reduction in gap dynamics patterns could be found in all area classes of gap except 
the smallest area class. The ratio of disappearance in the smallest area class was largest instead 
of the pattern of reduction. There were few gaps which area was constant during the period. 
 
Relationship between gap area in 2001 (Sgap) and annual decreased area of the gap (Sdiff) was 
shown in Figure 3. This relationship could be expressed as follow; 
 
 Sdiff =1.03 Sgap

0.64 (R2=0.75)    (1) 
 
When crown enlargement of trees around a gap is found in the process of gap closing, a gap, 
which has large area, are surrounded by many trees and, as a result, closing area of gap becomes 
large. 
 
In this analysis, the period between two forest measurements of airborne laser scanner was only 
4 years; therefore, contribution of trees in second layer or understory to gap closing process was 
not found. However, gap closing requires much time when gap size is large and it is considered 
that annual decreased area of a gap is composed of both enlargement of crowns that are located 
around the gap and intrusion of trees in second layer to canopy layer. Continuous monitoring of 
canopy condition using airborne laser scanner is required to clarify the dynamics in natural 
forest. 
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     (a) Appearance          (b) Enlargement 
 

      
     (c) Reduction          (d) Disappearance 
 

Figure 2: Patterns of gap dynamics. 
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Figure 3: Relationship between gap area and annual decreased area of the gap. 
 
 

Table 1: Mean heights of canopy and their standard deviation in 2001 and 2005. 
 

Year Mean height (m) Standard deviation
（m） 

2001 22.03 3.88 

2005 22.51 4.07 
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Table 2: The number and total area of extracted gaps by thresholds. 
 

The number of gaps Total area (m2) Threshold 
(m) 2001 yr 2005 yr 2001 yr 2005 yr 

5 18 26 170 171 

10 55 52 930 972 

15 113 116 3048 3234 

 
 

Table 3: The number of extracted gaps by area class using the threshold below 15 m. 
 

Area of a gap (m2) 2001 yr 2005 yr 

>100 8 8 

50-100 7 5 

10-50 20 24 

5-10 17 13 

1-5 61 56 

Total number 113 116 

 
 

Table 4: The summary of gap dynamics by area class. 
 

 
 
4. Conclusions 
 
In this study, we examined to apply airborne laser scanner data to the clarification of gap 
dynamics in a temperate deciduous forest. The patterns of gap dynamic were classified four 
categories, that is, occurrence, enlargement, reduction and disappearance, and the trend of 
dynamics was clarified. Monitoring of canopy condition using airborne laser scanner makes it 
possible to evaluate gap dynamics quantitatively, and further acquisitions of airborne laser 
scanner data a expected to contribute to ecological studies of natural forest dynamics. 
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Area of a gap (m2) Appearance Enlargemen
t Reduction Disappearan

ce No change 

>100 1 3 6 0 0 

50-100 0 3 5 0 0 

10-50 4 8 11 0 0 

5-10 1 7 9 2 1 

1-5 18 3 8 37 4 

Total number 24 23 40 39 5 
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Abstract 
 
The creation of gaps in forest canopies can dramatically change the microclimate and soil water 
balance which strongly influences the process of regeneration and biodiversity within forest 
ecosystems. Hence, understanding the microclimatic conditions in canopy gaps is a prerequisite 
in developing and improving techniques for forest management and conservation practices. 
However, information is scarce on how the size and shape of gaps and their spatial distribution 
affects the microclimate and soil water balance across forest stands. In the present study we 
investigated the potential for retrieving forest gap and canopy attributes from LiDAR and 
hyperspectral sensors in order to provide new opportunities for modelling forest microclimates. 
A spatially explicit microclimate model (FORGAP-3D) was developed which could be driven 
using inputs from remote sensing. The model was implemented for a study site in the New 
Forest, UK in order to quantify the spatio-temporal dynamics of microclimates over an entire 
forest stand. Further work will focus on improving the methods for deriving gap and canopy 
properties from LiDAR and hyperspectral data and evaluating the impact of these techniques on 
the accuracy of microclimate model outputs.   
 
Key words: Hyperspectral, LiDAR, Meteorology, Spatial, Three-dimensional   
 
 
1. Introduction 

 
Forests are crucial to the well being of humanity; they provide foundations for life on Earth 
through ecological functions, by regulating the climate and water resources, and by serving as 
habitats for plants and animals. In temperate forests wind throw often creates canopy gaps 
which can dramatically change the microclimate and soil water balance (Spice et al., 1990, 
Yamamoto, 1995). Hence, understanding the microclimate conditions in canopy gaps is a 
prerequisite in developing and improving techniques for forest management and conservation 
practices. Figure 1 demonstrates the nature of these changes, in general terms. However, 
information is scarce on how precisely gap size and shape affects the microclimates within 
canopy gaps and beneath surrounding tree canopies and how the spatial distribution of gaps 
influences microclimates across entire forest stands. 
 
 
 
 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 152

 
 

Figure 1. Gradients of microclimate conditions and soil moisture in forest canopy gaps. The grey areas on 
the vegetation represent the parts of the crowns that can receive direct solar radiation. 

 
Remote sensing is increasingly seen as an important tool for providing information for the 
achievement of sustainable and efficient forest management. The past decade has seen growing 
interest in the use of remote sensing technologies in forest studies. Devices such as Light 
Detection and Ranging (LiDAR) and hyperspectral sensors together with new analytical 
techniques allow increasingly detailed information to be extracted from such imagery. LiDAR 
technology is becoming capable of providing 3-dimensional information at high spatial 
resolutions and vertical accuracies (Lee and Lucas, 2007). Hyperspectral data provides much 
finer spectral resolution than conventional multispectral data. Forest attributes such as crown 
heights and individual canopy gap delineations can be directly retrieved from LiDAR data 
(Koukoulas and Blackburn, 2005) while tree species classifications may be derived from 
hyperspectral imagery (Lucieer et al., 2005). LiDAR is a relatively new technology that offers 
an alternative to in situ field surveys and photogrammetric techniques for the collection of 
elevation data. LiDAR provides accurate, timely data, is capable of operating in difficult terrain 
and is increasingly affordable (Flood and Gutelius, 1997).With high spatial resolution remotely 
sensed imagery, the spatial properties and composition of tree canopies and gaps can be 
obtained over large areas. With the capabilities of direct retrieval of forest attributes offered by 
remote sensing, this provides new opportunities to model forest gap microclimates. Modelling 
the spatial patterns of microclimates in a gap and its surroundings using traditional methods 
would require a large volume of ground-based measurements and many model runs in order to 
cover a large spatial extent. By developing an inherently spatial microclimate model and driving 
this with inputs from remote sensing we have the potential to quantify forest gap microclimates 
over entire forest stands. This study aims to examine the feasibility of such an approach using a 
case study of a broadleaved deciduous forest in the UK.  

 
 

2.  Data collection 
 
2.1 Study site 
 
The LiDAR and hyperspectral imagery used for this research were collected at Frame Wood, 
New Forest (1˚30’W, 50˚50’N), southern England, an area recognized as being of international 
importance to nature conservation. There are 4049 ha. of unenclosed primary woodland where 
the dominant tree species are Quercus (pendula and pubescens) and Fagus sylvatica. Betula 
(pendula and pubescens) can be found mainly in canopy gaps and in association with Quercus 
spp.. The specific study site, Frame Wood presents a wide range in all of the gap and canopy 

Soil moisture 

Relative humidity 

Radiation, Temperature, Wind speed, 
Precipitation 
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variables of interest, being described by Flower (1977) as primary woodland dominated by 
Quercus robur. Previously, this area has been the focus of a number of ecological remote 
sensing studies (e.g. Koukoulas and Blackburn, 2004, 2005).  
 

                                  
 

Figure 2: Location of the New Forest, U.K. 
 

2.2 Airborne data 
 
The LiDAR data used in this research were acquired by the UK Environment Agency (EA) 
using an Optech Airborne Laser Terrain Mapping (ALTM) 1020.  The altitude of the aircraft 
was 730 m (2400 ft) above the ground level and a swath width of approximately 600 m was 
surveyed along each flight line. The laser scans across the aircraft flight line at 5000 light pulses 
per second (at 1047 nm wavelength), sweeping left and right in a zig-zag movement over the 
ground. Individual measurements were made at approximately 1 return per square metre. The 
travel times of the laser pulses, from the aircraft to the ground and vice versa, were measured 
with a precise timer. This instrument recorded the time of the first returned pulse. The time 
intervals are then converted into range measurements using the velocity of light. In this way, the 
surface height is calculated to accuracy of within 15 cm. The LiDAR data provided contained 
single return. 
 
Imagery of the study site was also acquired using an Itres Compact Airborne Spectrographic 
Imager (CASI) onboard the Natural Environment Research Council (NERC) Airborne Research 
and Survey Facility. The aircraft altitude was 670 m (2200 ft) which generated imagery with a 
spatial resolution of 1 m. The CASI instrument acquired imagery in 12 narrow wavebands 
across the visible and near-infrared. 

 
3. Methodology 
 
3.1 Derivation of a Canopy Height Model and gap delineation 
 
Gap identification from LiDAR imagery was performed using Erdas Imagine (v.9.1) and 
ArcGIS (v.9.2) software (Environmental Systems Research Institute, Inc.). Canopy heights were 

New
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derived from LiDAR data; however an estimate of the ground elevation is needed. Because the 
LiDAR sensor recorded only the first return, a digital terrain model (DTM) was constructed 
from elevation data provided by the U.K. Ordnance Survey (OS). A canopy height model 
(CHM) was calculated as the difference between elevation values in the LiDAR data and ground 
elevation at corresponding locations.  Figure 3 shows the CHM model where tree heights are 
classified into five classes for display purposes. Based on the field visits of previous work by 
Koukoulas and Blackburn (2005), it was determined that the height below which areas would be 
identified as gaps should be between 3 and 5 m. Thus, the height of 4 m was therefore selected 
as the threshold for distinguishing canopy from gap areas. From the CHM all grid cells with a 
height less than or equal to 4 m were assigned as gap areas.   
 

                                       
 

Figure 3. Canopy Height Model (CHM) extracted from LiDAR data. 
 
 
3.2 Derivation of LAI 
 
Leaf area index (LAI) is a major parameter in understanding forest microclimate and a key input 
to forest microclimate models in order to quantify the interception of light by the canopy. The 
following relationship, derived from a previous work at the study site (Blackburn, 2002) 
between a simple ratio (SR) of CASI bands 12/3 and LAI (R2 = 0.71) was used: 
 

             LAI = 0.6348 (SR) – 1.3985    (3)               
 
where Simple Ratio (SR) = NIRCASI / GreenCASI = 865 nm/553 nm 
 

 
3.3. Forest gap microclimate modelling 
 
A spatially explicit model of forest gap microclimates and soil water balance was developed 
based on previous reviewed literatures and field measurements of microclimates and soil water 
balance (Van Dam, 2001). FORGAP-3D is written in the dynamic script modelling language 
PcRaster (PcRaster, 1995) and comprises two sub-modules, radiation and soil water balance. 
The radiation module calculates the potential radiation on the vegetation, the potential radiation 
on the saplings in the gap and area surrounding the gap and the potential radiation on the soil. 
The second sub module calculates the soil moisture content at 5cm depth both within gaps and 
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beneath the forest canopy. FORGAP-3D was developed to be driven by a set of spatial inputs 
derived from remote sensing (canopy height, gap map and LAI) together with a DEM and 
meteorological data from a nearby weather station (Figure 4). In order to refine the model, 
future work will concentrate on validation using ground-based micrometeorological 
measurements. 
 

 
Figure 4. Methodological framework of the integration of remotely sensed and meteorological data into 

the FORGAP-3D model. 
 
 
4. Results and Discussion 

 
Gap areas extracted from the LiDAR data in Frame wood are shown in Figure 5 while the map 
of LAI derived from CASI is shown in Figure 6.  
 

 
 

Figure 5. Canopy gaps in Frame Wood as estimated from the CHM. Gaps are shown as white areas 
outlined in black. 
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Figure 6. LAI map of study area derived from CASI. 

 

The spatial data above were used to drive the FORGAP-3D model in order to generate both 
spatial and temporal simulations of forest microclimates. In order to demonstrate the output 
from the FORGAP-3D model, Figure 7 shows diurnal time series of microclimate conditions 
(total radiation, air temperature, relative humidity and wind speed) for a specific location at the 
centre of a gap as well as a location beneath the adjacent forest canopy. At solar noon total solar 
radiation in the gap was higher than that beneath the adjacent forest canopy by 192 W.m-2. 
Likewise air temperature and wind speed was higher at the gap centre than beneath the forest. 
However, relative humidity values were lower than in the forest at noon. Figure 8 shows 
examples of the spatial output from FORGAP-3D for a specific time point (solar noon), which 
illustrates the detailed spatial information concerning microclimate that the model is able to 
generate. 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7. FORGAP-3D diurnal pattern outputs of total solar radiation, air temperature, wind speed and 
relative humidity at a gap centre and beneath the adjacent forest canopy. 
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Figure 8. Examples of the spatial output from FORGAP-3D for a sample area within Frame Wood at a 
specific point in time (solar noon). Area covered by each image is 50 x 50m.  

 
 

5. Conclusion 
 

This preliminary study has demonstrated that remote sensing is a promising tool for forest 
microclimate modelling, in particular when combining LiDAR and hyperspectral data sources. 
The use of remote sensing technology greatly reduces the time and fieldwork effort required and 
can provide a comprehensive set of spatial information that is difficult to obtain using traditional 
methods. Forest gap microclimate modelling can be a valuable tool for understanding the 
spatio-temporal characteristics of microclimates within gaps and across the entire forest 
landscape. Remote sensing provides an increasing variety of spatial data layers that are 
potentially useable as model input. This study has demonstrated that it is possible to drive a 
simulation model using gap and canopy data derived from remote sensing in order to generate 
spatial and temporal estimates of microclimate. Further work will focus on improving the 
methods for delineating gaps and extracting canopy properties from LiDAR and hyperspectral 
data, driving the model using a seasonal time series of gap and canopy variables and evaluating 
the impact of these techniques on the accuracy of microclimate model outputs.   
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Abstract  
 
Large canopy gaps in old-growth forests, formed as a result of tree fall events over time, could 
be composed of regeneration in various stages of growth different from that of single mortality 
events. Though important to understand forest dynamics such complex processes are rarely 
monitored due to limited techniques. Applying object-based techniques on a series of three lidar 
datasets acquired over nine years in boreal forests, we characterised gap events into old gaps, 
gap expansions and new random gaps. Combining broad species class from high resolution 
images, and individually locating gap saplings on the lidar surface, specieswise height growth 
across gradients of height was estimated. The results indicate distinct height growth patterns of 
both hardwood and softwood gap saplings in different gap events. The methods can potentially 
be extended to develop accurate juvenile growth patterns. 
 
Keywords: height-growth, multi-temporal lidar, gap dynamics, advanced regeneration 
 
1. Introduction  
 
Canopy gaps created by the fall of one or more overstory trees are important for regeneration 
dynamics in old-growth forests (Pickett and White 1995). The availability of increased site 
resources enhances the height growth rates of all species within canopy gaps. Research in 
various forest systems showed that sapling height growth is a function of gap characteristics, 
such as gap size (Kneeshaw and Bergeron 1998). Due to the vulnerability of gap edge trees to 
mortality, some larger canopy gaps could be a result of tree fall events over successive periods 
of time (Runkle and Yetter 1987, Foster and Reiners 1986). As a consequence, such large gaps 
in an old-growth forest could be composed of regeneration in different stages of growth whereas 
gaps formed from a single mortality event should have a single regeneration cohort. Hence it is 
important to characterise the type of gap events to forecast growth patterns of the regeneration. 
However, gap formation (expansion vs a single event) is rarely investigated due to the difficulty 
in collecting data and the limited techniques available for monitoring canopy gaps over time. 
Moreover, measurement of a canopy gap, gap dynamic characteristics like gap expansions and 
closure and reliable measurement of height-growth in the field is complex. Conventional remote 
sensing based methods have been criticized for inadequately identifying gaps (Koukoulas and 
Blackburn 2004) while assessment of vegetation height is prone to error in closed canopies 
(St-Onge et al. 2004).  
 
In recent decades lidar has emerged as a powerful tool in remote sensing to accurately measure 
canopy height and vertical structure (Lefsky et al. 2002). Owing to its high density and accuracy, 
the potential to detect tree fall and growth estimation using multi-temporal discrete small-foot 
print lidar data sets was also shown in a few recent studies (Hopkinson et al. 2008, Yu et al. 
2006, Naesset and Gobakken 2005, St-Onge and Vepakomma 2004). Using tree matching 
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techniques on high density lidar, Yu et al. (2006) showed a good correspondence with field 
measurements. Lidar was effective in observing significant growth at plot and stand levels 
(Naesset and Gobakken 2005) and in detecting annual conifer growth (Hopkinson et al. 2008). 
St-Onge and Vepakomma (2004) compared and confirmed acceptable results of dissimilar 
density lidar data for expected forest height growth. Vepakomma et al. (2008a) validated the 
feasibility of using medium density small-foot print lidar to map several gap dynamic 
characteristics like canopy gap opening and closure of sizes ranging from 5 m2 to 9.8 ha. 
Nonetheless, no studies have yet been conducted to characterise height growth patterns of 
vegetation in canopy gaps using lidar. 
 
Assuming lidar accuracy and potential to estimate changes in forest growth with similar and 
dissimilar densities from earlier studies, we characterise the height growth patterns of gap 
saplings growing following different gap events by analysing a time series of lidar data. Using a 
validated method to locate individual trees/ sapling tops and identify their species class 
(hardwood or softwood), we quantified the height growth rates of saplings over four years in 
canopy gaps. By delineating the canopy gaps and identifying the nature of gap events as old 
existing gaps, new gap expansions and new random gaps, we investigated whether the height 
growth patterns vary between them.  
 
2. Methods 
 
2.1 Study area  
 
The study site is within the conservation zone of the Teaching and Research Forest of Lake 
Duparquet (TRFLD, 79o22'W, 48o30'N), in the Province of Quebec, Canada. This area is 
characterized by small hills that vary in elevation between 227 m and 335 m. The mixed 
vegetation of this part of forest is composed of common boreal species, dominated by balsam fir 
(Abies balsamea L. [Mill.]), paper birch (Betula papyrifera [Marsh.]), and trembling aspen 
(Populus tremuloides [Michx]). The stand level age structure found at this site results from a fire 
driven disturbance regime (1760-1919), and a recent infestation of a defoliating insect 
(1970-1987) called the spruce budworm (Choristoneura fumiferana [Clem]). Most stands are 
mature or over mature reaching heights of up to 25 m. The climate is cold temperate with an 
average annual temperature of 0.8° C with annual precipitation of 857 mm The frost free period 
lasts for nearly 64 days, while the length of the growing season is on average 160 days 
(Environment Canada 1993). 
 
2.2 Lidar data  
 
A time series of lidar data in three time steps was collected on June 28th 1998, August 14 to 16 
2003, and July15th, 2007. The 1998 survey was carried out using an Optech ALTM1020 flown 
at 700 m above ground level (AGL) operating at a pulse frequency of 5 kHz. with two passes 
for the first returns and one pass for the last returns, resulting in 0.3 and 0.03 hits/m2 
respectively. The 2003 survey was done with Optech's ALTM2050 lidar flown at 1,000 m AGL, 
with 50 kHz and 50% overlap between adjacent swaths resulting in 3 and 0.19 hits/ m2. The 
2007 survey was conducted using ALTM 3100 flown at 700 m AGL with 67 kHz and over 50% 
overlap between adjacent swaths resulting in 10 hits/ m2 for the first returns. All returns were 
classified by the provider as ground and non ground and were assumed correct for the study.  
 
Accuracy assessment of lidar derived canopy heights for 1998 and 2003 was carried out in two 
different studies with 36 (1998) and 77 (2003) field measured trees ranging in height from 5.6 m 
– 33.1 m that yielded an r2 of 0.88 and 0.86 with an RMSE of 1.8 m and 1.85 m respectively 
(Véga and St-Onge 2008, Coops et al. 2004). It is to be noted that at the time of this study, the 
accuracy assessment of the 2008 data using field measurements was not performed. However, 
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visual and statistical comparisons of the 2007 CHM with high resolution images from the 2007 
and 2003 lidar data sets showed a good match.  
 
2.3 Lidar surface and gap characterisation 
 
The three datasets were co-registered for temporal comparisons using the methods suggested by 
Vepakomma et al. (2008a). The Digital terrain model (DTM) was generated by combining the 
last returns in 1998 and 2003. The time series of canopy height distributions or canopy height 
models (CHMs) were generated using an optimised grid resolution (0.25 m) and an interpolation 
algorithm (a combination of local maxima and an inverse distance method) for accurate and 
reliable delineation of gap geometry. Defining a gap as an opening in the canopy caused by the 
fall of a single or a group of trees of a certain height (greater than 5 m, determined in the field), 
a highly accurate ground validated algorithm on the lidar CHMs was used to explicitly map 
canopy gaps for each of the years. Mapped gaps are individual objects of contiguous binary grid 
cells determined by a gap indicator function (Eq. 1). The comparison of 29 gaps measured in the 
field along 980 m of transect length with lidar delineated gaps showed a good matching of 
96.5% overall accuracy.  
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where a = 5 m in this study, CHMi(x,y) is the lidar height of the canopy surface in the ith year, 
(x, y) is a cell that does not belong to any open-ended system. 

 

Figure 1: An example of automatically delineated canopy gaps. (a) Gaps in 1998 (dotted objects) overlaid 
on CHM1998 (b) Old gaps (dots), new gap expansions (crosses) and new random gaps (lines) that appeared 

between 1998 – 2003 overlaid on CHM2003.  
 
Gap objects were delineated on 1998 and 2003 lidar surfaces. We define old gaps as those gaps 
that are open in 1998 and 2003 while gaps that opened between 1998 and 2003 are new gaps. 
New gaps that share the edge of an existing gap in 1998 are gap expansions, otherwise they are 
considered new random gaps. Areas where the difference in vegetation height between 1998 and 
2007 within a gap is greater than 5 m, i.e. the smallest difference that is considered to be too 
high for vertical growth, and contiguous with the gap edge, are classified as lateral growth of 
adjacent vegetation. Separating laterally growing gaps from regenerating areas reduces 
ambiguity in height growth patterns of regeneration. We performed various combinatorics on 
the delineated gap objects of 1998 and 2003 to define the nature of the gap events, namely, old 
gaps, new gap expansions and new random gaps. An example of automatically delineated 
canopy gap events is shown in Fig. 1. 

33.5m 

0

(a) (b)
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2.4 Species class delineation 
 
Orthorectified high resolution multi-spectral Vexcel UltraCamD image data acquired five weeks 
prior to the 2007 lidar data was used to classify the vegetation of the study area into broad 
species classes, namely, hardwood (HW) and softwood (SW). Canopy height derived from the 
lidar data was integrated with the spectral signatures of the image data to automatically extract 
individual image objects using eCognition v. 3.0. The overall accuracy of the image 
classification based on a comparison matrix with 25 hardwood and softwood field identified 
trees, and 15 open grown, non-forest locations is 91.5%. 
 
2.5. Identifying Maximum Tree Height Locations and Extraction of Growth Statistics 
 
Height growth statistics for individual saplings were estimated based on raw lidar returns from 
2003 and 2007 extracted after identification of sapling tops on the CHM2007. A local maxima 
filter with a circular non-overlapping (moving) window was applied to the CHM2007 to derive a 
layer of sapling apices, LMAX (x,y). Local maxima filtering is a common technique first adopted 
to identify trees in high resolution optical imagery and successfully extended to lidar surfaces 
(Popescu and Wynne, 2004). We selected a search radius of 5 pixels (1.25 m) equal to the 
average crown radius of 30 visually interpreted sapling crowns of varying maximum heights 
(3-5 m). A local maximum within a search window that matches the height on the CHM i.e. 
LMAX (x,y) = CHM2007(x,y), is assumed to be the maximum height (TMAX(x,y), hereafter 
TMAX) of the sapling crown. This method applied on CHM2003 was previously validated with 
940 trees and saplings identified using manual photogrammetric methods on Ultra Cam D 
images of 2007 elsewhere in the study area (Vepakomma et al., 2008b). An example of 
identified sapling tops is seen in Fig. 2. 
 

Figure 2: Identification of sapling tops (crosses) along with gap edges (solid line) shown on (a) the 
CHM2007 (b) UltraCam D Image of 2007. CHM brightness is proportional to the canopy height  

 
Lidar raw point clouds of the vegetation (first returns) of 2003 and 2007 were extracted within a 
buffer zone of 0.5 m radius around each sapling top of TMAX. In order to make the lidar 
datasets of varying densities comparable, the lidar sampling point densities within these buffers 
were matched by randomly selecting ni sample points for both years such that  
 

),(min 20072003
iii nnn =     (2) 

 
where 2003

in  and 2007
in  are the number of first returns within the ith buffer zone in 2003 and 

2007 respectively. All buffer zones were further constrained to have a minimum point density of 
3 hits /m2 and a lidar determined height not less than 2 m of the zonal maxima to minimise 

(a) (b)
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possible errors due to insufficient representation of canopy apices and lidar penetration into the 
foliage.  
 
Sapling height growth was calculated as the differences in height of the sample maximum 
(MAXGTH) and sample average (AVGGTH) of the 2003 and 2007 first returns. Reference 
average (AVG03) and maximum (MAX03) sapling height for each buffer zone are the sample 
average and sample maximum of the difference in the height of the 2003 lidar first returns and 
their respective ground elevation extracted from the DEM. Growth rates in terms of average 
growth per unit height (AGTH), i.e. (AVGGTH / AVG03), and maximum growth per unit height 
(MGTH), i.e. (MAXGTH / MAX03) were used to assess growth. It is to be noted that MGTH 
and AGTH computed here are the rates of growth over the four growing seasons and being 
proportional growth they are unit free measures. Thus a MGTH value of 0.2 signifies a 20% 
maximum growth increase from its 2003 maximum reference height. 
 
2.6. Height growth patterns of regeneration in canopy gaps  
 
To understand if height growth patterns differ based on the nature of the gap events, we 
considered three windows with varying gap fraction (percentage of gap area) that constituted a 
total size of 26 ha. Since hardwood and softwood trees have different architecture and respond 
differently to available resources, we assessed AGTH and MGTH based on species class across 
gradients of sapling height and also between the gap events using: 
(1) exploratory statistics  
(2) scatterplots and  
(3) non-parametric regression estimation of MGTH given the initial height of the sapling.  
 
To investigate whether distinction of the type of gap events is important for understanding 
growth patterns of regenerating saplings in gaps, we compare the statistics and models 
generated separately by pooling the sapling data.  
 
3. Results  
 
3.1. Canopy gap characteristics and sapling height 
 
Delineation of canopy gap events indicates that about 16.8% of the study area is in canopy gaps 
during 1998 – 2003 of which 13.1% is composed of old gaps that opened before 1998 (Table-1).  
 

Table 1: Gap characteristics in the study area 
Statistic Old gaps Expansion* Random* Pooled 
# Gaps 420 617 80 483 
Total area in gaps (m2) 34028.7 8667.5 861.38 43557.58 
% area in gaps 13.1 3.3 0.3 16.8 
Minimum gap size (m2) 5.01 5.02 5.26 5.01 
Maximum gap size (m2) 2988.7 288.9 87.3 6024.5 
Mean gap size (m2) 80.9 149.8 28.7 104.9 
# of saplings identified 388 52 12 452 
Avg. sapling height (m) 3.28 3.06 2.1 3.23 
Mean MGTH (AGTH) 0.4 (0.7) 1.23 (0.76) 1.14 (0.6) 0.76 (0.6) 

* Both expansions and random are new gaps that opened between 1998-2003 
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During the period 1998 - 2003, gaps are seen to be expanding at a higher rate and more 
frequently than the formation of random gaps. Average gap size of gap expansion is almost 
twice the average size of old gaps and seven times the average size of new random gaps. 
However, average gap size of pooled data is the largest at 6024.5 m2.  
 
In all, 452 gap saplings with a height ranging between 0.5 – 5.0 m were automatically identified 
in the 26 ha study area, of which 85% belong to the old gaps (Table-1). On average, the saplings 
in new gap expansions are fast growing compared to those in new random and old gaps. In all 
cases, the correlation between average and maximum sapling height generated by the two lidar 
datasets (2003, 2007) is very high at over 0.97 suggesting that growth between the two periods 
can be measured using multi-temporal lidar data.  
 
 
3.3. Height growth patterns in canopy gaps 
 
The average and maximum height of saplings in old gaps are higher than in new gaps (Table 2). 
The range of sapling height in old gaps is greater than that of saplings in new gaps. Except for 
saplings in old gaps, the maximum growth rates are higher than average growth rates. However, 
the height growth of HW and SW saplings within old and new gaps and between gap events is 
highly significant (Kruskal-Wallis ANOVA by ranks and Median tests, p ≈ 0). SW saplings are 
taller than HWs in all the gap events (Table -2). The results indicate that HW saplings in old 
gaps and gap expansions are growing at a faster rate than SWs, but the contrary is noted in new 
random gaps. Though maximum MGTH is noted for HW saplings in old gaps, HWs are 
growing only slightly faster than SWs. On the other hand, HWs are growing at twice the rate of 
SWs in new gap expansions. Scatter plots and predictive models (Figs. 3 and 4) indicate that the 
height growth of saplings in all gap events is considerably different.  
 

Table 2: Summary of growth statistics during 2003 – 2007 in various gap types 
 

A. Hardwood sapling (s# Saplings in Old gaps : 138; new gap expansions: 23; new random gaps : 6) 

  Old gaps New gap expansions New random gaps Pooled 

Variable Min Max  Mean Min Max  Mean Min Max  Mean Min Max  Mean 

AVG03 0.42 6.53 3.25 0.30 4.34 2.34 0.82 2.94 1.43 0.30 6.53 3.06 

MAX03 0.42 6.65 3.39 0.30 4.85 2.42 0.82 2.94 1.43 0.30 6.65 3.19 

AVGGTH 0.10 4.8 0.90 0.01 5.45 1.26 0.01 2.02 0.50 0.12 19.60 1.25 

MAXGTH 0.02 4.7 1.31 0.09 4.76 1.67 0.60 3.53 0.97 0.10 19.60 1.83 

AGTH 0.10 4.8 0.40 0.02 2.72 1.15 0.50 2.13 0.62 0.01 5.45 0.61 

MGTH 0.00 4.7 0.52 0.02 3.78 1.23 0.20 3.73 1.01 0.02 4.79 0.79 

B. Softwood saplings: (# Saplings in Old gaps : 250; new gap expansions: 29; new random gaps : 6) 

  Old gaps New gap expansions New random gaps Pooled 

Variable Min Max  Mean Min Max  Mean Min Max  Mean Min Max  Mean 

AVG03 0.41 6.31 3.49 0.98 6.06 2.71 0.76 5.09 2.68 0.06 6.31 3.39 

MAX03 0.41 7.19 3.71 0.98 6.99 2.84 0.76 5.78 2.79 0.06 7.19 3.60 

AVGGTH 0.01 4.86 0.66 0.10 2.78 0.83 0.19 2.42 1.14 0.10 4.86 0.69 

MAXGTH 0.00 4.74 1.08 0.08 4.63 1.33 0.67 4.49 2.46 0.00 5.00 1.12 

AGTH 0.10 3.10 0.25 0.01 1.74 0.46 0.04 1.27 0.58 0.01 7.06 0.31 

MGTH 0.00 3.78 0.36 0.02 2.01 0.61 0.14 4.47 1.26 0.00 3.78 0.58 
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4. Discussion  
 
The ability of lidar to reliably estimate gap disturbance regimes is well known (St-Onge and 
Vepakomma, 2004, Koukoulas and Blackburn 2004, Vepakomma et al., 2008a). Estimated gap 
sizes and gap fraction in this study falls within the reported range of characteristics of boreal 
forests found in earlier studies (McCarthy, 2001, Vepakomma et al., 2008a). Gap expansion is a 
prominent feature in a number of forest ecosystems ( Runkle, 1998, Worall et al., 2005). Though 
less frequent in hardwood forests, similar to our observations here trees bordering an old gap are 
more vulnerable to mortality compared to interior canopy trees in wind fall prone Picea-Abies 
forests of New Hampshire (Worall et al., 2005).  
 
The Identification of saplings in old gaps was more successful than in new gaps. Owing to the 
longer period of opening, the range of sapling height in old gaps is wider than that in new gaps. 
A higher average height of 3.3.9 m in older gaps also enabled its easy identification on the lidar 
surface (Table-1). Identification of saplings within new random gaps was difficult due to their 
small sizes and to the lateral growth of adjacent vegetation.  
 
 

Figure 3: Scatterplot of the rate of maximum growth per unit height during 2003 – 2007 in old gaps and 
gap expansions. 
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Figure 4: Estimated non-parametric regressions of the rate of maximum growth per unit during 2003 – 

2007 height in old gaps and gap expansions (Old stands for old gaps; Exp for new gap expansions, Pool 
for pooled dataset)  
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Previous research in boreal forests has suggested that large gaps favour intolerant hardwoods 
while shade tolerant softwoods successfully regenerate in small gaps (Kneeshaw & Bergeron, 
1998). The HWs in this forest are all shade intolerant and SWs are all shade-tolerant. The 
present analyses support this evidence as HWs grow faster in old gaps whose average gap size is 
larger than new gaps (Tables -1 and 2). SWs are growing faster in new random gaps that are 
smaller in size. The resources within gaps, especially light, increases with gap expansion, which 
primarily benefits the HW saplings growing in old gaps adjacent to the new gap openings. The 
HWs growing in the study area are shade intolerant (Kneeshaw et al 2006) and require high 
light levels to successfully recruit. The dominant conifers on the other hand are shade tolerant 
and they have been found to be successful in smaller gaps and in the shadier southern portions 
of gaps due to their requirement for higher moisture (McLaren and Janke, 1996).  
 
The present results clearly indicate distinct growth patterns of saplings in different gap events. 
This suggests the need to characterise the type of gap events to forecast growth patterns of the 
regeneration. The use of time series of lidar data for documenting the height- growth differences 
of advanced regeneration in the canopy gaps spanning full range of height gradients is 
particularly relevant given the complexity of field based methods. This establishes 
multi-temporal lidar as an excellent tool to characterise gap dynamics, and thus provides insight 
into boreal forest dynamics. With rigorous field verification for height of regeneration, these 
methods can be extended to develop accurate height growth models for juvenile vegetation in a 
non-destructive way. 
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Abstract  
 
A current challenge in biodiversity research is understanding the effect of vegetation structure 
on the potential of an ecosystem to support species richness and habitat use. We take advantage 
of the utility of satellite remote sensing, specifically lidar, for improving characterization of 
habitat structure and apply those advances to an exploration of bird habitat use in New England 
USA.  In this study, we find that lidar metrics of canopy vertical structure and complexity 
provide unique and significant information for models of habitat use of a neotropical migrant 
bird species, the black-throated blue warbler, in the Hubbard Brook Experimental Forest, NH. 
Lidar metrics describing the vertical distribution of canopy elements and the complexity of 
canopy elements are thus both useful and important for biodiversity research, although we find 
that other aspects of habitat are equally important, including the type and seasonality of 
vegetation. Together these variables provide complementary information that advance 
biodiversity research and emphasize the relevance of remote sensing observations.    
 
Keywords: bird diversity, canopy structure, habitat heterogeneity, habitat use, lidar 
 
 
1. Introduction 
 
Ecologists have long sought to explain patterns of biodiversity based on latitude, area, 
evolutionary rates, and other factors.  Prior to the availability of satellite data, field-based 
studies at local spatial scales revealed the strong role of vegetation structure in driving 
biodiversity.  Vegetation structure refers generally to the horizontal and vertical distribution of 
vegetation. MacArthur and MacArthur (1961) refined the broad concept of vegetation structure 
by defining foliage height diversity (FHD) as a measure of canopy layering, and suggesting its 
use as an indicator of biodiversity.  Variations on the FHD concept have led to the development 
of several indices of forest structural complexity incorporating vertical and horizontal variation 
in tree size, canopy cover, shrub size, shrub cover, coarse woody debris and snags (McElhinny 
et al. 2005).  Vertical and horizontal structural complexity drives biodiversity by creating a 
greater variety of microclimates and microhabitats, which in turn produce more diverse food 
and cover for a more diverse range of species (MacArthur and MacArthur 1961, Hunter 1999, 
Hill et al. 2004).  Across landscapes, the distribution of seral stages, patch sizes, and 
connectivity of patches also influences habitat suitability (Turner et al. 2001).  Thus 
biodiversity managers focus on maintaining variation in tree size, multiple canopy layers, 
presence of coarse woody debris, and other elements of forest structural complexity within 
forest stands and creation of a variety of landscape scale seral stages (Hunter 1999, Rapp 2004). 
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While satellite data have greatly enhanced understanding of the effects of ecosystem energy on 
biodiversity, no continental-scale quantification of vegetation structure has been available.  
One goal of our work is to test the utility of current airborne and space-borne data on vegetation 
structure for studies of biodiversity, and to develop guidelines for the next generation of satellite 
sensors for quantifying vegetation structure for understanding and managing biodiversity. 
Towards this end, the field-based understanding of vegetation structure and biodiversity has 
been greatly advanced by application of airborne lidar.  Heterogeneity can be calculated 
directly from lidar-derived forest structure, using metrics such as vertical distribution ratio 
(Drake et al. 2002, Goetz et al. 2007, Vierling et al. 2008) and integrated measures of the 
complexity of the waveform that takes into account the roughness, slope, number of gaussian 
peaks, and amplitude of peaks in the waveform data (Dubayah et al. 2000, Hofton et al. 2004).  
Using these and related metrics, including canopy height, Goetz et al. (2007) were able to 
predict species richness of different bird guilds in the forests of the Patuxent National Wildlife 
Refuge (Maryland). This was true even in a relatively homogenous forest environment with 
little variability in traditional optical vegetation indices (e.g. NDVI). Use of lidar data provided 
an ability to detect variability in vegetation structure and density, which were critical variables 
describing the habitat use of bird species. Here we explore the habitat suitability (preferences) 
of a single bird species with specific habitat preferences, the Black-Throated Blue Warbler, 
Dendroica caerulescens, a well studied neotropical migrant breeding in northern hardwoods 
forests. 
 
2. Methodology  
 
In the Northeast United States, black-throated blue warblers tend to occupy mature deciduous 
forests with a well-developed and high-density understory (Holmes 1994, Doran and Holmes 
2005). Our working hypothesis was that deciduous cover and understory structure and density 
are both vegetative characteristics that can be identified using optical and lidar remote sensing.   
 
2.1 Study area  
 
We analyzed a long-term data set of bird observations collected at the Hubbard Brook 
Experimental Forest (HBEF), located in the southern region of the White Mountain National 
Forest in central New Hampshire.  HBEF was established in 1955 as a long-term research site 
used for the study of forest and watershed dynamics. The HBEF encompasses approximately 
3037 hectares of hilly terrain, ranging in elevation from 222m at the lowest point of the brook to 
1015m atop Mount Kineo on the southwest rim of the watershed. The region is dominated by 
northern hardwoods (Sugar Maple, Beech, Yellow Birch, and White Ash) at low to middle 
elevations, and is dominated by spruce and fir species at higher elevations and along the 
ridgelines (Schwartz et al. 2001). The forests within and surrounding the HBEF were logged 
selectively for spruce in the late nineteenth century and were logged intensively for both conifer 
and hardwood species in the early part of the twentieth century before being established as an 
experimental preserve in the 1960s. 
 
2.1 Bird data sets  
 
Data on the distribution and abundance of the Black-Throated Blue Warbler were collected in 
the summers of 1999, 2001, 2002, and 2006. A survey grid consisting of 371 points along 15 
north-south transects was established throughout the HBEF (Figure 1) (Schwartz et al, 2001). 
Points spaced at 100 meter intervals along each transect were visited 3 times during the peak 
breeding seasons (late May through June) of 1999, 2002, and 2006 and twice in 2001. During 
each visit the abundance of Black-throated Blue Warblers was surveyed for 10 minutes using 
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fixed radius (50-m radius) point counts (Ralph et al. 1995, Doran and Holmes 2005). Surveys 
were performed between 0530-1000 by multiple trained observers in order to limit error in 
observer accuracy. 
 
Using the abundance data collected over the 4 years, annual presence/absence was determined at 
each of the 371 survey sites. The black-throated blue warbler was considered present at a site if 
an individual was observed within 50 meters of the survey location, i.e. abundance was greater 
than 1. Similarly to Doran and Holmes 2005, presence/absence data were used to classify each 
survey site based on the number of years that the species was present (0, 1, 2, 3, or 4) over the 
duration of the study. It has been previously shown that high quality sites are consistently 
occupied year after year, regardless of interannual variability in abundance of a species, whereas 
low quality sites are only occupied during periods of high population density (Doran and 
Holmes 2005, Newton 1998, Sergio and Newton 2003).  We used this index of multi-year 
presence as a surrogate for habitat quality or suitability. The greater the number of years 
occupied by the species, the better the quality of the habitat. The habitat quality index was 
constructed using all 4 years of data, as well as a separate index using only 3 years of 
observations (1999, 2001, & 2002), reserving 2006 data for testing.  
 

 
Figure 1. Hubbard Brook study area in central New Hampshire, showing a Landsat NDVI image and 
gridded bird observation areas.  The lower left image shows the density of lidar shots within a given 

location.  
 
 
2.2 Lidar data sets  
 
Full waveform lidar data were acquired over the Hubbard Brook Experimental Forest with the 
Laser Vegetation Imaging Sensor (LVIS) in July of 2003. LVIS is a fully imaging, medium 
altitude, scanning laser altimeter. It has a 7º field of view within which footprint sizes can be 
varied from 1 to 80m depending on, among other factors, the altitude at which the instrument is 
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flown (Blair et al. 1999). LVIS digitizes the return signal and converts the waveforms to units of 
distance by accounting for the time elapsed between the initial laser pulse and the return.  
 
Three products were derived directly from the LVIS waveform data including, ground elevation, 
canopy height (CH), and the height of median return (HOME). Each of these products is 
calculated in reference to the ground return; therefore accurate determination of the ground 
surface is an essential step in producing these metrics. The ground return is identified using an 
automated algorithm which initially applies a smoothing function to reduce noise in the 
waveform, and subsequently locates the first increase above a mean noise level, designated as 
the initial canopy return, and the center of the last Gaussian pulse, designated as the ground 
return. CH was calculated as the difference in height between the initial canopy return and the 
ground return. HOME was derived as the difference in height between the median of the entire 
waveform, including ground and canopy energies, and the ground return.  
 
In addition to canopy height, ground elevation, and median height, we derived two higher-level 
products which provide information on the vertical distribution of vegetation biomass as well as 
the structural complexity of the canopy. The Vertical Distribution Ratio, or VDR, is an index of 
the vertical distribution of intercepted canopy elements (biomass) and ranges between 0 and 1 
(Goetz et al. 2007). The VDR is a ratio of the distance between the canopy return and the height 
of median return to the total canopy height; VDR = [CH-HOME]/CH. In general, forested 
regions characterized by a dense canopy and sparse understory will exhibit lower VDR values 
due to the relatively short distance between CH and HOME. Areas characterized by a more even 
distribution of biomass throughout the vertical profile will exhibit larger VDRs (closer to 1).  
 
Canopy complexity (COMP), by comparison to VDR, is an integrated measurement of the 
complexity of the waveform and takes into account the roughness, slope, number of gaussian 
peaks, and amplitude of peaks in a waveform and, like VDR, ranges from 0 to 1. Although we 
refer to it as canopy complexity, it is not a biophysical measurement as such, but rather a 
measure of the vertical complexity of the waveform. In forested regions, however, the vertical 
complexity of a waveform (COMP) is determined by the complexity of vegetation structure.  
 
2.3 Landsat data sets  
 
In addition to the lidar metrics, we examined metrics derived from optical imagery in relation to 
the bird richness data. Two Landsat ETM scenes (path/row 013/029), acquired in late October of 
2000 and August of 1999, were converted to top-of-atmosphere reflectances using in-band 
spectral irradiances and a solar geometry model to correct for Earth-Sun distances and solar 
zenith angle variations (Goetz 1997). The images were subsequently georeferenced. The 
Normalized Difference Vegetation Index was calculated for both the leaf-on (August) and the 
leaf-off (October) scenes and the two scenes were differenced resulting in an image of seasonal 
NDVI change. This allowed us to evaluate and consider seasonality in vegetation cover and 
density.  
 
Vegetation type for the study region was also examined. Using a vegetation type map of the 
HBEF which delineated regions of deciduous, coniferous, mixed predominantly deciduous, and 
mixed predominantly coniferous, we produced a continuous grid of percent deciduousness. This 
was analyzed in addition to the optical and lidar products.  
 
2.4 Spatial and statistical analyses 
 
Using a geographical information system (GIS), bird survey polygons were intersected with the 
lidar (LVIS) and optical (Landsat ETM) data products (Figure 1).  The minimum, maximum, 
mean, and standard deviation of ground elevation, canopy height, median height, VDR, COMP, 
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leaf-on NDVI, and NDVI difference were computed for all lidar shots or Landsat cells falling 
within the boundaries of each 50m radius survey cell. These summaries were subsequently 
examined in relation to the habitat quality index derived from the BTBW occupancy data using 
an advanced regression tree technique known as “Random Forest.” 
 
A “Random Forest” (RF) model builds upon the standard methods of constructing classification 
and regression trees as a technique for partitioning data based on a series of hierarchical binary 
splits of the predictor variables, resulting in a tree structure that terminates in nodes associated 
with discrete ranges in the response variable (Breiman 2001). With RF many trees are iteratively 
aggregated with cross calibration, reducing error in the overall model via boosting and bagging 
techniques. In addition to constructing each tree using a different bootstrapped sample of the 
data, the random forest algorithm incorporates a unique approach to splitting. Typically, each 
node is split using the optimal split among all predictor variables; in the RF algorithm, each 
node is split using the best predictor among a subset of predictors chosen at random at that node. 
This additional layer of randomness significantly increases the accuracy of the model and makes 
RF robust to overfitting.  
 
Using the RF package in the R programming environment, habitat quality was modeled based 
on the suite of lidar and optical predictor variables described above. The model was run using 
both 3 and 4 years of bird population and distribution data. Because the random forest algorithm 
builds trees based on a bootstrap sample of data (reserving approximately 1/3 of the data for 
testing), it is not necessary to withhold data for testing after model creation. In spite of this, and 
in addition to running the model using all 4 years of data, we ran the model based on the first 3 
years of data and examined the relationship between predicted habitat quality and occupancy in 
the fourth year. 
 
3. Results 
 
Lidar and optical data products varied throughout the study region; however, some patterns 
reflected spatial variation in elevation. General trends between lidar and optical predictor 
variables and habitat quality are shown in Figure 2. Good quality habitat. i.e. that with greater 
frequency of occupany, was associated with a dominance of deciduous vegetation, a relatively 
high canopy height, increased vertical complexity, low VDR, and high seasonal change in 
NDVI (NDVI difference). Although clear trends exist between habitat quality and the selection 
of variables displayed, there was a large amount of variability in habitat metrics (both lidar and 
optical) within a single habitat quality class.  
 
The random forest model based on 4 years of occupancy data explained 47% of the variation in 
habitat quality. Seasonal difference in NDVI, canopy height, elevation, and canopy complexity 
were selected as the most important predictors of BTBW habitat quality. This model was 
subsequently applied to the lidar and optical data summarized for each survey site and we 
examined the frequency of agreement and disagreement between the predicted and observed 
habitat quality (Table 1). Although the model produced habitat quality values in the range of 0 
to 4, we grouped the range of predicted values into 3 habitat quality groups: best (quality of 3 or 
4), average (1 or 2), and poor (0). Of the 251 sites predicted to have the best quality habitat, 199 
or 79% of them were occupied for 3 or 4 years over the study period, while 17% were occupied 
for 1 or 2 years and only 4% were not occupied at all. About 58% of the sites identified as 
average quality habitat were occupied for 1 or 2 years, while 21% of these sites were occupied 
for 3 or 4 years, and the remaining 21% were not occupied at all. Of the 75 sites predicted as 
poor habitat, 73% were not occupied over the 4 years of study. 
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Figure 2. BTBW habitat occupancy relative to the predictor variables used in model development.  
 

As with the model run based on 4 years of data, the random forest model of habitat quality 
derived from 3 years of occupancy data selected seasonal NDVI difference, elevation, canopy 
height, and vertical complexity as the strongest predictors of habitat quality. The 3-year model 
displayed an ability to predict presence/absence in the 4th year of the study period, with 73 sites 
identified as best quality (quality of 3), 198 as average quality (2) and 100 as poor quality (1 or 
0). Thus about 90% of sites identified as best quality data were occupied in the 4th year of the 
study, while 81% of the average quality sites and only 46% of the poor quality sites were 
occupied (Table 2).  
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Table 1: Comparison of predicted occupancy among habitat quality groups. 
 

  Predicted 
  Best (3 or 4 years) Average (1 or 2 years) Poor (0) 
  251 sites 105 sites 75 sites 

Best 199 (79%) 22 (21%) 9 (12%) 

Average 42 (17%) 61 (58%) 11 (15%) 

Poor 10 (4%) 22 (21%) 55 (73%) 

 
 
Table 2: Predicted presence or absence among habitat quality groups in year 4 based on model developed 

using year 1-3 observations. 
 

    Predicted 
    Best (3) Good (2) Poor (1 or 0) 
    73 sites 198 sites 100 sites 

Present 66 (90%) 162 (81%) 46 (46%) 

O
bs

er
ve

d 

Absent 7 (10%) 36 (19%) 54 (54%) 

 
 
4. Discussion 
 
General trends between remotely sensed metrics of habitat and habitat suitability derived from 
occupancy data were as expected (Figure 2). Black-throated blue warblers are known to prefer 
mature forests with a dominance of deciduous vegetation (Doran and Holmes 2005) and we 
observed a strong positive trend between both habitat quality and percent deciduousness, as well 
as between habitat quality and canopy height (Figure 2a & b). Clear trends also existed with 
canopy complexity and the vertical distribution ratio (Figure 2c & d). Habitat quality increased 
with increasing vertical complexity, demonstrating that a more complex vegetation structure 
improves habitat for this species. Similarly, lower VDR values were associated with higher 
quality habitat. Low values of VDR indicate a more uniform distribution of vegetation biomass 
throughout the canopy profile. Both of these trends may be related to the preference by the 
black-throated blue warbler for locations with a well-developed understory (Holmes and Doran 
2005, Holmes et al. 1996, Steele 1992), particularly the density of hobblebush (Viburnum 
alnifolium) shrubs, i.e., increased occupancy of sites with higher densities of hobblebush. A 
well-developed understory would have the effect of both lowering VDR, by effectively shifting 
the median height (HOME) down, and increasing COMP (a similar forest with no understory 
would have a lower COMP, due to the lack of the understory return in the waveform).  
 
Seasonal change in NDVI was also positively correlated with habitat quality (Figure 2e). This 
trend is most likely associated with the relationship between vegetation type and seasonal NDVI 
difference, although it may also indicate a relationship between primary productivity and habitat 
quality. Deciduous vegetation shows greater phenological changes throughout the growing 
season than coniferous species, and this trend most likely reflects the preference of the 
black-throated blue warbler for deciduous forest. Greater seasonal changes in NDVI, however, 
also indicate greater rates of photosynthesis and primary productivity, which could sustain larger 
populations of Lepidoptera, the black-throated blue warbler’s primary food source. The boxplot 
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of elevation as a function of habitat quality (Figure 2f) demonstrates the preference of 
black-throated blue warblers for low to mid-elevation (400-700m) regions. Areas of higher 
elevation are typically dominated by coniferous species or sparse vegetation along the rocky 
ridgelines. Again, the trend between habitat quality and elevation is not directly causal, but is 
more likely a result of vegetation cover as influenced by elevation. 
 
The random forest model of habitat quality based on lidar and optical predictors and 4 years of 
occupancy data was skilled in terms of variance explained (Figure 2). When observed and 
predicted values of habitat quality were grouped into best, average, and poor quality categories, 
comparison of the observed and predicted values demonstrated strong overall agreement (Table 
1). The random forest model based on 3 years of occupancy data was comparably good. 
Although the percent of variance explained based on the reserved data was relatively low (39%), 
when the model was applied to the lidar and optical data, and examined in relation to occupancy 
data from 2006 (year 4), it demonstrated strong predictive power (Table 2). Over 90% of the 
sites identified as best quality habitat were occupied in 2006.  This is particularly interesting 
because it discounts the effect of individuals showing site fidelity because the 4-year gap 
between 2002 and 2006 makes it unlikely that the same individuals are returning to the same 
locations.  
 
Results from sites identified as average or poor habitat were not as compelling. Just over 80% of 
habitats identified as average were occupied and 46% of the sites identified as poor habitat were 
occupied in the year 2006. This result, however, could be influenced by the relatively high 
abundance of black-throated blue warblers in that particular year. Total abundance of the BTBW 
over all sites in 2006 was higher than in previous years, thus good quality habitat was more 
limited and greater abundance and occupancy at average and poor habitat sites would be 
expected.  
 
These results indicate that remotely sensed data can be used to predict habitat quality or 
suitability of the BTBW, even throughout a relatively homogenous environment. Utilization of 
lidar data in addition to optical data, provides the ability to sense changes in vegetation structure 
and density, which adds an integral layer of information to the characterization of habitat, 
particularly across a region which is relatively homogeneous in terms of spectral reflectance in 
optical imagery.  
 
Our future work with these data will incorporate additional years of bird observations, focus on 
a range of different modelling variations, including different methods of sampling the bird 
observations (e.g. selecting every other grid location and using the remainder for testing), 
quantifying the influence of spatial autocorrelation, and exploring the utility of an information 
theoretic modelling approach for assessing habitat quality.    
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Abstract  
 
The exploding use of small-footprint lidar over the last 10 years has to some degree obscured 
the development and application of large footprint waveform recording lidar. Such systems have 
included the airborne Laser Vegetation Imaging Sensor (LVIS) of NASA, the developed but 
unlaunched Vegetation Canopy Lidar (VCL) space mission, as well as the currently orbiting 
ICESAT satellite. A new space mission, the DESDynI (Deformation, Ecosystems, and 
Dynamics of ICE) mission, is currently under development by NASA as well which will 
provide global observations of land surface vertical structure using radar/lidar fusion. There is 
thus considerable interest in understanding both the potential and limits of large footprint 
waveform lidar for large area assessments. In this talk I present our experience using waveform 
lidar for a variety of environmental and forest-related applications. I begin by providing a brief 
overview of waveform lidar and show its equivalance to small-footprint discrete return systems. 
I next present a series of examples using the LVIS system for a variety of environmental 
applications. These include estimation of tropical forest biomass, carbon flux and dynamics, 
habitat mapping for endangered species (the ivory-billed woodpecker and California spotted 
owl), and derivation and mapping of forest fire fuel structure for montane coniferous forests. In 
addition, I outline our efforts to marry an ecosystem model with lidar-derived forest structure 
for improved carbon stocks and flux estimation. I then explore the use of space-based waveform 
observations from the ICESAT satellite. Lastly, I provide a preview of the next generation 
space-based lidar systems, including the planned DESDynI mission, which hopes to provide 
spatially continuous estimates of forest structure for the Earth. 
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Abstract 
 
Identifying the signal returned from vegetation within large footprint LiDAR waveforms relies 
upon estimating a representative ground surface beneath the canopy. Two methods of 
identifying the vegetation return within Geoscience Laser Altimeter System (GLAS) waveforms 
are presented. The first uses maximum elevation difference within a coincident digital terrain 
model (DTM) to estimate the ground position, whilst the second uses Gaussian decomposition 
to distinguish ground and vegetation components. 
 
Estimated ground elevations within the waveforms are compared with coincident mean ground 
surface elevations from airborne LiDAR data and the Ordnance Survey 10 metre resolution 
DTM. Smallest differences are found between the Gaussian decomposition method and the two 
validation dataset elevations with mean offsets of -0.14m and -0.02 metres respectively. 
However, ground slope was found to account for 39% of variation in error using Gaussian 
decomposition whilst use of a terrain index from the coincident DTM removed this error source. 
The two methods respectively explained 68% (RMSE 4.4m) and 63% (RMSE 4.7m) of variance 
in comparison with airborne LiDAR estimates of vegetation height. 
 
The radiative transfer model, FLIGHT, is used to model the sensitivity of the GLAS waveform 
to canopy properties and topography. Close correspondence is found between returned and 
simulated waveforms. 
 
Keywords: ICESat/GLAS, Airborne LiDAR, FLIGHT, Topography, Vegetation 
 
1. Introduction                                                                        
 
Small footprint airborne LiDAR data provide a unique means of modelling complex topography 
beneath forest canopies (Figure 1), allowing the identification of hydrological systems, 
archaeological remains, potential access routes for forest management and the assessment of 
slope stability. This ability to represent a dynamic surface allows overlying vegetation to be 
related to topography to accurately demonstrate vegetation distribution for inventory or 
management purposes or to provide model inputs. 
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Figure 1. (left) Digital terrain model (DTM) of a 0.5km x 0.5km area of the Forest of Dean. (right) 

Coincident digital surface model (DSM) from airborne LiDAR data. Both models are 0.5m resolution and 
were produced with Golden Software Surfer 8 using linear interpolation with Delaunay triangulation. 

 
Large footprint satellite LiDAR has great potential for monitoring vegetation presence and 
change on unprecedented scales (Hese et al., 2005) and studies have successfully demonstrated 
the capabilities of LiDAR profiling in this respect (Harding and Carabajal, 2005; Helmer and 
Lefsky, 2006; Lefsky et al., 2005; Lefsky et al., 2007; Nelson et al., 2008; Nelson et al., 2004).  
However the broad footprint diameter poses the challenge of signals from the ground surface 
and vegetation being combined for footprints with complex terrain and vegetation distribution 
(Figure 2). This raises the question of whether a representative ground surface can be identified 
within waveforms, a factor which may be important in the estimation of vegetation height. 
 

 
Figure 2: ICESat/GLAS waveform and coincident airborne LiDAR point cloud for a vegetated footprint 

with complex topography in the Forest of Dean. 
 
This study therefore aims to assess the degree to which a representative ground elevation 
beneath vegetation can be estimated using large footprint full waveform LiDAR and the 
influence of slope on this estimate. From this, a comparison of estimates of maximum canopy 
height from satellite and airborne LiDAR are presented. The radiative transfer model, FLIGHT 
(North, 1996), is also used to model the effect of slope and vegetation properties on waveform 
shape. 
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2. Method 
 
2.1 Study area 
 
The Forest of Dean, Gloucestershire, UK, is a highly mixed forest in England which borders 
south Wales and covers an area of approximately 11,000 hectares. The forest falls under the 
responsibility of the Forestry Commission, a division of which, Forest Enterprise, maintains a 
database of site conditions, species composition and management criteria at a sub-compartment 
level. The forest is unusual in terms of the UK, containing approximately 50% conifers and 
broadleaves comprising pockets of ancient woodland as well as managed stands. Surface relief 
is also varied within the forest, ranging from near-flat terrain to elevation differences of up to 20 
metres (m) within 70x70m sample areas used in this study. Both species heterogeneity and 
topography create a challenging study area for the application of satellite LiDAR. 
 
2.2 Satellite LiDAR 
 
The data source used within this project is the Geoscience Laser Altimeter System (GLAS), a 
full waveform LiDAR profiler, aboard the Ice, Cloud and land Elevation Satellite (ICESat). 
GLAS emits 1064nm pulses at a rate of 40 shots per second from an altitude of 600km. This 
produces footprints which are distanced at 172m intervals on the ground surface and, for the 
laser 3D operation used in this study, footprints have approximately 52m diameter and were 
acquired in October 2005. The laser is operated for an approximately month-long period, 
two-three times annually, aiming to repeat the same ground tracks and therefore providing the 
potential for changes over time to be monitored. Further information regarding the mission and 
system are provided by other authors (Abshire et al., 2005; Brenner et al., 2003; NSIDC, 2003; 
Schutz et al., 2005; Zwally et al., 2002). 
 
2.2.1 Waveform processing 
 
Two methods of estimating vegetation returns within GLAS waveforms (Rosette et al., 2008) 
were used in this study. The first of these uses a multiple regression with waveform extent (the 
elevation difference between the beginning and end of the waveform signal) and a terrain index 
using the Ordnance Survey (OS) Land-Form PROFILE 10m digital terrain model (Lefsky et al., 
2005). Product GLA14 (NSIDC, 2003) provides a model fit to the raw waveform decomposed 
as the sum of six Gaussian peaks. The second method estimates the ground elevation as the 
centroid of either Gaussian Peak 1 or 2 whichever has greatest amplitude. Maximum vegetation 
height is estimated as the distance between this position within the waveform and the beginning 
of the waveform signal. These methods are hereafter referred to as RWT and GPamp respectively. 
 
Elevations of the estimated ground positions within waveforms were calculated in order to 
assess the ability of each ICESat/ GLAS method to estimate ground elevation with respect to 
airborne LiDAR and OS DTM mean elevations. Waveform ground surface elevations were 
calculated as follows: 
 

d_elev + d_ld_RngOff – d_SigBegOff – GLASht – d_gdHt   (1) 
 
whereby d_elev is the reference elevation of the ellipsoid; the land range offset, d_ld_RngOff, 
indicates the offset position within the waveform of d_elev; d_SigBegOff provides the offset of 
the beginning of the waveform signal; GLASht represents maximum vegetation heights 
estimated using GLAS data (methods described above); d_gdHt is the height of the geoid above 
that of the ICESat ellipsoid. All waveform parameters used are from product GLA14 as original 
units converted to metres. Offset positions are provided as a negative number with reference to 
the final data bin, furthest from the spacecraft, recorded in each 150m waveform ‘window’ and 
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indicate the distance from this position in metres. 
 
2.2 Airborne LiDAR system 
 
Airborne LiDAR data were captured using the Optech Airborne Laser Terrain Mapper 
(ALTM-3033) during August 2006. The Natural Environment Research Council Airborne 
Research and Surveying Facility offers this service through the Unit for Landscape Modelling, 
University of Cambridge. The flight was undertaken for the Forestry Commission of Great 
Britain Forest Research Agency. This first and last return laser scanner emits 1064nm pulses and 
produced approximately 20cm diameter footprints with 45cm average point spacing. 
 
2.2.1 Data processing 
 
Subsets of airborne Lidar data were created using a radius of 35m about each geo-located 
ICESat footprint position. This aims to compensate for some uncertainty in footprint position 
and eccentricity. 
 
Using the airborne LiDAR ground class, mean slope within footprints was calculated with the 
aim of assessing the extent to which any differences observed between estimates from the two 
systems or field measurements may be a function of slope. 
 
Since points were regularly distributed with little variation in point density across the study area, 
ground class surface models for each footprint area were created using linear interpolation with 
Delaunay triangulation. Maximum canopy height within each airborne LiDAR subset was 
calculated to allow a comparison to be made with satellite LiDAR estimates. 
 
Projected plant cover was then calculated for each footprint using return point counts above the 
interpolated ground surface. A 0.5m height threshold was used to exclude the effects of low 
cover by ferns, brambles or grass to prevent artificial estimates of cover but to include energy 
distribution throughout the canopy in order to be comparable as far as possible with the 
waveform energy profile. 0.15m height bins were used for consistency with waveform 
resolution. Using these criteria, canopy cover was estimated as the number of all canopy points 
expressed as a fraction of total returns to provide input data for the radiative transfer model 
FLIGHT. 
 
2.3 FLIGHT 
 
To analyse theoretical sensitivity of the GLAS waveform to topography and canopy structure, 
we have developed a model of the interaction of waveform LiDAR with a three-dimensional 
canopy representation. The model is developed from the FLIGHT radiative transfer model 
(North, 1996), based on Monte Carlo simulation of photon transport. Foliage is represented by 
structural properties of leaf area, leaf angle distribution, crown dimensions and fractional cover, 
and the optical properties of leaves, branch, shoot and ground components. Important 
characteristics of the model are that it can represent multiple scattering of light within the 
canopy and with the ground surface, simulate the return signal efficiently at multiple wavebands, 
and model the effects of topography. Spatial and temporal sampling characteristics of the 
LiDAR instrument are explicitly modelled. 
 
2.3.1 Model Inputs 
 
Estimates of canopy cover from airborne LiDAR data were used as a model input to FLIGHT. 
The use of this dataset as an approximation of ground truth was supported by hemispherical 
photography calculations which produced R2 of 0.77 and RMSE of 2% despite the small data 
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range available (Rosette et al., submitted). Inputs of crown dimensions were based on field 
observations for a selection of ICESat footprint areas. Airborne LiDAR ground class data were 
used for the input of mean footprint slope. Species vegetation height and crown shape were 
determined from field observations or using the Forest Enterprise sub-compartment database 
and corresponding yield model estimates. 
 
3. Results 
 
Figure 3 shows estimations of within-footprint mean ground elevations from Ordnance Survey 
DTM and airborne LiDAR plus ICESat/GLAS estimated ground surface using both GPamp and 
RWT methods. The Gaussian decomposition method underestimated the airborne LiDAR (AL) 
and Ordnance Survey 10m resolution Land-Form PROFILE DTM (OS) mean ground elevations 
by 0.14m and 0.02 m respectively for the Forest of Dean pass. A summary of results is found in 
Table 4. 
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Figure 3. Identification of ground elevation using airborne and satellite LiDAR. 

 
 
When compared with airborne LiDAR ground surface, mean slope calculated from the airborne 
LiDAR ground class explained 39% and 0.5% of the error using GPamp and RWT estimates of the 
ground surface respectively. 
 

Table 4. Comparison of estimated ground surfaces using Ordnance Survey and LiDAR data. 
 
Comparison (m) RWT-AL GPAMP-AL AL-OS RWT -OS GPAMP -OS 
Mean offset -0.97 -0.14 0.12 -0.84 -0.02 
Max. difference 9.02 12.73 3.05 12.07 13.11 
Min. difference -9.64 -7.36 -8.56 -10.43 -8.63 

 
The method of identifying the vegetation return using Gaussian decomposition from product 
GLA14 corresponded slightly closer than use of signal limits with a terrain index in comparison 
with vegetation height estimates from airborne LiDAR. Regression analysis for the two methods 
produced R2 of 0.68, RMSE 4.4m and R2 of 0.63, RMSE 4.7m respectively. The correlation 
using Gaussian decomposition is shown in Figure 4 and a further comparison between satellite 
and airborne LiDAR vegetation estimates are discussed in detail within (Rosette et al., 
submitted). 
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Figure 4. Relationship between airborne and satellite LiDAR maximum canopy height estimates using 

Gaussian decomposition (product GLA14). 
 
The following figures show examples of ICESat/GLAS waveforms plus corresponding 
simulated returns from FLIGHT using inputs of footprint surface and overlying vegetation 
properties. A summary of estimated and measured vegetation heights is found in Table 5. For 
these examples in fact, better estimates of maximum canopy height were produced using 
multiple regression analysis with Waveform Extent and a Terrain Index. 
 
Table 5. Examples of estimated vegetation heights from satellite and airborne LiDAR and coincident field 

measurements. 
Vegetation height estimation: GPAMP RWT AL Field 

Footprint 885917506_14 24.2m 30.8m 30.6m 31 
Footprint 885917506_29 21.2m 21.9m 23.4m - 
Footprint 885917516_05 17.4m 26.4m 24.2m 24.75m 

 
Figure  shows a vegetated slope of 17.8° with species coverage of 60% Douglas Fir towards 
the top of the slope and the remaining area comprising oak beneath. Calculated top heights from 
records within the sub-compartment database and corresponding yield models for the two 
species are respectively 23.9m and 17.6m. The maximum observed field measurement from 
within the estimated footprint boundaries was 24.75m. 
 

 
Figure 5: GLAS and simulated waveforms for a steep and continuously vegetated slope. 

 
The footprint shown in Figure6 covers a pure stand containing 100% oak with top height 
estimated as 21.3m. Field measurements are not available for this site. Slope from airborne 
LiDAR data was calculated as 1.7°. 
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Figure 6: Returned waveform and simulation for a single layer canopy on level terrain. 

 
Figure 7 shows an example of a footprint on a gentle slope (4.9°) which samples a stand of 
predominantly Douglas Fir of two ages: 29% of the area has estimated top height of 28.6m 
whilst 6% had calculated top height of 22.8m. The stand also contains 21% Oak (21.5m top 
height) with the remainder of the area being unplanted. Maximum tree height from field 
measurements was 31m. 
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Figure 7: GLAS waveform and FLIGHT simulation for a multi-layered canopy on a gentle slope. 

 
4. Discussion 
 
This study has shown the ability to identify the vegetation signal from satellite LiDAR 
waveforms. For the Forest of Dean, the method using Gaussian decomposition to estimate 
ground elevation within the waveform ground peak produced the smallest mean error in 
comparison with both airborne LiDAR and Ordnance Survey Land-Form PROFILE DTM mean 
ground elevations. However, ground elevation for the ICESat/GLAS pass crossing the Forest of 
Dean was estimated with a mean error of less than 1m using both methods. 
 
Slope was identified as a contributory factor for the minor negative offset using Gaussian 
decomposition whereas this had been successfully addressed using the Waveform Extent/Terrain 
Index method. A further explanation may be offered by the fact that the model fit is produced by 
the sum of Gaussian peaks and therefore the centroid of the Gaussian Peak with greatest 
amplitude may not always represent the most common ground elevation. Use of the largest 
amplitude inflexion point within the ground return may address this small error. For both 
methods a negative bias is seen in the estimation of the ground surface. For the RWT method, this 
may be a result of the waveform ‘tail’ extending below the true lowest ground surface. 
 
The results suggest that, for situations such as the Forest of Dean in which dense canopy cover 
or extreme slope do not prevent a representative ground surface from being detected, Gaussian 
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decomposition may offer an appropriate means of estimating ground elevation. Furthermore, 
GLAS estimations of ground elevation have shown considerable consistency across different 
laser operations (Sun et al., 2008). 
 
Estimates of maximum canopy height using RWT and GPamp methods compared well against 
airborne LiDAR estimates of the same. Regression analysis produced R2 of 0.68, RMSE 4.4m 
and R2 of 0.63, RMSE 4.7m for the two methods respectively. 
 
Inputs of generalised crown shape and crown dimensions, vegetation height, canopy cover and 
slope were used for LiDAR waveform modelling within the radiative transfer model FLIGHT. 
Returned and simulated waveforms show similar properties. 
 
The returned and modelled waveforms in Figure  show the effect of combined returned signals 
from a sloped ground surface with relatively dense vegetation throughout the slope. Energy is 
therefore returned from ground and vegetation surfaces at similar elevations. This is one of the 
few sites at the Forest of Dean for which a ground peak cannot be distinguished within the 
waveform. 
 
The GLAS waveform seen in Figure (left) shows the effect of a single layer oak canopy with 
most energy interception towards the uppermost canopy. However the simulated waveform 
anticipates that energy will also be returned from within the canopy. The low amplitude and 
laser penetration seen in the GLAS waveform may be a result of signal dampening due to 
variations in atmospheric transmittance. This remains to be determined. 
 
The modelled and returned waveforms in Figure  show signals from a multi-layered canopy on 
a gentle slope. Energy is returned throughout the canopy and the effect of multiple scattering 
between intercepted surfaces is seen in the ‘tail’ visible beneath the ground peak in both 
simulated and GLAS waveforms. 
 
5. Conclusions 
 
This study has shown the possibility of extracting representative ground surfaces from large 
footprint full waveforms which are comparable with airborne LiDAR and Ordnance Survey 
mean ground elevations. Slope was found to be a contributory factor in the small error found 
where Gaussian decomposition was used to estimate ground elevation. Estimates of maximum 
canopy height from satellite LIDAR waveforms corresponded closely with those using 
coincident airborne LiDAR. The effects of topography and canopy properties on waveform 
composition were successfully modelled using the radiative transfer model FLIGHT which aims 
to assist future waveform interpretation. 
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Abstract  
 
We present a method and initial results for a model of the interaction of waveform lidar with a 
three-dimensional canopy representation. The model is developed from the FLIGHT radiative 
transfer model (North, 1996), based on Monte Carlo simulation of photon transport. Foliage is 
represented by structural properties of leaf area, leaf angle distribution (LAD), crown 
dimensions and fractional cover, and the optical properties of leaves, branch, shoot and ground 
components. Important characteristics of the model are that it can represent multiple scattering 
of light within the canopy and with the ground surface, simulate the return signal efficiently at 
multiple wavebands, and model the effects of topography. Spatial and temporal sampling 
characteristics of the lidar instrument are explicitly modelled. A sensitivity analysis gives 
expected effects of canopy parameters on the waveform, and indicates potential for retrieval of 
the canopy properties of fractional cover and leaf area, in addition to height.  
 
Keywords: Waveform lidar, ICESat GLAS, radiative transfer model 
 
 
1. Introduction  
 
Global datasets of land surface biophysical variables are required from remote sensing to drive 
land surface parameterisations coupled to atmospheric general circulation models, and to 
calculate the exchange of carbon, water, energy and momentum fluxes between the land and 
atmosphere (Sellers et al., 1996; North, 2002; Alton et al., 2007). By recording temporal return, 
light detection and ranging (lidar) offers a unique measurement directly related to vegetation 
canopy height. While hitherto mostly applied using airborne platforms at local scale, the 
Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud and land Elevation Satellite 
(ICESat) provides an opportunity to contribute to forest quantification and monitoring at 
regional and global scales (Schutz et al., 2005). Previous work supports the use of this data 
source for the estimation of canopy height and sub-canopy terrain, and, by correlation, further 
properties such as biomass (Lefsky et al., 2005; Harding and Carabajal, 2005; Rosette et al., 
2008a). There is also ongoing research in estimation of further parameters such as vegetation 
cover, stemwood volume and plant area index (PAI), and their vertical profile (Koetz et al., 
2006; Rosette et al., 2008b). 
 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 190

 
 

Figure 1: Example FLIGHT model output showing scene reflectance under solar illumination.   
 
Increasingly, physically-based radiative transfer models of vegetation canopies have been used 
to constrain retrieval of land surface biophysical parameters, either by direct inversion or use 
in algorithm development. For lidar, radiative transfer models have been developed originally 
for atmospheric simulation (Platt, 1981), and recently several models have been developed for 
vegetation canopies which treat the light interaction at various degrees of complexity (Govaerts 
and Verstraete, 1998; Ni-Meister et al., 2001; Kotchenova et al., 2003; Disney et al., 2006).  
 
In this work we aim to extend the three-dimensional radiative transfer model FLIGHT (North, 
1996) to model waveform lidar interaction at scales suitable for ICESat interpretation. The 
model is based on Monte Carlo solution of radiative transfer, and offers a consistent link from 
lidar-derived structure to full canopy optical response and vegetation photosynthesis (Barton 
and North, 2001; Alton et al., 2005). A further aim is to explore the theoretical potential of 
biophysical parameter retrieval from satellite waveform lidar. 
 
 
2. Method  
 
The Method is based on Monte Carlo evaluation of photon transport. Monte Carlo simulation is 
a versatile technique, which allows highly accurate estimation of light interception and 
bidirectional reflectance (Disney, et al., 2000). The technique requires sampling of the photon 
free-path within a canopy representation, and simulation of the scattering event at each 
interaction. By iteration we obtain accurate treatment of light interception and multiple 
scattering between foliage elements and the soil boundary. Overlapping crowns, and multiple 
scattering within and between different crowns and the ground surface are thus modelled. The 
particular challenge of modelling lidar interaction is the additional inclusion of time dependency 
of the response, governed by varying path length over multiple interactions forming the return, 
and the temporal spread of the incoming pulse. 
 
  



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 191

Table 1: FLIGHT canopy input parameters 
 

Name Units Meaning Value 

PAI m2/m2 Plant area index (one sided) 3.0 
LAD - Leaf angle distribution Spherical 

Fc - Crown fractional coverage 0.7 
Fg - Fraction of green foliage 0.8 
Fb - Fraction of bark 0.2 
Exy m Ellipsoid horizontal radius 8.0 
Ez m Ellipsoid vertical eccentricity 8.0 
Dl m Leaf size diameter 0.05 

DBH m Trunk diameter at breast 
height 0.1 

Sr 0-1 Soil roughness 0 
Sy Deg Terrain slope (yz plane) 0 

Hmin, Hmax m Min/max height to crown 
start 15,20 

ρL - Leaf reflectance 0.4 
τL - Leaf transmittance 0.4 
ρS - Soil reflectance 0.15 
    

 
 

2.1 Canopy representation 
 
Foliage is approximated by structural parameters of area density, angular distribution, and size, 
and optical properties of reflectance and transmittance. The foliage is constrained to lie within 
geometric envelopes, defined by ellipsoidal or conical primitives. The locations of the crowns 
are normally generated statistically, parameterized by crown fractional cover, and canopy height 
range; however it is possible to define precise crown locations. Scene elements may also be 
explicitly represented by facets. Spectral reflectance and transmittance properties of the scene 
elements are also specified, normally approximated as bi-Lambertian. A list of parameters and 
typical values is given in Table 1. Figure 1 illustrates a typical canopy representation, output 
from the model under solar illumination conditions.  
 
2.2 Sensor model 
 
A generic description of a waveform lidar instrument is defined by parameters giving sensor 
location, beam energy, beam angular divergence and temporal spread. Both angular divergence 
and temporal spread are modelled as Gaussian. The set of parameters defining the lidar 
instrument are given in Table 2, with example values for GLAS used in the current study 
(Brenner et al., 2000). 
 
2.3 Evaluation of lidar waveform 
 
The original model (North, 1996) traced photon trajectories forwards from the source until 
absorption in the canopy or leaving the canopy boundary, when energy was accumulated in bins 
defined for each solid angle of exit. Subsequently the model was developed to sample paths 
from a given view direction to intercepted surfaces, and to accumulate the radiance contribution 
from these surfaces (Disney et al., 2000; Barton and North, 2002). The latter method is more  
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Table 2: Lidar sensor model  
 

Name Units Meaning Value 

(Px,Py,Pz) m Sensor position relative to 
scene centre (0,0,600000) 

θO, deg Sensor zenith angle 0 
φO deg Sensor azimuth angle 0 

sl ns Emitted RMS pulse width, 
assuming Gaussian (1sd) 5 

qT rad Half-width angle of beam 
divergence, Gaussian (1sd) 0.00011 

IFOV rad Detector IFOV 0.0004 
AT m2 Detector telescope area 0.709 

ΤRTstm - Roundtrip atmospheric trans. 0.8 (532nm) 0.9 (1024nm) 
Etrans mJ Total pulse energy 32 (532nm); 72 (1064nm) 
Δ t  ns Recording bin width 1 

 
 
appropriate for lidar calculation, as it is possible to efficiently estimate return for infinitesimal 
angles; this is necessary for lidar as viewing is made at the retro-reflection direction or 
‘hot-spot’, where the reflectance changes very significantly with small changes in view angle.  
 
The method proceeds by sampling n rays over the instrument IFOV. For each ray: 
 

(i) Find the intersection with the first surface facet (leaf/bark/soil) 
 

(ii) The facet illumination is calculated as the sum of direct and diffuse incoming light. 
The diffuse light term is calculated by recursive sampling of higher scattering orders. 
The radiance contribution is defined according to the standard rendering equation, 
depending on facet orientation with respect to illumination, and optical properties.  

 
(iii) For each facet and scattering order, both the radiance contribution and the total return 

path length to the sensor are calculated. The path length is equivalent to time of signal. 
For efficiency, ground-leaving radiance for unit incoming signal is initially recorded.  

 
(iv) The radiance is binned into m bins according to path length, whose width is defined by 

the sensor model temporal sampling. 
 
The final step accounts for detector characteristics and pulse width: 
 

(v) The radiance values are converted into absolute power (mW) recorded in each 
temporal bin, dependent on the sensor aperture AT, distance to  sensor Pz and 
atmospheric round-trip transmission ΤRTstm ,  The effect of pulse width is modelled by 
Gaussian convolution of the resultant output array, with amplitude dependent on 
emitted pulse energy Etrans. 

 
The estimation error decreases as n0.5. For results here we use a sampling of n=104, and obtain 
convergence after scattering order 8. 
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3. Results  
 
3.1 Comparison with FLIGHT reflectance 
 
The waveform was integrated over time and normalised by downwelling radiance to allow 
comparison with equivalent bidirectional reflectance factor (BRF) for the scenes generated by 
the original FLIGHT model. While some of the code is common between the original FLIGHT 
code and the lidar waveform model, the check is useful as the FLIGHT model BRF has been 
previously checked by intercomparison with other three-dimensional codes as part of the 
RAdiation Model Intercomparison (RAMI) project (Widlowski et al., 2007). The recent analysis 
within RAMI of six selected three-dimensional models showed dispersion within 1% over a 
large range of canopy descriptions.  
 
The surface reflectance is estimate from the lidar return as: 
 

ρsurf =
πErecR

2

EtransAtTRTatm

   (1) 

 
where Erec (pJ) is calculated as 

Erec = Li
i=1

m

∑ Δ t     (2) 

where energy is accumulated in m sample bins, where each sample bin i has accumulated power 
Li (mW), and the bins correspond to temporal increment Δ t  ns. 
 
Seventeen scenes were generated through independent variation of model parameters described 
in Table 3, with random spatial positioning of 200 crowns at 70% fractional cover. Figures 2 and 
3 show comparison at 532nm and 1064nm respectively. Error bars denote scene spatial variation 
at the scale of the lidar footprint. The results show unbiased estimate of reflectance by the 
waveform integration, though with scatter about the line. This is expected as the lidar spatial 
sampling is much smaller than the whole scene simulated by FLIGHT. 
 
3.2 Sensitivity analysis 
 
Figures 3-4 show example model runs and sensitivity to variation in plant area index (PAI) and 
ground slope (S). Table 3 shows full results of a sensitivity analysis of modelled output to 
variation in canopy parameters. Each parameter is varied individually from a ‘base case’, 
specified by the central value in each set in the table; the remaining parameters are specified in 
Tables 1-2. The lidar waveform return power is recorded, integrated over time and partitioned 
into total return (TR), canopy return (CR) and ground return (GR). Partition is estimated on the 
basis of position in the waveform. Variation is shown as a percentage deviation from the base 
case waveform returns.  

• Sensitivity to PAI is small in total return, with less than 2% variation for PAI from 2-5, 
from a base case PAI of 3, and a 17% reduction for PAI of 1. However the partitioned 
returns show much greater variation, with CR decreasing by over 50%, and a 
corresponding increase in GR over the same range. 

• Variation in leaf angle distribution (LAD) shows impact on total return (-11% to +20%), 
with a greater impact on CR. Leaf angle will affect both total interception by the canopy 
by varying projected leaf area, and also the orientation of surfaces with respect to the 
incoming beam. 

• Crown shape has a small impact on total return, with higher vertical and horizontal 
eccentricities decreasing the CR component relative to spherical crown return. 
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Figure 2: Bidirectional Reflectance Factor (BRF) simulated by FLIGHT vs BRF from time integration of 

modelled lidar waveform return at 532nm. 

 
Figure 3: BRF simulated by FLIGHT vs BRF from time integration of modelled lidar waveform return at 

1064nm. 
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Figure 4: Example model output showing sensitivity of waveform return to plant area index (PAI) 
variation from 1 to 5. 

 
Figure 5: Example model output showing waveform sensitivity to variation in terrain slope, from 0 to 20 

degrees. 
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Table 3: Sensitivity of waveform lidar return at 1064nm to variation in canopy parameters. Return is 
partitioned into total energy return (TR), canopy return (CR) and ground return (GR). Variation is shown 

as percentage deviation from the base case return. 
 

Parameter Value TR (%) CR (%) GR (%) 

     
 1 -17 -51 +54 
 2 -1.8 -14 +25 
PAI 3  - - - 
 4 +1.6 +5.1 -6.0 
 5 0 +5.2 -13 
     
 planophile +20 +33 -5.4 
LAD spherical - - - 
 erectophile -11 -19 +4.5 
     
 .5 -4.3 -6.2 0 
Ez/Exy 1 - - - 
 2 -4.7 -7.8 +1.8 
     
 .45 +10 +13 +2.7 
ρL .4 - - - 
 .35 -9.2 -13 -2.0 
     
 .45 +5.1 +5.8 +3.7 
τL .4 - - - 
 .35 -4.3 -4.9 -3.0 
     
 .2 +10 0 +32 
ρS .15 - - - 
 .1 -10 0 -31 
     
 
 
Analysis of the leaf optical properties shows sensitivity to canopy reflectance (RL),  

• with a slightly greater relative change in CR (13%) compared to input parameter (12%). 
Sensitivity to multiple scattering is illustrated by the effect of increasing leaf 
transmittance, and by the increase in GR. 

• Variation in soil boundary reflectance (RS) shows direct sensitivity of GR, with impact 
on total return corresponding to area fraction in scene. 

 
3.3 Evaluation of indices for canopy parameter retrieval 
 
While total absolute lidar return is relatively insensitive to vegetation cover, relative to the 
various perturbing parameters, the differential response of vegetation and ground components 
suggests use of metrics based on these. However, while reliable separation of a canopy and 
ground component is frequently problematic, for example in steeply sloping terrain or very 
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dense canopies, there are some instances where separate canopy and ground waveforms can be 
identified. For example Rosette et al. (submitted) explored use of ratio of canopy to total 
waveform area in correlation with canopy cover in a mixed temperate forest, where separation 
of ground from canopy was based on Gaussian decomposition of the return pulse. Figure shows 
an example of a normalised index regressed against the vertically projected plant area index 
(VPAI). The waveform index (WI) is defined as  
 

WI = (CR-GR)/(CR+GR)     (3) 
 
The figure shows the index is sensitive to VPAI (R2=0.87) while relatively insensitive to 
perturbing factors such as variation in leaf and soil optical properties. Such a normalised index 
would also be insensitive to absolute calibration of the return radiance. 

 
Figure 6: Vertically projected plant area index (PAI) vs index derived from waveform lidar, separated into 

canopy return (CR) and ground return (GR). 
 

4. Discussion  
 
We have presented a Monte Carlo radiative transfer model of waveform lidar for 
three-dimensional vegetation canopies, within the framework of the FLIGHT model (North 
1996). Good agreement is found between the integrated waveform energy and directly derived 
BRFs from FLIGHT. A sensitivity analysis shows information content in the waveform signal 
related to canopy cover variation and perturbing factors such as plant area index (PAI) and 
optical properties. Further research is recommended to accurately model atmospheric scattering 
and absorption, and to test the model against a wider range of canopies. 
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Abstract 
 
The practicality of using an atmospheric differential absorption lidar (DIAL) such as ESA’s 
A-scope for measuring vegetation is explored. Monte-Carlo ray tracing is used to simulate full 
waveform lidar responses over explicitly represented 3D forest models with both short and long 
temporal pulses. Deconvolution and Gaussian decomposition are used to estimate tree top and 
ground positions over a range of forest ages and stand densities. The errors of the height 
estimates are precisely quantified by comparison with the 3D model height. It is shown that (at 
least with a 12.5cm range resolution) an instrument optimised for atmospheric CO2 
measurement can successfully measure forest height over reasonably flat ground. 
 
Keywords:  Forestry, lidar, vegetation, simulation, 3D modelling. 
 
1. Background 
 
Carbon flux models are essential for understanding the complex processes involved in the 
Earth’s climate (Woodward et al, 2004). These models need variables, such as biomass and leaf 
area index (LAI) at a range of scales and locations (Williams et al, 2005). Many areas are 
inaccessible and it would be prohibitively expensive to cover the world with airborne sensors. 
Space-borne remote sensing may be the solution. 
 
One of ESA’s six proposed Earth explorer missions, due for launch in 2012, is a space-borne full 
waveform lidar; the A-scope satellite (ESA, 2007). It will be optimised for measuring 
atmospheric CO2 by differential absorption lidar (DIAL) with two laser wavelengths, one which 
causes resonance in the CO2 molecule, one that does not. These will be close to either 1.65μm 
or 2.06μm. This paper investigates the ability of such an instrument to measure forest 
parameters. 
 
2. Simulation system 
 
Studies on estimating forest parameters from waveform lidar are promising; however positional 
uncertainty of remote measurements and the difficulty of field measurements make validation of 
real data difficult (Hyde et al, 2005). Computer simulations allow validation as the true 
parameters of the virtual forest are known. A Monte-Carlo ray tracer based upon the RAT library 
developed from “frat” (Lewis, 1999) was used to simulate a waveform lidar. 
  
Explicit geometric forest models, in which every needle is described were used for the 
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simulations. Their creation is described in Disney et al. (2006). In a change to the method of 
Disney et al. (2006) needles were allowed to transmit light; trusting in the accuracy of the 
Prospect model (Jacquemond and Baret, 1990) in the absence of reliable transmittance data. 
 
Using explicit 3D models is computationally expensive but avoids the assumption that canopies 
behave as turbid media; an assumption that ignores the heterogeneity of real trees. It is not clear 
how such an assumption would affect derived results, especially when derivation uses the same 
assumptions used to create the forest models (Widlowski et al, 2005). 
 
Simulations were run with a range resolution of 12.5cm, a wavelength of 2.06μm, a 30m ground 
footprint and with and without a temporal laser pulse (100ns is proposed for A-scope). The laser 
pulse shape is applied to each return before binning so that quantisation noise is not ignored. 
 
3. Realistic noise 
 
A real direct detection instrument will suffer from noise from photon statistics, background light 
and detector noise. Photon statistic noise, ns is modelled as Gaussian with a sigma of the square 
root of the number of photons measured in that bin. Background power, Pb, is given by the 
following equation (values used in this investigation are shown in brackets); 
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Where ρ is surface albedo (calculated from waveform), Eλ is solar energy in Wm-2sr-1nm-1 (0.67), 
TFOV is the field of view in radians (0.0002rads), Ar is the receiver telescope area in m-2 
(0.79m-2), ϑs is the solar incidence angle (30o), Tatm is the atmospheric transmission (0.8) and Δb 
is the bandwidth in nm (10nm). This is combined with detector noise and converted to detected 
photon count to get background and detector noise nb,d with the following; 
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Where QE is detector quantum efficiency (0.5), λ is wavelength in m (2.06μm), h is Planck’s 
constant in m2kgs-1, c is the speed of light in ms-1, F is the excess noise factor of the detector (2) 
and NEP is the noise equivalent power on the detector after amplification in W Hz-0.5 (assumed 
negligible). This is then multiplied by a random number between 0 and 1 and combined with the 
photon statistics, ns to get total noise by; 
 

Fnnnoise dbstats ×+= )( ,     (3) 

 
Different levels of noise were simulated by assuming that the signal (noiseless waveform) 
included a certain number of photons. Noise effects were added and the resultant waveform 
scaled from photon count to reflectance for analysis. Different random number seeds were used 
to fully investigate the effect of noise on inversions. As the noise is added based upon signal 
photons the wavelength is irrelevant. 2.06μm will need a more powerful laser to get the same 
photon count from a forest than at 1.064μm. Figures 1 to 5 used 1.064μm (they are for an 
optimised canopy lidar), though 2.06μm should behave in a similar fashion for the same signal 
level. 
 
 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 201

4. Derivation of parameters 
 
Two of the most important biophysical parameters for ecological models are biomass and leaf 
area index (LAI). These cannot be directly measured by lidar or any current remote instrument 
but can be related to tree height and canopy coverage through empirical relationships. More 
complex metrics combining height and canopy coverage with height (foliage profile) can be 
used to improve the accuracy of estimates (Lefsky et al, 1999). With any method tree height and 
canopy are the measurables needed to derive any parameters. 
 
For tree height to be measured the position of the tree top and ground must be distinguishable 
from the waveform. If the topography is negligible over the laser footprint tree height can be 
found directly. Topography complicates the matter. It may be possible to use multi-spectral lidar 
to extract ground position from topographically blurred waveforms. 
 
The tree top is the signal start above background noise in the absence of a pulse length. Taking it 
as the point at which the signal rises above the noise threshold will always lead to an 
underestimate. This contributes to the “well known underestimate of tree height by lidar” 
(Morsdorf et al. 2008). Data assimilation schemes such as the Kalman filter rely on unbiased 
observations (Williams et al, 2005). Tracking back through the waveform from the noise 
threshold to the mean noise level should provide an unbiased estimate. Figure 1 shows a 
histogram of the signal start position error with and without tracking back from the noise 
threshold. A negative error means a premature signal trigger; this was common in both methods. 

 
Figure 2 shows the mean and modal signal start position errors against signal photon count. The 
means are biased by some premature triggerings caused by noise. It is hoped that these can be 
removed by looking at their distance from the ground and rejecting unrealistic tree heights. No 
attempt was made to calculate the ground position in this experiment due to the calculation’s 
computational expense. The modal error does not display this bias and shows that both methods 
giving similar outputs for large photon numbers (small noise) and the tracking method’s 
superiority at low signal levels (high noise). 
 

    
 
 
 

 
The ground position is much harder to extract. The traditional method is to decompose the 
waveform into a set of Gaussians by non-linear regression (Hofton et al, 2000). It must then be 
decided which Gaussian corresponds to the ground. An appropriate threshold (either amplitude 
or energy contained in the Gaussian) must be chosen to avoid any Gaussians caused by multiple 
scattering, noise or the canopy. This threshold is dependent upon canopy cover and wavelength. 
In denser canopies the ground return will be weaker, requiring a lower threshold. In sparser 
canopies more subterranean multiple scattering may be recorded requiring a higher threshold. 
 

Figure 2. Mean and modal tree top 
error against number of signal photons 

for the two methods. 

Figure 1. Signal start error histogram for 7,000 
signal photons. The negative tail has been 

clipped for clarity. 
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An implementation of the Levenberg-Marquardt method was used to minimise the root mean 
square difference between the fitted Gaussians and original signal (Press et al, 1994). This 
method is unstable, the error being affected by waveform shape, canopy cover and noise. Figure 
3 shows one of the more successful attempts. 
 

 
Figure 3. Mean ground position error for 4,000 photons against canopy cover. Bars show standard 

deviation 
 
These methods perform reasonably well when the ground return contains significant energy and 
is distinguishable form the canopy return. In very dense canopies (>85% coverage) little signal 
reaches the ground and a proportion of the inversions will fail. The expected failure rate should 
be quantified to asses the method’s global use as this canopy cover is not uncommon for 
evergreen broadleaf forests (Hofton et al, 2002). An iterative method to choose an appropriate 
threshold based upon an estimation of canopy coverage may be necessary. 
 
Figure 4 shows the average energy contained in the nearest Gaussian to the ground, an indicator 
of how the threshold depends upon canopy cover. A failure is classed as a waveform without a 
Gaussian centred within (an arbitrary) 3m of the ground. The need for an iterative threshold 
selection is apparent. 
 

 
Figure 4. Fraction of waveform energy contained in nearest Gaussian to the ground. 

  
These errors combine to give the tree height error. The signal start error is insensitive to canopy 
cover, possibly due to the shape of conifers (there is no more foliage at the tree top for dense 
than for sparse canopies). Figure 5 shows mean tree height error against canopy cover. An 
overestimate is suggested due to too low a threshold being used to select the ground Gaussian 
(0.75% of total energy). 
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Figure 5. Mean tree height error against canopy cover. Bars show standard deviation. 

 
5. Pulse length 
 
All real lasers have a finite pulse length. This can range from short 6ns pulses such as ICESat’s 
GLAS up to 100ns for ESA’s proposed A-scope (for smaller linewidth). Any pulse length will 
blur the waveform, extending the signal start and merging ground and canopy returns. A 
Gaussian is a good approximation of the pulse shape. For 100ns pulses, corresponding to a 
Gaussian with a full width half maximum of 25m, this blurring is severe, obliterating any 
features (as shown in figure 6). If such an instrument is to be used for measuring vegetation 
some form of deconvolution is needed. 
 

 
Figure 6. Simulations of an ideal and 100ns pulsed waveform over a Sitka spruce forest. 

 
This can be done either by fitting functions with the known pulse width and shape to the 
waveform or a Fourier space deconvolution. As figure 6 shows, for long pulses there is little 
detail left to fit the function to. Any algorithm is more likely to fit a single larger amplitude 
Gaussian than the two Gaussians needed to de-blur. 
 
Gold’s iterative re-blurring deconvolution method (Jansson, 1997) was selected for its relative 
robustness to noise. This method is given by the equation; 
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Where i is the original waveform, s is the deconvolution function (normally the laser pulse) and 

)(ˆ ko is the kth estimate of the de-blurred waveform (initially taken as i). 
 
Again simulations offer the advantage over reality of precise error analysis. Simulations were 
run with and without a pulse length. Deconvolved waveforms were compared to the ideal, 
pulseless waveforms. 
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6. Noise 
 
Noise complicates the issue leading to wildly inaccurate products. We can be certain that there 
should not be any components of the waveform with a higher frequency than is contained in the 
laser pulse (Gurdev at al, 1993) and any such components can be taken as noise (which is high 
frequency). These can be removed by convolution with the laser pulse before deconvolution. 
 
The following method was found to give the best results when deconvolving noised waveforms; 

 
Noise statistics were calculated from a known empty portion (all signal more than 
70m above the maximum intensity return). 
Background noise was removed by subtracting a constant threshold, either the mean 
noise level plus three standard deviations or the maximum recorded noise level, 
whichever was greater. 
The waveform was smoothed with the laser pulse. 
The waveform was deconvolved with 6,000 iterations of Gold’s method using the 
laser pulse convolved with the smoothing function as the deconvolution function. 
 

Figure 7 shows that this gave an acceptable recreation of the ideal waveform for high noise 
levels (3,000 signal photons); an encouraging result. A waveform with clearly defined canopy 
and ground returns (without pulse length) was used for the initial investigation; it had a canopy 
coverage of 81% and a maximum tree height of 12.5m. This avoids the complications of trying 
to find low canopy or ground returns in the blurred waveforms. 
 

 
Figure 7, 3,000 signal photons, an acceptable recreation by deconvolution. 

 
The above deconvolution method was applied to simulated A-scope waveforms for different 
noise levels. Figure 8 shows the mean accuracy of the inversion of height against signal photon 
count for a three different sets of noise added to a single waveform. The instability of the 
ground position estimate is apparent. A clear improvement of tree top position estimate with 
increasing signal to noise ratio is shown. More checks may highlight failures, improving 
certainty in the results. Care must be taken to separate the effects of noise, canopy cover and 
tree height. 
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Figure 8. Tree height, tree top position and ground errors against signal photon count for a single 

waveform. 
 
7. Conclusions 
 
Tree height, top and ground position errors have been precisely quantified with simulated 
waveforms. A method for reducing tree top position bias has been tested and shown to perform 
well if at least 2,000 signal photons are measured (an easily achievable number). Some refining 
is needed to cope with the effect of varying canopy cover on ground position and premature 
triggering on tree top estimate. Above 3,000 photons errors are dominated by the algorithms. 
More robust algorithms may benefit from more signal photons (10,000 gives near perfect 
recreation of the ideal). This area needs more work before it can be considered operational. 
 
This method relies on a clear separation between ground and canopy (after deconvolution). If 
the variation in ground height across the footprint is greater than the ground to foliage 
separation that will not be the case. This limits the areas such an instrument could be used. 
Smaller footprints aggregated together to ensure a tree top is recorded may be a solution; a high 
pulse repetition rate to allow a continuous track would be preferable. A second waveband with 
spectral contrast between ground and canopy will allow distinction in topographically mixed 
signals. Both of these would require extra equipment to be included which is unlikely in 
A-scope for such a secondary capability. 
 
A-scope has a proposed laser wavelength of either 2.06μm or 1.65μm, neither of which has a 
strong reflectance from vegetation (the two wavelengths used in DIAL are too close to be of any 
advantage for vegetation). In this investigation noise levels were calculated by assuming a 
certain number of signal photons therefore wavelength had little impact upon this investigation. 
The choice of laser wavelength is likely to limit the maximum number of measurable photons. 
 
The possibility of using long pulse lidar for measuring forest parameters has been demonstrated, 
given sufficient range resolution. The effect of range resolution on inversion accuracy must be 
quantified as A-scope is unlikely to have such a fine resolution (12.5cm in this investigation). 
Few waveforms and inversions were available for this investigation due to the computational 
expense of Monte-Carlo ray tracing and deconvolution by Gold’s method. More samples are 
needed to fully test the methods under a range of conditions. The finer the range resolution the 
more information the deconvolution has and the more accurate the result is likely to be. This 
effect needs exploring. 
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Abstract 
ICESat/GLAS waveform data are used to estimate biomass and carbon on a 1.27 million km2 
study area, the Province of Québec, Canada, below treeline.  The same input data sets and 
sampling design are used in conjunction with four different predictive models to estimate total 
aboveground dry forest biomass and forest carbon.  The four models include nonstratified and 
stratified versions of a multiple linear model where either biomass or biomass  serves as the 
dependent variable.  The use of different models in Québec introduces differences in 
Provincial biomass estimates of up to 0.35 Gt (range 4.94±0.28 Gt to 5.29±0.36 Gt).  The 
results suggest that if different predictive models are used to estimate regional carbon stocks in 
different epochs, e.g., y2005, y2015, one might mistakenly infer an apparent aboveground 
carbon "change" of, in this case, 0.18 Gt, or approximately 7% of the aboveground carbon in 
Québec, due solely to the use of different predictive models.  These findings argue for model 
consistency in future, LiDAR-based carbon monitoring programs.  Regional biomass estimates 
from the four GLAS models are compared to ground estimates derived from an extensive 
network of 16,814 ground plots located in southern Québec.  Stratified models proved to be 
more accurate and precise than either of the two nonstratified models tested. 

 

1. Introduction 
 
The forestry LiDAR community, having demonstrated and continuing to improve the utility of 
airborne LiDAR systems for forest measurement and monitoring, now must consider doing so 
from space.  One civilian space LiDAR, the ICESat satellite (Ice, Cloud, and land Elevation 
Satellite) carrying the GLAS (Geosciences Laser Altimeter System) LiDAR, is currently in orbit.  
The U.S. may launch three additional space LiDAR systems over the next decade.  This report 
briefly describes these proposed space LiDARs, the configurations of which are all under 
discussion and subject to change. We also introduce two concerns associated with space and 
airborne LiDAR instruments that must be addressed by our community if we hope to effectively 
monitor global forest resources with lasers.  In order to monitor forest change at the regional, 
national, continental, or global scale, our estimates at time 1 (t1) and time 2 (t2) must be 
consistent.  Spurious changes may be noted or actual changes may be missed if our t1, t2 
estimates are not comparable.  Assuming the use of the same sampling design, inconsistencies 
may be introduced by the use of different predictive models at t1, t2, and/or they may be 
introduced by sensor changes over time which might result in systematic measurement 
differences.  The objective of this paper is to address the former, i.e., model consistency, 
providing one example of the degree to which the use of different predictive models impacts 
regional estimates of biomass and carbon.   

 
1.1. U.S. Space LiDARs – Current Thoughts 
 
The U.S. National Research Council (NRC), in a document known as the Decadal Survey (NRC 
2007), has identified seventeen space missions of paramount importance to the U.S. scientific 
community for monitoring the status and function of the biosphere.  The NRC suggests that 
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these seventeen missions be launched in the 2010 – 2020 timeframe.  Three of these Earth 
remote sensing missions incorporate space LiDARs capable of measuring forest structure.  
These missions include (1) ICESat II, a follow-on to the current ICESat satellite (Abshire et al. 
2005), designed to monitor ice sheet elevation changes; (2) DESDynI (Deformation, Ecosystem 
Structure, and Dynamics of Ice), primarily a solid Earth mission which couples an L-band 
RaDAR and LiDAR to map surface deformation; and (3) LIST (Laser Imaging for Surface 
Topography), a swath mapping LiDAR for global topography and hydrology.  All will be in 
near-polar orbits. 
 
The specific design of ICESat II and DESDynI is currently a topic of much discussion, so the 
descriptions below may not resemble the configurations that may ultimately reach orbit.  In 
addition, the launch of these three satellites is by no means assured given the prerequisite that 
the U.S. Congress must find the funds needed to build and operate this hardware.  However the 
Decadal Survey carries much weight at NASA, and the current expectation is that ICESat II will 
be launched somewhere in the 2015 timeframe in a flight configuration similar to the first 
ICESat, e.g., a single beam, waveform profiler with 50 m – 70 m footprints and an along-track 
post spacing of 140 m.  The 2015 launch date is notable in that the ICESat I/GLAS LiDAR, 
currently collecting data during ~33 day, spring and fall campaigns, is expected to last an 
additional 1½  to 3 years, with the 3rd and final laser due to fail sometime between the spring of 
2010 and the autumn of 2012.  This leaves an ICESat I – ICESat II observational hole of 3-5 
years if ICESat II launches in 2015. 
 
The DESDynI and LIST missions will fly later.  Expectations are that DESDynI will most 
likely be some sort of multi-beam LiDAR with ~25 m footprints and 25 m – 30 m post spacing, 
i.e., near-contiguous profiles along-track.  Across-track, parallel profiles will be kilometers 
apart, perhaps on the order of 2 – 5 km separating each of the 3 – 5 beams on the satellite.  
DESDynI is currently configured as a joint L-band RaDAR and multibeam LiDAR satellite, but 
many aspects of this mission are under consideration and are actively being investigated, 
including the need to physically tie the RaDAR to the LiDAR on the same platform, orbital 
repeat times, baseline issues regarding the RaDAR acquisitions, the RaDAR acquisition 
capabilities, e.g., SAR vs. InSAR, LiDAR beam spacing, number of beams, off-nadir pointing 
capabilities, and pulse width. LIST is currently configured as a swath mapper, collecting global 
wall-to-wall coverage over it's 5 year design life.  The footprint of the contiguous pulses will 
be on the order of 5 m.  Given LIST's late launch, most effort is going into research to address 
the ICESat II and DESDynI flight configurations. 

 
1.2. Using ICESat/GLAS to Measure Forests 
 
In the context of the current ICESat profiler and the possibility of an ICESat II follow-on, the 
forestry LiDAR community has entered a period where space-based LiDAR measurements are 
routinely collected globally and systematically, albeit with extended periods without space 
LiDAR measurements.  With this capability comes questions concerning how we might best 
use these satellite ranging observations to measure, and more importantly, monitor forest 
biomass and carbon resources at regional, national, continental, and global scales. 
 
Although the ICESat/GLAS LiDAR is not optimally configured for or operated as a vegetation 
assessment tool, these data have proved useful for biomass and carbon assessments across areas 
spanning hundreds of thousands of square kilometers.  Kimes et al (2008) and Boudreau et al. 
(2008) report results of studies that employ the ICESat/GLAS LiDAR to estimate forest volume, 
biomass, and carbon in south central Siberia (just north of Mongolia) and in Québec, Canada, 
respectively.   Kimes et al. (2008) uses 101,831 GLAS waveforms acquired along 55 orbits 
over a 10º x 12º, 811,414, km2 area just northwest of Lake Baikal to attribute 16 forest cover 
type – canopy density classes derived from MODIS (Moderate Resolution Imaging 
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Spectrometer) data.  Using field observations acquired on 51 GLAS pulses, they developed a 
sparse neural network relating GLAS waveform metrics to ground estimates of merchantable 
volume (Ranson et al. 2007).  If they constrain their data and use only those pulses acquired on 
slopes of 10º or less as characterized using SRTM topographic information, their regional 
estimate of merchantable volume, 73.85 x 106 ± 5.33 x 106 m3 (one standard error), is within 
1.1% of comparable ground estimates, 74.63 x 106 m3 (Shepashenko et al. 1998 per hectare 
estimate in conjunction with a percent forest cover estimate for the study area of 63% from an 
1990 Russian forest map, V.I. Kharuk, pers. comm.).  If GLAS pulses on all slopes are 
considered, the regional GLAS-based per hectare estimate of volume increases from 163.4 ± 
11.8 m3/ha to 171.9 ± 12.4 m3/ha, a 5.2% increase.  This apparent increase in area-based 
volume estimates suggests that steeper slopes broaden the waveform response, increasing 
apparent canopy height and inflating the volume estimates.  Slopes, as noted by Lefsky et al. 
(2005, 2007) and Rosette et al. (2008), negatively affect the height accuracy of the 
large-footprint GLAS waveform data, convolving forest canopy architecture with topography 
and increasing the vertical extent of the waveform. 
 
Boudreau et al. (2008) uses a multiphase sampling approach to relate GLAS waveform and 
SRTM topographic measurements to field estimates of total aboveground dry biomass in 
Québec, Canada.  They flew an airborne profiling LiDAR over existing ground plots and along 
GLAS orbital transects and developed two sets of equations.  The first set relates field biomass 
estimates to airborne LiDAR metrics; the second set relates airborne LiDAR estimates of 
biomass to GLAS waveform metrics.  They estimate that, on average, the forested areas of 
Québec south of treeline support 39.0 ± 2.2 t/ha of dry biomass.  Botkin and Simpson (1990) 
report an average value of 41.8 ± 10.1 t/ha for all of the North American boreal forest based on 
stratified ground measurements. 
 
These studies report the accuracy and precision of statistical approaches that may be used to 
conduct regional inventories using a space LiDAR.  Of interest in this paper, however is an 
assessment of the need for consistency in model selection when estimating regional biomass 
repeatedly over time.  The objective of this study is to quantify the degree to which model 
differences may affect regional estimates of biomass and carbon.  Four different models are 
used to estimate standing dry biomass and carbon for all of Québec below treeline, a area 
encompassing 1.27 million square kilometers.  In addition, results from the four models are 
compared to ground reference data to determine which of the models most closely estimates 
biomass in the southern half of the Province 

 
2. Methods  
 
The data sets and analysis procedures employed in this study are the same as those described in 
detail in Boudreau et al. (2008). This study incorporates the following data sets: 
(1) ICESat/GLAS LiDAR waveform data: 104,044 GLAS waveforms acquired along 97 orbits 
across all of Québec, acquisition L2a, autumn 2003. Spacing between adjacent near-N-S orbits 
are very variable but average 15.6 km.  
(2) Digital vegetation zone map of Québec: tessellates Québec into seven vegetation zones; 
from south to north: (2.1) Northern Temperate forest, (2.2) Mixedwood forest, (2.3) southern 
Boreal forest (commercial forest), (2.4) northern Boreal forest (noncommercial forest), (2.5) 
Taiga, (2.6) Treed Tundra, (2.7) Southern Arctic. The Southern Arctic, that vegetation zone 
whose southern border is identified as the Provincial tree line, was assumed to contain no forest 
biomass. 
(3) Landsat ETM+ land cover map: up to 24 land cover classes identified in each vegetation 
zone. Forests are identified as being conifer, hardwood, or mixedwood; 3 canopy density classes 
in each forest cover type. Data resampled to a 25 m grid. 
(4) SRTM digital elevation data: available up to 60º N latitude (the Provincial treeline tracks 
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around 58º - 59ºN). 90 m pixels. 3x3 window around each GLAS pulse used to characterize 
local topography. 
(5) Ministry of Natural Resources Québec (MNRQ) ground plots: 16,814 fixed area, 11.3 m 
radius, 400 m2, temporary sample plots located in the southern 3 vegetation zones south of the 
commercial forest line that bisects the Boreal vegetation zone. Total aboveground dry biomass 
calculated on each plot. 
(6) Profiling airborne LiDAR data (Nelson et al. 2003): flown over 295 MNRQ ground plots 
and over ~5000 km of GLAS orbits, summer 2005. The NIR profiler acquired sequential 
first/last returns on 0.40 m footprints at 0.12 m post spacing across ground plots and GLAS 
pulses. The profiling data are used to tie ground plot information to GLAS measurements. 
 
These six data sets are utilized within a multiphase sampling framework. The airborne profiler 
was flown over 295 ground plots. Ground estimates of biomass were regressed against the 
airborne profiler measurements in order to develop predictive regressions based on the airborne 
measurements. One nonstratified equation (R2 = 0.65) and a set of seven stratified ground-air 
equations (R2 range from 0.51 – 0.73, Boudreau et al. 2008) are developed based on the Landsat 
land cover strata. The ground-air equation(s) is(are) then used to calculate airborne laser-based 
estimates of biomass on 1325 GLAS pulses measured by the airborne profiler. 
  
Four different models are constructed (n=1325) to predict dry biomass as a function of GLAS 
waveform and SRTM topographic measurements. The four models follow: 
 
· linear, nonstratified:    
 bair, ns = -4.52 + 3.85* wGLAS - 6.59* fGLAS  - 0.75* rSRTM  (1) 

R2 = 0.60, RMSE = 32.0 t/ha; 
· linear, stratified:     
 bair,st =  2.37 + 3.63* wGLAS - 5.92* fGLAS  - 0.73* rSRTM  (2) 

R2 = 0.58, RMSE = 31.7 t/ha; 
· square root, nonstratified:   

nsairb ,  = 2.67 + 0.27* wGLAS - 0.83* fGLAS - 0.06* rSRTM  (3) 

 R2 = 0.59, RMSE = 2.40 hat / ; 
· square root, stratified:    
 nsairb ,  = 2.98 + 0.26* wGLAS - 0.65* fGLAS - 0.06* rSRTM  (4) 

 R2 = 0.53, RMSE = 2.55 hat / ; 
 

where bair, ns  = an airborne profiling estimate of biomass calculated using  
the nonstratified ground-air equation, 

 bair,st = an airborne profiling estimate of biomass calculated using 
the stratified ground-air equations, 

 wGLAS = vertical extent of the GLAS waveform, signal start to signal end, 
 fGLAS = the slope of the leading edge of the GLAS waveform; and 
 rSRTM = the range, in meters of the topographic difference found in a   
                         3x3 pixel SRTM window centered on an GLAS pulse. 
 
The variance inflation factors for all 4 models are less than 1.61; multicollinearity is not an issue 
(Myers 1989). The square-root transform is used in an attempt to control marked 
heteroskedasticity; the transform only marginally improved residual patterns. The square-root 
biomass values are back-transformed using the unbiased backtransformation technique reported 
by Gregoire et al. (2008). 
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In the context of this report, stratification refers to the development of equations, by cover type 
and vegetation zone, in the ground – air phase, not in the air – satellite phase.  In other words, 
the bair dependent variables in equations 2 and 4 above were calculated using stratified 
ground-air equations; the bair in equations 1 and 3 were calculated using a generic or 
nonstratified ground-air equation (Boudreau et al. 2008, his Table 2).  Attempts were made to 
develop stratified GLAS equations for the linear and square root models, but R2 decreased and 
RMSEs increased as the latitude of the vegetation zones increased and as the average height of 
the trees decreased.  Stratified GLAS equations in the Taiga and the Treed Tundra had R2  
values in the 0.1 – 0.2 range and were deemed unusable.  This finding is not unexpected given 
the ground height – GLAS height comparisons reported in the literature.  Sun et al. (2008) 
compares various GLAS height metrics to comparable airborne LiDAR estimates and reports 
RMSEs of 3 m – 5.5 m (his Table 2) in the temperate forests of the eastern U.S.  Rosette et al. 
(2008) report ground-GLAS height RMSEs of 2.86 m after correcting for topography.   Lefsky 
et al. (2005) report RMSEs associated with ground-GLAS maximum canopy height 
comparisons of ~4.5 m, and Lefsky et al. (2007), after correcting for local topography using 
trailing edge measures, illustrates an RMSE of 5m across diverse study sites in his Figure 3.  
Given this height scatter and the open, sparse, stunted coniferous nature of Québec's northern 
forests near treeline, one might conclude that GLAS does not have the measurement sensitivity 
to accurately measure high-latitude forests.  As a result, stratified GLAS equations were not 
employed in this study due to the lack of predictive power of some of the northern equations.  
This lack of sensitivity in short-stature forests also calls into question the accuracy of the 
GLAS-based biomass and carbon estimates near treeline. 
 
The stratified models, i.e., equations 2 and 4 above, were processed differently from the 
nonstratified models 1 and 3.  Every GLAS shot was assigned to one of the Landsat land cover 
classes based on the plurality of the land cover types in a 3 x 3 Landsat ETM window that 
surrounded a given GLAS pulse.  The nonstratified models were applied to all 104,044 GLAS 
shots collected over Québec regardless of the land cover identity of that GLAS pulse.  So 
GLAS pulses judged (by the Landsat classification) to have illuminated barren areas, rock, moss, 
herb, etc, could still contribute to Provincial biomass if nonzero heights were measured by 
GLAS.  In effect, in the nonstratified models, GLAS measurements trumped Landsat land 
cover identities, and a GLAS pulse could contribute to the biomass estimate even if the Landsat 
classification suggested that no forest biomass should exist on that spot illuminated by the 
GLAS pulse.  Just the opposite was true with respect to the stratified models.  Models 2 and 4 
were utilized only on those GLAS shots judged to be capable of supporting forest biomass.  In 
the case of the stratified models, then, specific cover types could never contain forest biomass 
regardless of what the GLAS pulses intercepting that cover type may have measured.  The net 
result of this processing rule is that the nonstratified models have higher biomass totals for the 
Province because they accumulate estimates across larger areas. 
 
The Ministry of Natural Resources Québec made available 16,814 temporary sample plots 
measured between 1998 and 2004.  The intensity and location of the MNRQ TSP multiyear 
measurement campaign is illustrated in Boudewyn et al. (2007), his Figure 1.   All plots are 
located south of the commercial forest line.  A small portion of these plots, ones more recently 
measured, are used to develop the models discussed above.  All 16,814 are used to validate the 
models. 
 
3.  Results 
 
Table 1 reports per hectare and total biomass estimates for the entire 1.27 million km2 Province 
of Québec south of treeline.  The models are ranked, largest to smallest in terms of total 
Provincial biomass, and, as one would expect due to processing rules, the nonstratified models 
report the largest Provincial biomass totals.   
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The exact same data are input into each model to calculate model coefficients.  Based on 
model differences alone, Provincial biomass and carbon estimates vary approximately 7% even 
under the ideal circumstance that all of the data input into the various models are identical.  No 
such ideal circumstance would exist if one were monitoring regional biomass over time since 
the input data would certainly change between t1 and t2.  The 7% difference amounts to, in 
Québec, a model-induced difference of 0.35 Gt of biomass, or 0.18 Gt of carbon assuming a 
conversion factor of 0.5 t C/1 t biomass (Gower et al. 1997; Houghton et al. 2000).  Given a 
current carbon credit price of ~15 euros per ton carbon, this scenario might result in an 
undeserved carbon penalty or an unearned carbon credit of up to 2.64 billion euros for Québec, 
depending on which model was used at t1 and which at t2.   
 
The results in Table 1 indicate that LiDAR-based biomass and carbon monitoring will require 
model consistency between measurement epochs or, alternatively, a post-processing statistical 
methodology that would equate current estimates with ones previously made using a different 
model or LiDAR sensor. 
 
Table 1. Provincial estimates of total above ground dry biomass on 1.27 million km2 south of tree line in 
Québec. Model estimates are ranked largest to smallest, top to bottom.  All standard errors calculated 
assuming simple random sampling, covariances are included, prediction error is not. 
 

        dry biomass estimates Prov. biomass totals 
 
model 

    mean   
     (t/ha) 

stan. err.   
   (t/ha) 

coef.var. 
    (%) 

    total 
     (Gt) 

stan. err. 
    (Gt) 

nonstratified, 
   square root    (3) 

    41.72     2.82       6.8      5.29      0.36 

nonstratified,    
   linear            
(1) 

    40.63     5.21     12.8      5.15      0.66 

stratified,            
   linear            
(2) 

    39.73     3.32       8.4      5.04      0.42 

stratified,            
   square root    (4) 

    38.94     2.17       5.6      4.94      0.28 

 
The accuracy and precision of the four models can be assessed, at least in the three southern 
vegetation zones, by comparing GLAS-based estimates to biomass estimates on the 16,814 
ground plots, accumulated across Landsat vegetation classes (Table 2).  All four models 
underestimated ground-based southern provincial estimates by amounts ranging from –7.3 to 
–12.4%.  Models (2) and (4), the stratified linear and stratified square route models, were, 
respectively, the most accurate and most precise at the regional level.  The ground reference 
information and the stratified GLAS model results are reported in Table 2, by forest cover type 
within vegetation zone, and for the entire southern portion of the Province.   
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Table 2.  A comparison of ground reference estimates of biomass with the stratified linear and stratified square-root GLAS model results for the three southern 
vegetation zones (VZ), by Landsat  forest cover type.  Northern Temperate  vegetation zone – 109,769 km2, Mixedwood vegetation zone – 98,101 km2, 
Southern Boreal vegetation zone – 374,665 km2.  All standard errors are calculated assuming simple random sampling, covariances are included, prediction 
error is not. 
 
 
   MNRQ Ground Reference    GLAS – stratified, linear GLAS–stratified,square root 
 biomass 

   (t/ha) 
stan. err.  
  (t/ha) 

  no. 
plots   

biomass 
   (t/ha) 

stan. err. 
    (t/ha) 

difference 
    (%) 

biomass 
    (t/ha) 

stan.err. 
   (t/ha) 

difference 
     (%) 

Northern Temperate V.Z.          
     conifer    76.60     5.82    49    65.47     2.02    -14.5    62.76    2.55   -18.1 
     deciduous    77.85     4.95  176    89.70     4.47   +15.2    91.74    4.85   +17.8 
     mixedwood    65.91     2.79  313    82.66     0.85   +25.4    82.74    1.78   +25.5 
          
Mixedwood V.Z.          
     conifer    85.90     1.57  583    72.68     3.02   -15.4    70.55    2.27   -17.9 
     deciduous    75.00     2.98  290    83.27     2.63   +11.0    83.39    2.61   +11.2 
     mixedwood    87.15     1.43 1177    80.82     2.51    - 7.3    79.69    2.17   -  8.6 
          
Southern Boreal V.Z          
     conifer    86.36     0.37 10007    63.85     5.13   -26.1    61.75    4.07   -28.5 
     deciduous    56.71     1.77    

617 
   60.54     1.52   + 6.8    59.22    1.26   + 4.4 

     mixedwood    82.16     0.73   
3602 

   69.13     1.44   -15.9    67.44    1.24   -17.9 

          
Prov. Commercial Forest    81.90     0.50 16814    75.93     3.03   - 7.3    75.04    2.25   - 8.4 
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4.  Discussion 
 
Within the next decade, the forestry LiDAR community can expect to have access to extensive 
data sets that will enable us to conduct regional and national assessments from space.  
Researchers have already demonstrated that, even with GLAS optimized for ice rather than 
vegetation measurements, analysts can develop comprehensive, extensive, timely estimates of 
forest biomass and carbon on areas encompassing hundreds of thousands to well over a million 
square kilometers.  The use of space-based laser altimetry, specifically GLAS waveform data, 
currently presents numerous challenges, e.g., large footprints that convolve forest canopy 
structure with topography in the presence of slope, an apparent insensitivity to small, sparse 
woodland heights, significant laser power changes over time, data collection epochs - late fall, 
early spring- tailored to ice studies but non-optimal from a vegetation measurement/monitoring 
standpoint, changing footprint shapes and orientations, and noncontiguous profiles.  But space 
LiDARs currently under design will mitigate many of these problems, though the slope issue is 
still outstanding as are questions concerning height sensitivity in low biomass situations near 
treeline. 
 
Monitoring changes to aboveground biomass and carbon stocks over time using air-borne or 
space LiDARs raises it's own set of issues, issues that will come to the forefront and call into 
question the validity of those laser-based estimates if we do not address them ahead of time.  If 
LiDAR surveys at time1 and time 2 are to be compared to assess, for instance, compliance with 
carbon agreements or to provide the quantitative estimates needed to purchase or sell carbon 
credits, then those t1 and t2 surveys must be consistent.  Consistency in this context involves 
the use of: 
  · the same ground-based allometry at t1 and t2 (if new plots are measured), 
  · the same statistical framework, e.g, design, sample size, number of phases, 
  · the same predictive models, 

· the same sensor, or a different sensor with the same flight configuration with respect to laser 
power, repetition rate, footprint size, pulse width. 

 
The good news is that many of these factors are in our control – the allometry, the statistical 
framework, model selection.  And if an analyst wants to update the allometry or 
improve/change her/his predictive models, she/he can do so and reprocess the old t1 data with 
the improved versions to insure comparability.  What is most likely not in our control is the 
sensor, i.e., the operational characteristics of the airborne or space LiDAR.  Airborne LiDAR 
technology is changing so rapidly that data providers commonly swap out their one or two year 
old scanners for newer, faster, improved versions.  And the satellite LiDARs discussed in this 
paper typically have design lives of ~5 years.  We can be fairly certain that most regional 
surveys done every five to ten years will be done with different sensors. 
 
The results presented in this paper provide one example of the effects of allowing one item on 
this consistency checklist to stray.  Provincial estimates changed ~7% due only to changes in 
model form and due to changes to the rules used to process the GLAS data.  The forestry 
LiDAR community should begin to address questions concerning consistency and calibration in 
order to develop procedural or statistical techniques to ensure comparability of LiDAR-based 
surveys done years apart.   These results provide an impetus to develop statistical procedures 
that can effectively draw equivalence between multitemporal, regional LiDAR-based biomass or 
carbon estimates that might not be directly comparable due, perhaps, to the use of different 
predictive models, different allometry, or changing LiDAR sensors in different measurement 
periods. 
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Abstract 
 
The paper highlights a new 3D segmentation technique that detects single trees with an 
improved accuracy. The method uses the normalized cut segmentation and is combined with a 
special stem detection method. A subsequent classification identifies tree species using salient 
features that utilize the additional information the waveform decomposition extracts from the 
reflected laser signal. Experiments were conducted in the Bavarian Forest National Park with 
conventional first/last pulse data and full waveform LIDAR data. The first/last pulse data result 
from a flight with the Falcon II system from TopoSys in leaf-on situation at a point density of 10 
points/m2. Full waveform data were captured with the Riegl LMS Q-560 system at a point 
density of 25 points/m2 (leaf-off and leaf-on) and at a point density of 10 points/m2 (leaf-on). 
The study results prove that the new 3D segmentation approach is capable of detecting small 
trees in the lower forest layer. This was practically impossible so far if tree segmentation 
techniques based on the canopy height model (CHM) were applied to LIDAR data. Compared 
to the standard watershed segmentation the combination of the stem detection method and the 
normalized cut segmentation performs better by 12%. In the lower forest layers the 
improvement is even more than 16%. Moreover, the experiments show clearly that the usage of 
full waveform data is superior to first/last pulse data. The unsupervised classification of 
deciduous and coniferous trees is in the best case 93%. If a supervised classification is applied 
the accuracy is slightly increased with 95%. 
 
Keywords: LIDAR, Analysis, Segmentation, Forestry, Vegetation 
 
1. Introduction  
 
Single tree detection has been a key issue in forest inventory research. So far, nearly all methods 
have tackled the problem to detect single trees from the CHM, which is a result of a surface 
interpolation. Approaches presented – for instances – by Hyyppä et al. (2001), Solberg et al. 
(2006) or Brandtberg (2007) stand for such kind of methods. Typically, the detection rate of 
single trees is limited due to unavoidable smoothing effects in the interpolated surface. The 
main drawback is that trees and young regeneration in the intermediate and lower forest layers 
are invisible from the CHM surface and hence cannot be detected at all. Tree species 
classification using solely LIDAR data and features derived from the coordinates of the laser 
returns has been investigated – for instance – by Holmgren et al. (2004) who showed that the 
coniferous tree species Norway spruce and Scots pine can be classified with an overall accuracy 
of 95% using highly dense LIDAR data. Heurich (2006) demonstrates that classification of 
Norway spruce and European beech is possible with an overall accuracy of 97% in leaf-off 
situation. However, the tree segments were derived from LIDAR data acquired in leaf-on 
situation. The study refers to LIDAR data with a mean point density of 10 points/m2 and clearly 
shows that desirable forest features like young regeneration could not be detected.  
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Recent advances in LIDAR technology have generated new full waveform scanners that provide 
a higher spatial point density and additional information about the reflecting characteristics of 
trees. Important issues like the calibration and the decomposition of full waveform data with a 
series of Gaussians, as well as the detection and classification of vegetation have been 
investigated by Wagner et al. (2006), Jutzi and Stilla (2006), Kirchhof et al. (2008) and 
Reitberger et al. (2008a). Recently, Reitberger et al. (2008c) successfully showed that the new 
full waveform technology can significantly improve the detection rate of single trees using a 3D 
segmentation technique based on the normalized cut segmentation. 
 
In this paper we present results of a tree species classification with full waveform data based on 
this new encouraging 3D tree segmentation technique. The objective of this paper is (i) to 
shortly highlight the new segmentation method that extracts single trees using full waveform 
LIDAR data, (ii) to demonstrate the improved detection rate of single trees, (iii) to prove the 
benefit of full waveform data both in leaf-on and leaf-off situation at different point densities, 
and (iv) to present classification results of a) deciduous and coniferous trees and b) spruces and 
fir trees. 
 
2. Method 
 
2.1 Normalized cut segmentation 
 
The motivation of the normalized cut segmentation is to overcome the disadvantages of a CHM 
based watershed segmentation (e.g. Reitberger et al., 2008a), which calculates the tree positions 

),...,1)(,( segi
CHM

stemi
CHM
stem NiYX =  from the local maxima of the CHM. Thus, neighbouring trees are 

often not separated and form a tree group instead of single trees. Moreover, smaller trees in the 
intermediate and lower height level cannot be recognized since they are invisible in the CHM. A 
special stem detection method (Reitberger et al., 2007) separates neighbouring trees and 
provides the stem positions ),( i

StDet
stemi

StDet
stem YX ),...,1( StDetNi =  if there are enough stem reflections, 

and if the stem area can be reliably separated from the crown points by the crown base height. It 
fails of course when young regeneration and small trees are located below tall trees. A further 
drawback is that the crown points belonging to the original segment are not separated with 
respect to the detected stems. In order to tackle these problems we have set up a true 3D 
segmentation of single trees using the normalized cut method known from image segmentation 
(Shi and Malik, 2000), which uses the positions ),,( iii zyx  of the reflections and optionally the 
pulse width Wi and the intensity Ii of the waveform decomposition (Reitberger et al., 2008b). 
 
This segmentation divides a graph G formed by voxels given in a region of interest (ROI) into 
disjoint segments A and B (Figure 1a) by maximizing the similarity of the segment members 
and minimizing the similarity between the segments A and B. The corresponding cost function is 
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with ∑=

BjAi
ijwBACut

εε ,
),( as the total sum of weights between the segments A and B and 

∑=
VjAi

ijwVAAssoc
εε ,

),( representing the sum of the weights of all edges ending in the segment A. The 

weights wij between two voxels are basically a function of the LIDAR point distribution and 
features calculated from Wi and Ii. They define the similarity between the voxels. The 
minimization of NCut(A,B) is solved by a corresponding generalized eigenvalue problem 
(Reitberger et al., 2008b). The approach can use auxiliary data like, for instance, the information 
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about the local maxima of a CHM ),...,1)(,( segi
CHM

stemi
CHM
stem NiYX =  in order to weight the similarity 

between the voxels below the CHM maxima. Also, the results of the stem detection 
),...,1)(,( StDeti

StDet
stemi

StDet
stem NiYX =  can be introduced to provide special weights for the voxels similarity. 

The figure 1b shows complex situations where the normalized cut segmentation works excellent 
and where the watershed segmentation and the stem detection fail.  
 

 

Figure 1a: Subdivision of ROI into a voxel 
structure and division of voxels into two tree 

segments A and B 

Figure 1b: Examples of normalized cut segmentation with 
the reference trees as black vertical lines 

 
2.2 Classification 
 
We consider different types of salient features },,,,{ , nWIigt SSSSSS =  for the classification that 
are calculated using the Nt LIDAR points ),,,,( iiiii

T
i IWzyx=X ),...,1( tNi =  in the segments. 

They are subdivided into five groups reflecting the outer tree geometry by gS , the internal 
geometrical tree structure by iS , the intensity-related features by IS , the pulse width 
characteristics by WS , and the number of reflections per waveform by nS . Table 1 gives a short 
overview of the saliency definitions (see details Reitberger et al., 2008a). 
 

Table 1: Definition of saliencies (“Sal.”) used in classification 
Sal. Definition Sal. Definition 

1
gS  Parameters {a1,a2} of a parabolic surface 2

IS  Mean intensity in entire tree 
2
gS  Mean distances of layer points to tree trunk WS  Mean pulse width of single and first 

reflections in the entire tree segment 
h
iS  Percentiles of the LIDAR points 1

nS  Average number of reflections between the 
first and last reflection in the waveform 

d
iS  Percentage of LIDAR points in a tree 

height layer 
2
nS  Relation of the number of single reflections 

to the number of multiple reflections  
1
IS  Mean intensities of height layers   

 
Tree species are classified both by an unsupervised and a supervised classification. Let tS  be 
the salient features of a tree t to be classified and let },{ kkkC Σ= μ  be the density probability 
model (mean, covariance matrix) of the kth tree class. The clusters of different tree species are 
found by the Expectation-Maximization algorithm that approximates the distribution of a 

saliency subset S ε St by fitting the parameters of the density model ∑
=

Σ=
s

k
kkk SNSp

1
),|()( μπ  to 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 219

the data by a maximum-likelihood estimation with kπ  as the mixing coefficients, ),|( kkSN Σμ  
as the multivariate Gaussian distribution and s as the number of Gaussians (Heijden et al., 2004). 
The clusters of tree species statistically described by kC  are the results of the unsupervised 
classification. The supervised classification is a maximum likelihood classification by 
estimating the density probability models },{ kkkC Σ= μ  from a training subset Strain with 

∑ =
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 where Nk is the number of samples of the 

kth class. The probability that a tree t with the saliencies St is a member of the kth tree class is 
given by 
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with d as the number of salient features. 
 
3. Experiments 
 
3.1 Material 
 
Experiments were conducted in the Bavarian Forest National Park (49o 3’ 19” N, 13o 12’ 9” E) 
which is located in South-Eastern Germany along the border to the Czech Republic (Figure 2). 
There are four major test sites of size between 591 ha and 954 ha containing sub alpine spruce 
forest, mixed mountain forest and alluvial spruce forest as the three major forest types.  
 

 

 

 

Figure 2: Location of the Bavarian Forest National Park in the map of Germany (left) and map of the park 
with its forest types and test sites (right). 

 
18 sample plots with an area size between 1000 m2 and 3600 m2 were selected in the test sites E 
and C (Figure 3). Reference data for all trees with DBH larger than 10 cm have been collected for 
688 Norway spruces (Picea abies), 812 European beeches (Fagus sylvatica), 70 fir trees (Abies 
alba), 71 Sycamore maples (Acer pseudoplatanus), 21 Norway maples (Acer platanoides) and 2 
lime trees (Tilia Europaea). Tree parameters like the DBH, total tree height, stem position and tree 
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species were measured and determined by GPS, tacheometry and the ’Vertex III’ system. 
Furthermore, the trees are subdivided into 3 layers with respect to the top height htop of the plot, 
where htop is defined as the average height of the 100 highest trees per ha (Heurich, 2006). The lower 
layer contains all trees below 50% of htop, the intermediate layer refers to all trees between 50% and 
80% of htop, and finally, the upper layer contains the rest of the trees. Table 2 summarizes the 
characteristics of the individual sample plots. 
 

Figure 3: Orthophotos of the test sites E and C and the location of the sample plots 

 
Table 2. Characteristics of sample plots 

Plot name 21 22 55 56 57 58 59 60 64 65 74 81 91 92 93 94 95 96
Test site C C E E E E C C C C E E E E E E E E 
Age [a] 160 160 240 170 100 85 40 110 100 100 85 70 110 110 110 110 110 110
Size [ha] 0.20 0.20 0.15 0.23 0.10 0.10 0.10 0.10 0.12 0.12 0.30 0.30 0.36 0.25 0.28 0.29 0.25 0.30
Height [m] 860 885 610 640 765 710 810 890 835 875 720 690 764 767 766 768 750 781
N/ha 500 540 830 340 450 440 2150 380 430 810 700 610 260 170 240 250 240 200
N lower layer 37 19 77 31 0 10 76 8 13 53 11 29 31 13 7 15 6 30
N interm. layer 14 60 21 19 4 4 85 22 4 26 33 59 11 3 2 4 0 3 
N upper layer 48 29 20 27 41 30 54 27 35 35 165 96 54 27 59 54 53 26
Deciduous [%] 66 79 5 10 0 14 1 100 87 96 29 100 75 100 66 97 10 86

 
LIDAR data of several ALS campaigns are available for the test sites. First/last pulse data have 
been recorded by TopoSys with the Falcon II system. Full waveform data have been collected 
by Milan Flug GmbH with the Riegl LMS-Q560 system. Table 3 contains details about the point 
density, leaf-on and leaf-off conditions during the flights and the footprint size. The term point 
density is referring to the nominal value influenced by the PRF, flying height, flying speed and 
strip overlap. These unique data sets allow the comparison of conventional and full waveform 
systems, which have been flown in the same area. However, the data set IV is only available for 
the 12 reference plots in test site E. This has to be considered when comparing results of other 
data sets with this data set. Naturally, the reference data have been updated for the individual 
flying dates. Reference trees are plotted in the figures 1a and 1b as black vertical lines. 
 

Table 3: Different ALS campaigns 
Time of flight Sept. ‘02 May ‘06 May ‘07 May ‘07 
Data set I II III IV 
Foliage Leaf-on Leaf-off Leaf-on Leaf-on 
Scanner TopoSys Falcon II Riegl LMS-Q560 Riegl LMS-Q560 Riegl LMS-Q560 
Pts/m2 10 25 25 10 
HAAT [m] 850 400 400 500 
Footprint [cm] 85 20 20 25 
Ref. plots all all all Area E 
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3.2 Segmentation results 
 
The watershed segmentation (‘W’) and the new 3D segmentation technique (‘Ncut’), using both 
results from the watershed segmentation and from the stem detection, were applied to all the 
plots and data sets in a batch procedure without any manual interaction (Table 4). The accuracy 
and reliability of the presented methods are evaluated in the following way: The tree positions from 
the segmentation are compared with reference trees if (i) the distance to the reference tree is smaller 
than 60% of the mean tree distance of the plot and (ii) the height difference between htree and the 
height of the reference tree is smaller than 15% of htop. If a reference tree is assigned to more than 
one tree position, the tree position with the minimum distance to the reference tree is selected. 
Reference trees that are linked to one tree position are so-called ‘detected trees’ and reference trees 
without any link to a tree position are treated as ‘non-detected’ trees. Finally, a tree position without 
a link to a reference tree results as a ‘false positive’ tree. 
 

Table 4: Results of segmentation methods with data sets I, II, III and IV 
 

Detected trees per height layer [%] Data set Method
low. intermed. up. total 

False  
pos. [%] 

W 2 12 80 52 5 I (only area E) 
Leaf-on NCut 15 27 77 55 13 

W 5 21 77 48 4 II  
Leaf-off NCut 21 38 87 60 9 

W 5 20 79 48 4 III 
Leaf-on NCut 17 32 86 58 10 

W 5 20 82 55 5 III (only area E) 
Leaf-on NCut 24 35 88 66 11 

W 6 21 84 57 6 IV (only area E) 
Leaf-on NCut 26 33 87 65 11 

 
 
In the first instance, we want to highlight with data set II how the 3D normalized cut 
segmentation compares to the 2D watershed segmentation. The 2D segmentation leads to an 
overall detection rate of 48%, where the detection rate is rather poor in the lower forest layer. 
The 3D segmentation increases the detection rate considerably in the lower and intermediate 
layer with about 16%. This is remarkable and shows that the new segmentation technique can 
successfully detect smaller trees below the CHM. The improvement in the upper layer is 10% 
and the overall detection rate increases by 12%. The high spatial point density of the full 
waveform data, which practically contain all relevant reflections of the laser beam, turns out as 
the key factor to segment in 3D not only the dominant trees but also the dominated smaller trees 
in the lower and intermediate layers. However, this increased detection rate also deteriorates the 
reliability of the segmentation process by the factor 2 in terms of false positives. Figure 4 
illustrates the improvement of the detection rate graphically. 
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Figure 4: Comparison of single tree detection with data set II 

 
The results given for leaf-off condition (data set II) can also be compared with full waveform 
data captured in the same area and with the same point density in leaf-on condition (data set III).  
As expected, the detection rate deteriorates in the case of the normalized cut segmentation in the 
lower and intermediate layer by roughly 5% due to the reduced penetration rate of the laser 
beam causing in turn a worse spatial distribution of the reflections. The number of false 
positives does not change significantly for the normalized cut segmentation. 
 
If we restrict data set III to area E and compare it with data set IV the impact of the nominal 
point density on the segmentation methods can be analyzed. The comparison of both data sets 
shows that the detection rate and false positives are practically the same for both point densities. 
Obviously, although the number of penetrating laser beams is significantly reduced, the most 
relevant tree structures are still detected by reflections.  
 
Finally, we compare the segmentation methods with respect to first/last pulse data (data set I) 
and full waveform data (data set IV) that have the same nominal point density. The total 
detection rate of the 2D watershed based segmentation is by 5% better for the full waveform 
data. The number of false positives is basically the same. The main reason for this is that the full 
waveform data represent the tree shape more precisely since the waveform decomposition even 
detects weak reflections and reflections resulting from adjacent targets. If we focus on the 
normalized cut segmentation, the benefit of full waveform becomes clearer with an increase of 
10%. Most remarkably, the full waveform technique and the normalized cut segmentation 
outperform the conventional first/last pulse technique and the watershed segmentation by more 
than 20% in the lower and intermediate layer. 
 
3.3 Classification results 
 
First, we apply an unsupervised and a supervised classification between deciduous and 
coniferous trees to the 3D segments (Table 5). One fifth of the trees were randomly selected 
from the entire data set as a training data set for the supervised classification by keeping the 
proportion between the tree species. Also, both classification methods were applied 20 times in 
order to minimize the impact of the selection procedure and the initialization of the 
EM-algorithm of the unsupervised classification on the results. Thus, the numbers in table 5 
refer to averaged classification values, whereby the best result of each data set and classification 
method is highlighted. 
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Table 5: Results of unsupervised („un.“) and supervised classification („su.“) 
Overall accuracy (%) for data sets I - IV and for the 2D and 3D segments 
I (only area E) II III III (only area E) IV (only area E) 

Saliency 

un. su. un. su. un. su. un. su. un. su. 
1
gS  80 80 74 75 81 82 83 84 83 83 
2
gS  80 78 75 78 80 82 83 82 81 81 
h
iS  62 66 73 72 64 67 66 66 65 70 
d
iS  66 67 68 76 68 74 69 73 65 70 
1
IS    74 74 90 91 93 93 91 91 
2
IS    81 81 93 94 97 96 95 97 
WS    75 79 52 51 54 56 60 64 
1
nS    80 84 56 54 57 65 66 64 
2
nS    89 93 62 63 61 65 57 57 

22
Ig SS +    81 86 90 94 93 97 91 97 

222
nWIg SSSS +++    91 94 81 95 84 97 82 97 

 
If we compare both classification methods with respect to the used saliencies and best results we 
recognize that in general the supervised classification is slightly better than the unsupervised 
classification. If we focus on the individual saliencies it is evident that the intensity related 
saliency 2

IS  turns out as the most important feature in the leaf-on case (data sets III and IV). 
Data set II proves that the saliency 2

nS  is the best single feature in the leaf-off case. Apparently, 
coniferous trees cause more single reflections than deciduous trees in leaf-off situation. The 
saliencies h

iS  and d
iS  describing the penetration of the laser beams in the segmented trees 

have very little impact on the classification results. The saliency WS  representing the pulse 
width of the reflections works in general better in the leaf-off case. Finally, the saliencies gS  

representing the tree geometry have an almost constant impact on the classification in leaf-on 
and leaf-off situations. Even for data set I, which refers to first/last pulse data at a point density 
of 10 pts/m2, the overall classification accuracy is almost the same as with full waveform data. 
Thus, this saliency seems to be significant even for the low point density. 
 
The comparison between data set II and data set III indicates that both classification methods 
are almost the same for both foliage conditions. However, differing saliencies have been used. 
Furthermore, the results of data set III (only area E) and data set IV (only area E) show also 
clearly that the point density has practically no influence on the classification results. Thus, the 
lower point density of 10 pts/m2 does not appear as disadvantageous. This is consistent with our 
experience that the segmentation results are also practically the same for both point densities. 
Finally, the comparison of data set I (only area E) and data set IV (only area E), which both refer 
to leaf-on situation and a nominal point density of 10 pts/m2, indicates that the classification 
with first/last pulse data is significantly inferior by about 15% since only the coordinates of the 
reflections could be used and hence, the saliencies Sg and Si could only be calculated for the 
classification.  
 
The new 3D segmentation provides an interesting insight into the classification accuracy of 
single trees in different height layers. Table 6 shows how the supervised classification performs 
in leaf-off (date set II) and leaf-on (data set III) situations. As expected, there is almost no 
dependency on the height layer in the leaf-off case. Contrary, the classification accuracy 
deteriorates slightly for the lower and intermediate layers in the leaf-on case. Obviously, the 
differing classification results are influenced by the lower penetration rate in leaf-on situation.  
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Table 6: Classification accuracy in dependence on height layers 

Correctly classified trees per height layer [%] Data set 
lower intermediate upper total 

II 95 93 94 94 
III 86 90 97 95 

 
Lastly, we want to focus on the question how the tree species spruce and fir can be classified. 
Table 7 shows the confusion matrix for a supervised classification of 242 spruces and 42 firs, 
which are located in the sub area E.  
 

Table 7: Confusion matrix of the best classification result for spruces and fir trees 
Classified tree species  Spruce Fir No. classified segments User’s accuracy 
Spruce 230 8 238 97% 
Fir 12 34 46 74% 
No. reference segments 242 42 284  
Producer’s accuracy 95% 81%   
Overall accuracy: 93%     Kappa: 0.72 

 
We used a combination of the saliencies 2

gS , 2
IS , WS  and 2

nS . The firs, which are 
proportionally lower represented than spruces, could be classified with 81% accuracy. However, 
we noticed a standard deviation of 7.7% when we applied the classification procedure 20 times 
with randomly selected training data sets. We also tried to classify beeches and maples, but 
failed in any case. Thus, these tree species could not be identified with the data sets and the 
presented classification procedure. 
 
4. Discussion 
 
The watershed segmentation generates results comparable with results of Heurich (2006), who 
obtained a detection rate of 45% in almost the same reference areas using also the data set I. 
Moreover, the experiments prove that the usage of full waveform data is clearly superior to 
first/last pulse data. The comparison of the different foliage conditions demonstrates a higher 
detection rate for the leaf-off data set mainly in the lower and intermediate layer because of the 
higher penetration in unfoliated deciduous trees. Thus, the leaf-off situation seems to be the 
more appropriate flying time to segment trees in 3D, at least for mixed mountain forests that are 
scanned with a high point density. The experiment with the different point densities shows that a 
nominal point density higher than 10 pts/m2 does not improve the detection rate considerably. 
However it remains to be seen whether a higher density is advantageous to estimate other 
parameters like for instance the timber volume. Summarizing, the significant improvement of 
the detection rate – apparent in the lower and intermediate layer – is influenced both by the full 
waveform data and the new normalized cut segmentation. The accuracy gain in the lower and 
intermediate layer is more than 20%. 
 
The classification experiments demonstrate clearly that the overall accuracy is significantly 
increased by using full waveform data. In general, the accuracy is excellent even for the 
unsupervised classification. In case of the supervised classification we attained an overall 
accuracy of 95% for all reference data. Moreover, the results are practically independent on the 
point density and the foliage condition. Contrary, we have found a slight dependency of the 
overall accuracy on the height layer in leaf-on situation. However, the accuracy loss is 
compensated by a superior accuracy in the upper height layer in the leaf-on case. Spruces and 
firs could be successfully classified as different tree species. Since the number of fir trees was 
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low further experiments are needed. All in all, the increased detection rate of single trees leads 
to an increased number of correctly classified trees. For instance, a detection rate of 60% and a 
classification accuracy of 94% imply 56% correctly detected and classified trees. Finally, our 
classification results of 80% with first/last pulse data in leaf-on case compare excellent with the 
experiments of Heurich (2006). However, our results with the full waveform data in leaf-on 
situation are in any classification case better than the leaf-on results with first/last pulse data of 
this study. 
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Abstract 
 
Small-footprint airborne laser scanning (ALS) is increasingly used in vegetation and forest 
related applications. This paper explores the potential of full-waveform (FWF) ALS information 
(i.e. echo width and backscatter cross section) for tree species classification and forest structure 
parameterization. In order to obtain defined physical quantities, radiometric calibration of the 
recorded FWF data is performed by using a natural radiometric reference target (asphalt road). 
Based on a segmentation of the canopy surface, descriptive statistical values of laser echo 
attributes are derived and attached to the segment polygons, which represent large crown parts 
or even single trees. We found that average segment-based values of echo width and cross 
section are well suited to separate larch from deciduous trees (i.e. oak and beech). Additionally, 
the vertical distribution of the FWF information within a segment is specific for each tree 
species. On forest stand level a visual agreement of the segment-based FWF values with forest 
inventory reference data exists. We expect that with further investigation on the laser beam’s 
interaction with vegetation calibrated FWF information can assist tree species classification and 
forest inventory. 
 
Keywords: Airborne Laser Scanning, Waveform, Calibration, Segmentation, Vegetation 
 
1. Introduction 
 
Small-footprint Airborne Laser Scanning (ALS) has evolved to a state-of-the-art technique for 
topographic data retrieval with major utilization in Digital Terrain Model (DTM) generation, 
forestry and urban applications (e.g. building detection and modeling). The fields of applications 
steadily increase (e.g. glaciology, hydrology) but also developments in sensor design allow for 
improved data analysis in already established fields of applications, as for example 
full-waveform (FWF) recording systems have shown in the last few years. In forestry a large 
range of applications using ALS data have been presented in the last years (see proceedings of 
Natscan in Freiburg 2004, 3D Remote Sensing in Forestry in Vienna 2006, and previous 
Silvilaser conferences). 
  
Two major methodological approaches for the extraction of forest information are predominant. 
The (1) distribution-based methods (e.g. Næsset 2004; Maltamo et al. 2004; Hollaus et al. 2007) 
use the canopy height or vertical distribution of laser echoes for estimating area-based forest 
inventory parameters (e.g. Lorey’s mean height, stem number, basal area, and volume) by 
statistical means, which require an extensive set of field reference data. The (2) 
single-tree-based methods (e.g. Hyyppä et al. 2001; Morsdorf et al. 2004) rely on the detection 
of individual trees and their geometrical reconstruction (e.g. tree height, crown shape), for 
which ALS data with high point densities are required. In contrast to these summarized methods, 
which use mainly the geometric information of discrete ALS data, the radiometric information 
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content of ALS data seems to be a promising data source for tree species classification. For 
example Moffiet et al. (2005) analyzed the so-called intensity of discrete echo digitization 
systems for classification. Also Brandtberg (2007) investigated the vertical distribution of 
intensities for different tree species under leaf-off and leaf-on conditions. Furthermore, 
Reitberger et al. (2008) and Litkey et al. (2007) analyzed full-waveform (FWF) ALS data for 
tree species identification. 
 
However, if radiometric information of ALS data is used, an appropriate calibration of the data 
is required. For example Höfle and Pfeifer (2007) described data and model-driven approaches 
to correct the intensity values from discrete ALS systems. For the radiometric calibration of 
FWF ALS data Wagner et al. (2006) presents the theoretical basis for modeling the waveform as 
series of Gaussian pulses and proposed a calibration equation to estimate the backscatter cross 
section of each target. Briese et al. (2008) point out that natural reference targets (e.g. asphalt, 
gravel), whose reflectance is determined in situ by a reflectometer, can be used for radiometric 
calibration. 
  
In this paper a new approach is introduced for area-based parameterization of forest structure 
with major focus on the additional information provided by FWF ALS systems (e.g. echo width, 
amplitude, and backscatter cross section). Through exploratory data analysis the distributions of 
the FWF point cloud attributes will be assessed, which is fundamental for understanding the 
backscattering characteristics of individual tree species. The proposed investigations are done 
for deciduous tree dominated forest stands in the West of Vienna. 
 
2. Study area and datasets 
 
The study area is located in the western part of Vienna, in the so-called Wienerwald (Vienna 
Woods), and covers about 80 hectares of forest. The used full-waveform ALS data are provided 
by the city of Vienna (MA41-Stadtvermessung) and were retrieved in the framework of the 
city-wide ALS project. The ALS data were acquired using a RIEGL LMS-Q560 full-waveform 
scanner during the winter and spring season 2006/2007 under leaf-off conditions. The 
LMS-Q560 uses near infrared (1500 nm) laser pulses with a pulse width of 4 ns while the scan 
angle range is ±22.5°. Full-waveform decomposition has been performed by using the Riegl 
software Rianalyze2. With full-waveform recording the number echoes that can be extracted is 
not limited beforehand as it is with discrete echo recording systems (e.g. mostly two echoes). 
Therefore, the number of echoes per shot is generally higher in full-waveform data, as for 
example the relatively high percentage of intermediate echoes shows (i.e. extracted echoes 
between first and last reflection). The average echo density is 16 laser echoes per m², with about 
31.5% first echoes, 11% intermediate echoes (e.g. 2nd, 3rd echo), 31.5% last echoes and 26% 
single echoes (i.e. shots with only one reflection). 
 
For the investigated forests, stand-level forest inventory (FI) data were provided by the ÖBf AG, 
which is the largest forest owner in Austria. The dominating tree species are red beech (Fagus 
sylvatica) with ~51%, oaks (Quercus robur, Quercus petraea) with ~23% and hornbeam 
(Carpinus betulus) with ~16%. The remaining areas are covered with ~6% larch (Larix decidua), 
2% clearings and other deciduous and coniferous tree species. For the current analyses tree 
species (i.e. beech, oak, and larch) were classified for several single trees during a field trip. 
 
3. Methods 
 
The high point density (>16 echoes/m2) of the used full-waveform ALS dataset together with the 

                                                  
2 http://www.riegl.com/airborne_scannerss/lms_s560/rianalyze.htm 
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large areas that should be covered in operational forest inventory management require the 
application of methods, which are able to combine both, fast raster processing as well as 
detailed (“interpolation-free”) point cloud based information retrieval. Furthermore, the high 
point density allows generating high resolution raster datasets (e.g. 0.5m cell size), which 
guarantee sufficient spatial accuracy for area-wide forest analysis. Hence, an object-based raster 
analysis method combined with FWF point cloud information retrieval is introduced.  
 
The workflow of the proposed analysis comprises the following steps: 

1. Radiometric calibration and retrieval of FWF echo parameters using a defined 
calibration area; 

2. Object-based raster analysis of the forest canopy using an edge-based segmentation 
procedure; 

3. Building of an extensive segment feature (i.e. attribute) database; 
4. Exploratory segment feature analysis using reference data on single tree and forest stand 

level.  
 
3.1 Radiometric calibration 
 
The physical observables after processing the full-waveform for each laser shot are the echo 
width and the amplitude for each echo. These observables are not only affected by the target 
properties (e.g. reflectance) but also by sensor (e.g. emitted pulse energy) and flight parameters 
(e.g. flying height). Therefore, it is advantageous for segmentation and classification purposes to 
switch to physical quantities, which take these dependencies into account, such as the 
backscatter cross section σ given in m2. If no calibration is performed, the investigation of the 
FWF information (e.g. echo amplitude) suffers from the drawback that the found quantities are 
not applicable for different sensors, flight parameters, flying dates, study areas, and flight strips 
(Wagner et al. 2008). The basic relation for the received power Pr, which is proportional to the 
product of the amplitude and echo width, is given in the radar equation (Eq. 1): 
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where Pt represents the transmitted power, Dr the receiving aperture diameter, R the path length, 
β the beam divergence, ηsys a system and ηatm an atmospheric transmission factor and σ the 
backscatter cross section, which combines all target parameters like illuminated area A, 
reflectivity ρ and directionality of the scattering of the surface Ω (Wagner et al. 2006; Briese et 
al. 2008). Some parameters can be assumed to be constant during one flight mission and 
therefore be combined in the calibration constant Ccal. Estimating the cross section of a 
reference surface allows determining Ccal (Eq. 2) by using path length, amplitude and echo 
width of echoes, which hit the reference surface. Then the backscatter cross section can be 
calculated for every single echo as following: 
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The calibration was carried out based on an asphalt road as reference target. The reflectance of 
the target was estimated by in situ measurements using a reflectometer (cf. Briese et al. 2008). 
Assuming Lambertian scattering of the reference target allows deriving the cross section of the 
reference target. Due to the lack of simultaneous meteorological data, the atmospheric 
attenuation effects are included in the calibration constant (Eq. 2). For echoes within the target, 
Ccal can be computed and an average value of the resulting calibration constants can be used for 
the calculation of σ for the whole data set. 
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3.2 Segmentation of the forest canopy 
 
In order to enable an area-based investigation and parameterization of the forest structure larger 
spatial units have to be built. Firstly, this step should separate forested/vegetation areas from 
terrain as well as from other raised objects (e.g. buildings). Secondly, the object boundaries 
indicated in the normalized Digital Surface Model (nDSM) and lying within areas marked as 
vegetation should be preserved because they may represent the border between different tree 
species and forest types respectively, showing different signatures in the FWF data. Especially 
in dense deciduous forests with a mixture of small and large trees (in the sense of height and 
diameter) the detection of single trees can hardly succeed. Therefore, our approach aims at 
delineating convex objects elevated in the nDSM (i.e. canopy layer) using an over-segmentation, 
so that one tree can be represented by one, or more segments if a tree forms a crown with 
multiple tops. An edge-based segmentation procedure was implemented in the open source 
software GRASS GIS. The basic ideas behind the segmentation are that 1) convex objects of the 
canopy (i.e. nDSM) are separated by concave areas (i.e. valleys), 2) the normalized height of the 
vegetation exceeds a certain threshold (e.g. >2.0m above DTM), and 3) within vegetation 
multiple reflections occur. Since the segmentation is performed on the nDSM it is a 2.5D 
approach, which cannot delineate occluded objects in lower vegetation layers. Two raster layers 
are used as input for the segmentation (Figure 1ab) – the nDSM and an echo ratio raster (Eq. 3):  
 

echo ratio [%] per cell = (nfirst + nintermediate) / (nlast + nsingle) · 100.0 (3) 
 
with echo ratio set to zero if no echo is within the cell and set to 100.0 if (nlast+nsingle) is zero. 
 
The edge detector is based on calculating the curvatures of the nDSM (minimum curvature in 
direction perpendicular to the direction of maximum curvature), threshold it (i.e. curvature<0.0) 
and further skeletonize the potential edge areas to finally get the edge map. The chosen window 
size and the threshold on curvature determine the degree of canopy structure detail that is 
regarded, i.e. controls over- and under-segmentation. These derived edges are the potentially 
most exterior boundaries of a segment. Then the edge map is intersected with the areas fulfilling 
the height and echo ratio threshold. As a last step the final segments are derived by connected 
components labeling and vectorization of the region outline (Figure 1c).  
 

 
 

Figure 1: a) nDSM color-coded by normalized height, b) echo ratio raster, c) resulting segmentation of 
the canopy layer using the nDSM and the echo ratio raster (cf. Eq. 3). 

 
3.3 Feature calculation 
 
In order to extract the highest degree of information, feature extraction goes back to the 3D 
point cloud. For each segment the corresponding laser echoes are selected using a 
point-in-polygon test. Descriptive statistical values (min., max., mean, and std. deviation) are 
derived individually per segment for normalized point height, echo width, and backscatter cross 
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section. As the point cloud selection is performed in 2D the points of the highest vegetation 
layer have to be separated from the lower layers and the understory otherwise the segment 
features may not represent the tree species forming the canopy but a mixture of all trees in the 
vertical vegetation column of a segment. For this task a global minimum height threshold (e.g. > 
3.0m) is defined, which should remove the understory. A dynamic minimum height threshold on 
normalized echo height – defined as percentage of the nDSM height (e.g. 50%) at the echo 
location – should further separate the top layer.  
 
4. Results and discussion 
 
4.1 Calibrated full-waveform information 
 
Figure 2a shows an image of the study area with averaged echo cross sections where the 
brightest areas represent terrain (e.g. forest road and open grass) and dark areas mainly high 
vegetation. The grayscale variations within the forest coincide with different forest 
characteristics (e.g. tree species, age, canopy height and closure). Figure 2b shows averaged 
cross sections for echoes in the upper layer of the vegetation where major tree branches and 
stems become evident by their higher average cross section (light green color). 
 

 
 

Figure 2: a) Average backscatter cross section per 0.5 x 0.5m cell using all laser echoes (red square shows 
extent of right subfigure) and b) average cross sections of echoes in the uppermost vegetation layer. 

 
Extracting the target reflectance for vegetation echoes will be problematic because we do not 
know the illuminated area, the bidirectional reflectance distribution function (BRDF) of the 
target, as well as estimating the local incidence angles (e.g. on leaves) using the point cloud 
leads to great uncertainty. Hence, the backscatter cross section (BSC) and the echo width (EW) 
derived for each reflection are the parameters most suitable for further investigation in the field 
of vegetation analysis and forestry.  
 
4.2 Canopy segmentation 
 
The echo ratio is an appropriate parameter for separating solid objects (e.g. terrain, buildings) 
from vegetation indicated by high values. Visually evaluated this classification worked out very 
well (cf. Figure 1c) because the data acquisition was carried out under leaf-off conditions and 
deciduous trees are dominant within the area investigated. Dense canopies (e.g. coniferous trees 
or dense leaf canopy) where the laser beam is fully intercepted in the crown will cause low echo 
ratio values, and hence are not considered as vegetation. To overcome this problem other raster 
layers could be additionally included in the segmentation – such as surface roughness, echo 
width or backscatter cross section of points vertically close to the DSM. The applied 
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segmentation delineates objects that are clearly represented in the canopy layer. These objects 
may correspond with single trees if they are detached and build a single distinct crown, 
respectively. Large deciduous trees tend to build multiple convex crown parts, which results in 
one segment for each part. In the analyzed data no grouping of different canopies into one 
segment (under-segmentation) could be observed. If aiming at single tree or stem detection in a 
forest comparable to our study area, it becomes necessary to consider the third dimension (i.e. 
point cloud) and FWF information already in the detection process (e.g. Reitberger et al. 2007). 
 
4.3 Exploratory segment feature analysis 
 
On single tree and segment level, respectively, the echo width and backscatter cross section of 
three different tree species are investigated. The segments of 11 red beeches (spread over two 
stands; >30 m avg. height), 10 oaks (4 stands; >27 m avg. height) and 4 larches (same stand; 
>18 m height) were identified in the field. The derived statistics are based on echoes in the 
upper vegetation layer (as defined in Section 3.3) in order to avoid a mixture with echoes from 
smaller neighboring trees and the understory. Looking at the average segment values for echo 
width and cross section clearly shows that larch (avg. EW=5.35 ns, avg. BSC=0.0096 m2) is 
clearly separated from the deciduous species, whereas beech (avg. EW=4.44 ns, avg. 
BSC=0.0059 m2) and oak (avg. EW=4.41 ns, avg. BSC=0.0055 m2) show similar average 
values (cf. Figure 3a). 
 
  

 
 

Figure 3: Tree species scatter plots of a) segment-based average of echo width vs. cross section and b) 
segment-based coefficient of variation (CV) of echo width vs. CV of cross section. 

 
 
Concerning the variation of the FWF features oak shows a higher coefficient of variation (CV) 
in BSC and lower CV in EW than beech. In Figure 3b one oak tree with lower variation sticks 
out (CV of BSC=52%). In contrast to the other oaks (>27m height), the ‘outlier’ is a smaller tree 
with about 18 m height. This confirms that growth and age are an important factor, as important 
as tree species, for the backscattering properties parameterized by the FWF information.  
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Figure 4: Boxplots in vertical profiles (1 m intervals) of echo width and cross section for the tree species 
larch, oak and beech. All echoes per tree segment are used. 

 
 
For better understanding of the average segment values the vertical distribution of the FWF 
information for representative segments is shown in Figure 4. It can be seen that larch has the 
highest values of BSC in the uppermost part, which is strongly correlated with the echo width. 
Oak and beech show relatively constant average echo widths over the vertical profile but the 
BSC increases, which may be due to the increase of collision area (more and broader branches). 
Figure 5 gives a good impression how the segment FWF features could be used to find 
structurally homogeneous forest areas or could be used to determine the structural heterogeneity 
of defined units. It can be seen that the reference forest stand outlines generally coincide with a 
specific BSC and EW class, respectively, whereas some stands are characterized by a strong 
heterogeneity due to different tree species and age classes.  
 
 

 
 
Figure 5: a) Segments colored by mean backscatter cross section of echoes in the upper vegetation layer. 
b) Segments colored by mean echo width. Blue boundaries are the forest stand outlines from the forest 

inventory reference data. 
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5. Conclusions 
 
Up to now most studies utilize the geometric information of airborne laser scanning data to 
characterize forests at various scales (from single trees to forest stands). Recent studies have 
shown that the intensity data of discrete echo recording system is a supplementary source of 
information (e.g. Moffiet et al. 2005). The present paper shows that information provided by 
full-waveform laser scanning (e.g. echo width) and physical quantities derived by radiometric 
calibration of the recorded signal (e.g. backscatter cross section) have a great potential for tree 
species identification and large scale forest characterization, even under leaf-off conditions. 
Within the small selection of trees analyzed in detail a good separability between larch and 
deciduous trees (oak and beech) is found regarding average segment values of echo width and 
backscatter cross section. Additionally the vertical distribution of the FWF information yields 
specific characteristics for each tree species. In order to consolidate the findings more and 
extensive reference data has to be included. Furthermore, effects of different data acquisition 
settings (e.g. flight geometry) on echo width, amplitude, and cross section have to be quantified 
and separated from effects originating from the tree configuration (e.g. species, age). 
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Abstract 
 
The Effective Plant Area Indices (PAIe) of Pinus koraiensis, Larix leptolepis and Quercus spp. were 
estimated by calculating the laser-intercepted rate through the forest canopy using LiDAR data. 
Initially, the Laser Interception Index (LII), which is related to the canopy gap fraction, was 
generated by extracting the LiDAR data reflected through the canopy using k-means statistics. The 
LiDAR-derived PAIe was then estimated by applying LII to the Beer-Lambert law. From a 
comparison of the LiDAR-derived to the field-derived PAIe, the coefficients of the determination by 
the tree species was 0.82, 0.71 and 0.54 for Pinus koraiensis, Larix leptolepis and Quercus spp., 
respectively. The change in accuracy according to the tree species was attributed to the density of 
leaves and understory, the interference by stems, the amount of leaves and the vertical number of 
branches in the forest stands. From field estimations at the time of the study, Pinus koraiensis had 
dense leaves and Larix leptolepis had dense branches, while Quercus spp. had no leaves or a few big 
branches. This can be explained by the estimation of the field-derived PAIe being influenced by the 
stem shadow and direct sunlight due to the few leaves and poor branches in the Quercus spp. stand 
surveyed, even though the estimation of the LiDAR-derived PAIe was hardly affected by them. 
 
Keywords: Leaf Area Index, Plant Area Index, LiDAR, Laser Interception Index, k-means 

clustering 
 
1. Introduction 
 
According to Jonckheere et al. (2004), there are several definitions for the LAI used in the field, 
which can be defined as the total one-sided area of leaf tissue per unit ground surface area 
(Watson, 1947). Schulze et al. (2005) suggested that the LAI could be determined by the sum of 
the projected leaf surface per soil area. On the other hand, Myneni et al. (1997) defined the LAI 
as the maximum projected leaf area per unit ground surface area. Such variously defined LAI 
can be derived from both the within and below canopy microclimate, control canopy water 
interception and radiation extinction, as well as water and carbon gas exchange (Bréda, 2003). 
Moreover, they provide information for biosphere modelling (Bonan, 1993) because they 
contain information on a number of relevant ecological process (Morsdorf et al., 2006). 
Therefore, the LAI can play a key role within biogeochemical cycles in an ecosystem. The 
various methods for obtaining the LAI can be classified into two categories; direct and indirect 
measurements (Bréda, 2003). Direct methods are destructive and exhaustive due to harvesting 
vegetation. Moreover, such methods are time-consuming and labour-intensive when the LAI is 
obtained from field measurements. Thereby, the direct methods are suitable for vegetation with 
small structures, but are difficult to apply to large areas or trees (Bréda, 2003). On the other 
hand, the LAI by indirect and non-destructive methods can be easily estimated using the 
radiative characteristics of sunlight, which is dispersed or penetrates through the vegetation area. 
With such methods, remote sensing techniques, using satellite imagery and aerial photography, 
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have been applied to derive this measurement. Many such approaches are based on passive 
optical sensor systems and regression models (Cohen et al., 2003) or radiative transfer 
modelling (Koetz et al., 2004). However, one serious problem with remote sensing using 
passive sensor systems is that they are unable to describe the canopy shape and structure, and 
the vertical distribution of leaves because they do not contain the elevation information by itself. 
Light Detection and Ranging (LiDAR), especially using an active sensor system, has recently 
been used to extract surface information, and can acquire highly accurate object shape 
characteristics using geo-registered 3D-points (Kwak et al., 2007). The LiDAR system can 
measure both vertical and horizontal forest structures, such as the tree heights, sub-canopy 
topographies and distributions in forested areas with high precision (Holmgren et al., 2003). 
Such characteristics can be used to extract forest information. Morsdorf et al., (2006) derived 
the LAI using fCover (fractional cover) and Riãno et al. (2004) obtained the LAI using the gap 
fraction distribution. Koetz et al. (2006) applied the LiDAR waveform model to generate the 
fCover and LAI from large footprint LiDAR data. However, it is difficult for large footprint 
LiDAR to extract forest information in small areas. The use of ground based laser scanners is 
limited by the topographical conditions of the study area as well as to small forest areas not 
broad forest areas. Barilotti et al. (2006) suggested an estimation of the LAI using the Laser 
Penetration Index (LPI) generated by the point density of LiDAR data, according to the 
penetration of a laser beam through the canopy of forested areas. However, the threshold value 
between the transmission and reflectance through the canopy cannot be applied to another forest 
stand, including fluctuant height understory, because the value was fixed to a height 1 m above 
the ground. 
 
For such an indirect LAI estimation, a common method in the field is to use an optical sensor to 
acquire photosynthetically active radiation (PAR) using an AccuPAR-80 Linear PAR/LAI 
Ceptometer of Decagon Devices, LAI-2000 or hemispherical photography below the canopy 
(Pocewicz et al., 2004). However, the values recorded with such instruments are not pure LAIs 
because clumping of the canopy components and the influence of individual tree stems and 
woody canopy components are not adjusted for (Pocewicz et al., 2004). The value recorded 
without the consideration of clumping of the canopy components is defined as the effective LAI 
(LAIe). Measurements that do not consider light interception by woody components are called 
the plant area index (PAI), and, if no adjustments are made for the clumping of canopy elements, 
the values measured by the instruments are referred to as the effective PAI (PAIe). Therefore, the 
values measured with optical sensors in forest areas is almost the PAIe (Pocewicz et al., 2004). 
 
Chen and Cihlar (1996) reported that the PAIe estimation was more effective in representing the 
vegetation indices than the LAI estimation because the PAIe could represent the sunlight 
interception well by the woody canopy elements and individual tree stems. Therefore, in this 
study, to approximate the LAI, the PAIe of Pinus koraiensis, Larix leptolepis and Quercus spp. 
were estimated by calculating the rate of laser-intercepted LiDAR points through the canopy 
using LiDAR data. In particular, for the approximate LAI, an attempt was made to estimate only 
the PAIe of the canopy part as classifying the LiDAR pulses reflected in forest stands into in- 
and below-canopy returns using the k-means clustering method.  
 
2. Study area 
 
The study areas were located in the Gwangneung Experimental Forest of the Korea Forest 
Research Institute (the upper left 127°7′30.72523″E, 37°48′0.42761″N and lower right 
127°11′59.17548″E, 37°41′59.31795″N), and Mt. Yumyeong (the upper left 127°28′45.76074″E, 
37°35′59.75109″N and lower right 127°30′6.98627″E, 37°35′6.27425″N), central South Korea.  
Situated from 160 to 573m above sea level, the study area is dominated by steep hills, with the 
main tree species being Pinus koraiensis (Korean Pine), Larix leptolepis (Japanese Larch) and 
Quercus spp. (Oaks), with approximately 1,017.36 ha selected for this study. In the study area, 
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the PAIe was measured from 39 plots (13 plots per tree species), and 36 plots (12 plots per tree 
species) were measured to assess the accuracy. These plots were selected in such a way that the 
composition of the tree species was homogeneous. 
  

 
Figure 1. Location of the study areas 

 
3. Acquisition of LiDAR data and ground data 
 
An Optech ALTM 3070 (a small footprint LiDAR system) was used to acquire the LiDAR data. 
The flight was performed on the 3rd April 2007. The study area was measured at an altitude of 
1,400m, with a sampling density of 5~10 points per square meter, with a radiometric resolution, 
scan frequency and scan width of 12bits, 70Hz and ±20°, respectively. The field survey was 
performed from the 1st to 4th April, 2008. The number of sample and test plots was 75 (25 plots 
per tree species). Each plot was 20m x 20m (400m2) in size, and the PAIe of the plots was 
measured indirectly using the gap fraction method with an LAI-2000 instrument. The PAIe was 
estimated using two LAI-2000 instruments, for the diffuse intensity above and below the canopy. 
One LAI-2000 used for above the canopy was set up with a 180° view cap on the top of the flux 
tower. The other LAI-2000 was installed for below-the canopy of the plots. The estimation 
below the canopy was carried out on the middle spots of each of four edge lines and in four 
directions from the centre of a square plot with a 180° view cap. The positions of the plots were 
acquired at breast height in the centre of each plot, using a GPS Pathfinder Pro XR 
manufactured by the Trimble Corporation. 
 

Table 1. Descriptive statistics of the field measurements 
 

Stand height(m) Canopy base height (m) Stand DBH(cm) Species Number
of plots Mean Std. Mean Std. Mean Std. 

Pinus 
koraiensis 25 15.6 2.3 6.8 2.3 32.7 5.5 

Larix 
leptolepis 25 16.4 2.7 6.5 2.0 28.7 4.6 

Quercus 
spp. 25 14.2 2.5 5.5 1.9 28.3 8.9 

 
4. Method 
 
4.1 Potential of using LiDAR for PAIe estimation 
 
The LiDAR system has the potential for obtaining geo-registered 3D-points; whereas, it is 
difficult to extract the 3 dimensional information of forested area using independent satellite 
imagery and aerial photography (Kwak et al., 2007). The Laser pulses emitted from the LiDAR 
system are similar to that of sunlight with respect to the reflectance or transmission through the 
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canopy. In addition, they are suitable for representing the PAIe because of the reflectance on the 
leaves and branches. Therefore, if stands have dense leaves and branches, the LiDAR points are 
mostly reflected in the canopy. On the other hand, LiDAR points are almost always transmitted 
to ground due to sparse leaves and branches.  
 
The Beer-Lambert Law has been used to estimate the PAIe in previous several studies (Pocewicz 
et al., 2004). The PAIe can be calculated using the Beer-Lambert Law, as shown in equation 1. 
 

sune kIIPAI /)/ln( 0−=       (1) 
 
where I and I0 are the incident and below-canopy radiation respectively, and ksun is the extinction 
coefficient for solar radiation. The PAIe can be estimated using I/I0, which is known as the gap 
fraction (Gsun), and is defined as the probability of a light beam passing through the canopy 
without collision (Gower et al., 1999). The gap fraction by solar radiation can be alternated with 
the ratio of the number of LiDAR returns transmitted through the canopy, to the total number 
emitted from the aircraft (GLiDAR). In equation 1, ksun can be calculated using equation 2 
(Campbell, 1986). 
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where θ is the zenith angle of the sun and x the leaf angle distribution parameter, which is the 
ratio of the length of the horizontal to the vertical axes of the spheroid, and can be measured as 
the ratio of the projected area of an average canopy element onto a horizontal plane to its 
projection onto a vertical plane (Campbell, 1986). Campbell (1986) suggested that an 
assumption of an ellipsoidal angle distribution for the canopy elements was most useful. Using 
such an investigation, x was determined to be 1 when the PAIe (Campbell labelled this LAI) was 
estimated in the study area and the angle distribution was assumed to be ellipsoidal. ksun can be 
simplified to equation 3.  
 

θcos
2

=sunk        (3) 

 
In equation 3, ksun could be calculated using the solar zenith angle (θ) in the study area. However, 
for the PAIe using LiDAR data, the ksun value must be changed to the zenith angle of the emitted 
laser pulses from the aircraft (kLiDAR) rather than the solar zenith angle. In this study, the kLiDAR 
value was estimated using the laser zenith angle (θ) ±10°, which is the median value of the scan 
angle of every point data reflected in a stand. Therefore, the PAIe can be estimated from the ratio 
of the number of transmitted LiDAR returns and the laser zenith angle. 

  
4.2 Classification of LiDAR data using k-means statistics 
 
In order to calculate the gap fraction using LiDAR data (GLiDAR), the transmitted laser pulses need 
to be detected and classified. In particular, the LiDAR returns only intercepted by the canopy must 
be clustered to estimate the canopy PAIe only, which is far from the influence of stems among the 
woody elements, and approximates the LAI despite not including the woody elements of the 
canopy. Rianõ et al. (2004) attempted to test various clustering methods to classify the LiDAR 
data, such as a 3m fixed limit, minimum Euclidean distance clustering, k-means clustering and 
Expectation Maximization clustering. In this study, k-means statistics were used to classify 
LiDAR data and calculate the gap fraction. The k-means statistics is an algorithm used to classify 
or group attributes or features into k number of groups, and uses an iterative algorithm that 
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minimizes the sum of the distances (SOD) from each object to its cluster centroid, over all clusters 
(Equation 4).  

∑ −=
j

i
jiji nObjectCentroidSOD  ][  ......     (4) 

 
This algorithm moves objects between clusters until the sum can be decreased no further. This 
results in a set of clusters that are as compact and well-separated as possible (MATLAB, 2006). In 
this study, the number of clusters (k) was determined to be two as to classify LiDAR returns into 
in-canopy and below-canopy LiDAR returns with the z (height) value of points. The initial points 
of each cluster can be selected by the user when carrying out k-means clustering. However, in this 
study, a random selection of k observations from LiDAR point data was used, with 100 iterations 
calculated. Moreover, the cluster was treated as an error if it was too small, e.g., the percentage of 
laser pulses of a group had less than 1/(total number of clusters)2 (Rianõ et al., 2004). Thereby, the 
laser interception indices (LII) according to the tree species was generated using the LiDAR 
returns reflected through the canopy. 

 
4.3 Generation of Laser Interception Index 

 
Barilotti et al. (2006) suggested the use of the laser penetration index (LPI), with the point 
density of the ground returns and vegetation returns in the sample plots. All LiDAR points were 
divided into two classes; high (height ≥ 1m above ground), and low (height < 1m above ground) 
vegetation returns. However, in the case of various heights of the understory, the LPI was not 
flexible because the value used to distinguish the ground and high vegetation returns was fixed 
at a height 1m above the ground regardless of the characteristic of the forest stand. Therefore, 
the LII was calculated in order to apply flexible heights considering the characteristics of 
various forest stands, as shown in equation 5. 
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where Nin canopy returns is the number of LiDAR returns intercepted by the canopy, Nbelow canopy returns 
is the number of LiDAR returns transmitted through the canopy and Ntotal returns is the total 
number of LiDAR returns emitted from the aircraft. According to equation 5, the vegetation is 
dense if the value of LII is close to 1, but the vegetation is sparse if the value is close to 0. 
Incidentally, the LII is an opposite concept, which is related to the ground covered by the 
canopy, even when the LiDAR gap fraction (GLiDAR), which is the ratio of transmitted LiDAR 
returns to the total LiDAR returns, is need to calculate PAIe. Therefore, equation 5 must be 
changed into equation 6 in order to apply LII to the PAIe. 
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Finally, the PAIe can be estimated artificially by the tree species by substituting Gsun and ksun for 
GLiDAR and kLiDAR, respectively as shown in equation 7. 

 
)1ln(cos2 LIIPAI LiDARe −⋅−= θ       (7) 
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5. Result and discussion 
 
5.1 Classification of LiDAR data  
 
As a result of the classification of the LiDAR returns using k-means clustering, the LiDAR 
returns by the tree species were classified into two clusters as shown in figure 3, because the 
LiDAR returns for both Pinus koraiensis and Larix leptolepis were almost reflected in the 
canopy and ground due to the dense leaves and branches with rare understories. Quercus spp. 
could also be divided into two clusters due to the larger number of ground returns than above 
ground returns. Figure 3 shows the typical distribution of the LiDAR returns according to the 
species of tree. 
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(a) Pinus koraiensis          (b) Larix leptolepis           (c) Quercus spp. 
 

Figure 3. Distribution of the LiDAR returns and classification into two clusters by the tree species 
 

The LiDAR data was partitioned into two groups, and then GLiDAR was generated using Ncanopy, 
Nbelow canopy and Nall. Because few understories existed and abundant canopy in the plots for Pinus 
koraiensis, the LiDAR returns could be clearly clustered into two groups, without a middle 
point layer. However, some of the LiDAR pulses in the plots for Larix leptolepis and Quercus 
spp. were reflected in a middle point layer because there were some understories and no leaves 
when the field survey was carried out. Nevertheless, the results of k-means statistics with two 
centroids were acceptable because the threshold heights for classifying the in-canopy and 
below-canopy points were similar to the field-derived crown base heights, which were 6.5 and 
5.5m for Larix leptolepis and Quercus spp., respectively. In particular, the LiDAR returns in the 
plots for Quercus spp. were clustered well into two parts, even with abundant LiDAR returns on 
the ground and a few on the branches as a result of the species having few leaves. These 
classification results were used to estimate the LiDAR-derived LAI using GLiDAR. 
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5.2 Estimation of effective plant area index using LiDAR gap fraction 
 
Using the GLiDAR values, the LiDAR-derived PAIes, which mean the only canopy PAIes, were 
estimated by tree species. The PAIes of Pinus koraiensis were higher than those of Larix 
leptolepis and Quercus spp., because it is an evergreen needle tree with dense leaves. On the 
other hand, the PAIes of Larix leptolepis and Quercus spp. were relatively low because they had 
a few leaves and branches when the field survey was carried out, i.e. from 1st to 4th April. 
However, The PAIes of Larix leptolepis were much higher than those of Quercus spp.. This was 
attributed to the emitted LiDAR pulses being reflected on the many dense branches of Larix 
leptolepis, as shown in Figure 4.  

 

   
(a) Pinus koraiensis            (b) Larix leptolepis              (c) Quercus spp. 

 
Figure 4. Structure of the stands surveyed by tree species 

 
Linear regression analysis was carried out to determine the relationship between the 
LiDAR-derived and field-derived PAIe. The coefficient of determination (R2) and root mean 
square error (RMSE) were calculated to determine the accuracy of the estimated regression 
analysis (Table 2). 

 
Table 2. Accuracy of the regression function generated by LPI and LII 

 
Tree species Statistics Results 

Function 490.1)ln(629.0 +⋅−=
k

GPAI LiDAR
e  

R2 0.75 
Pinus koraiensis 

RMSE 0.40 

Function 694.1)ln(404.0 +⋅−=
k

GPAI LiDAR
e  

R2 0.89 
Larix leptolepis 

RMSE 0.42 

Function 983.0)ln(595.0 +⋅−=
k

GPAI LiDAR
e  

R2 0.65 
Quercus spp. 

RMSE 0.52 
 
As a result, the accuracy for Pinus koraiensis was the highest of the three tree species, because 
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the LiDAR returns were mostly reflected through the canopy and rarely onto the ground without 
a middle point layer, which is similar to the transmission of solar radiation, because the stands 
of Pinus koraiensis have dense leaves. A greater number of LiDAR returns reflected in the 
canopy can provide a better description of the canopy. On the other hand, Quercus spp. showed 
only a slight relationship between the estimates and ground truth data, which was attributed to 
Quercus spp. having no leaves and a few branches on the tree stems compared with Larix 
leptolepis. No leaves on branches caused some estimation errors due to direct sunlight being 
sensed into the LAI-2000 or the other instruments when the PAIe is measured. Therefore, 
Quercus spp. with no leaves and a few branches had fluctuating PAIes. The PAIe of Larix 
leptolepis was more stable because the abundant branches play the role of leaves.  

 
5.3 Accuracy assessment 
 
The PAIes estimated by regression analysis were evaluated using the field-derived PAIes in 36 
plots (12 plots by tree species) selected for verification. The accuracies for Pinus koraiensis, 
Larix leptolepis and Quercus spp. were 0.82, 0.71 and 0.54, respectively (Figure 5).  
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(a) Pinus koraiensis             (b) Larix leptolepis               (c) Quercus spp. 

 
Figure 5. Evaluation of the estimated LAI analysis by the tree species 

 
The estimated PAIes of Pinus koraiensis had the highest R2 of the three tree species. This is due 
to the right measurement without the direct sunlight because Pinus koraiensis had abundant 
leaves on the branches. Moreover, the predicted PAIe were mostly higher than the observed PAIes 
in the test plots. This was attributed to the different amounts of understory between the sample 
and test areas. Namely, the understory of the test plots might have been less than that in the 
sample area. The estimated PAIes for Larix leptolepis were relatively accurate due to the 
abundant branches, even though there were few leaves on the trees. The plenty branches 
decrease the estimation errors with LAI-2000 because they diffuse direct sunlight. Therefore, 
the accuracy for Quercus spp. was the lowest of the three tree species due mainly to the 
estimation errors with LAI-2000. The lack of leaves and the poor vertical distribution of the 
branches might have caused the poor results. When the PAIes were measured in the Quercus spp. 
stands, the direct sunlight penetrating through the canopy influenced the actual PAIes because 
LAI-2000 the recorded mixed value of the diffused radiation and direct sunlight in forested 
areas. Therefore, LAI-2000 has a weak point in that PAIes need to be measured around sunrise 
or sunset. During Summer or early Autumn, the accuracy of the regression function and its 
evaluation should increase due to the larger number of laser pulses reflected on the leaves as 
well as the diffusion of direct sunlight by the leaves through the canopy for Larix leptolepis and 
Quercus spp.. The PAIes estimation of trees without leaves, i.e. deciduous trees in late Autumn 
and early Spring, may be invalid from the point of view of evaluating the PAIes for trees with 
the best leaves. However, such research may be valuable because the change in the amount of 
leaves can be monitored according to season. 
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The kLiDAR derived using the LiDAR zenith angle and leaf angle distribution also plays an 
important role in assessing the accuracy. Indeed, each zenith angle of the LiDAR returns 
reflected in a forest stand has independent values because each LiDAR pulse is emitted from the 
respective angles due to the rotation of the sensor mounted in the LiDAR system. Therefore, the 
zenith angles of all the LiDAR returns of a target forest stand need to be detected and calculated 
for more accurate results when estimating the PAIe from LiDAR data. In addition, the leaf angle 
distribution should to be also applied with respect to the tree species, even though the leaf angle 
distribution in this study was assumed to have a value of 1, which suggests an ellipsoidal angle 
distribution. In future studies, three variables, the LII, laser zenith angle and leaf angle 
distribution must be considered for more reasonable and precise estimates of the PAIe using 
LiDAR data. 
 
6. Conclusion 
 
The LAI was estimated using the laser interception index for three tree species, Pinus koraiensis, 
Larix leptolepis and Quercus spp.. In the PAIes equation by the Beer-Lambert Law, the gap 
fraction (I/I0) for the sun was replaced by GLiDAR, which is the ratio of the number of below-canopy 
points to that of all returns in the sample plots. The GLiDAR was calculated by classifying the 
in-canopy and below-canopy points using k-means statistics. In the Beer-Lambert Law, the ksun 
extinction coefficient was calculated using the solar zenith angle and leaf angle distribution. 
However, instead of ksun, kLiDAR could be generated using the laser zenith angle (±10°, median 
value of every point in sample plots) and leaf angle distribution (x=1, meaning of ellipsoidal leaf 
angle distribution). As a result, the coefficient of determination between the observed and 
predicted PAIe for Pinus koraiensis, Larix leptolepis and Quercus spp. were 0.82, 0.71 and 0.54, 
respectively. When the PAIes are acquired in forest stands with few leaves and poor branches, such 
as deciduous trees in spring or winter, direct sunlight affects the estimation because the optical 
sensors, e.g. LAI-2000 and AccuPAR-80, measure the diffused radiation transmitted through the 
canopy. Therefore, the reason for the different PAIe with regard to tree species was that Larix 
leptolepis and Quercus spp. had no leaves, and Pinus koraiensis had abundant leaves. The 
accuracy for Larix leptolepis was higher than that of Quercus spp. which is because Larix 
leptolepis has more abundant branches that play a role of diffusing the direct sunlight, while 
Quercus spp. had a poor branch distribution vetically. Therefore, with Larix leptolepis and 
Quercus spp., more accurate results than those found in this study are expected if the study is 
performed in late spring when their shoots and leaves begin to appear. The kLiDAR derived using the 
LiDAR zenith angle and leaf angle distribution also plays a role in estimating the PAIe using 
LiDAR data. Even when fixed values for the laser zenith angle and leaf angle distribution are used, 
future investigations should consider the actual laser zenith angles of each point in the target forest 
stands and the leaf angle distribution according to the tree species. 
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Abstract 
 
Effective leaf area index (LAI) of a forest is mathematically related to gap fraction, and may be 
estimated from the penetration rate of airborne laser scanning (ALS). The aim of this study was 
to compare the usefulness of four alternative ALS penetration rates for this purpose, and in 
particular to determine if any of them could produce un-biased estimates of gap fraction. This 
would be valuable in forests having a large fraction of small gaps. A 21 km2 pine forest was 
covered with ALS, and ground measurements of gap fraction and LAI were done with LICOR’s 
LAI-2000 at 20 plots within the area. The alternative penetration rate methods utilizes intensity 
data and multiple echoes. All alternatives were strongly related to gap fraction and LAI. 
However, none of the alternatives provided un-biased gap fraction estimates. The simple method 
of first echo counting, after being categorized as canopy and gap echoes, turned out to have the 
smallest deviation from gap fraction, with a slight underestimation. The methods of summing up 
intensities and counting of multiple echoes overestimated gap fraction, however, they were still 
strongly related to gap fraction and LAI, and may serve as supplementary methods in dense 
canopies with many small gaps, due to their higher sensitivity to small gaps.  
 
Keywords: laser scanning, ALS, LIDAR, gap fraction, LAI 
 
1. Introduction 
 
ALS is intuitively, with its high number of evenly distributed pulses, a perfect tool for sampling 
based estimation of an area property such as gap fraction or canopy cover, where the return of 
each pulse is classified as either canopy or gap. Canopy cover may further be converted into LAI 
by inverting the gap fraction and log-transformation based on Beer-Lambert law (Chen et al. 
1997). It has been demonstrated that such log-transformed, inverted gap fraction data from ALS 
are very strongly and linearly related to LAI from ground based measurements with R2 values 
around 0.90 and higher (Solberg et al. 2005, Solberg et al. 2006). We may, however, cast a 
critical view on this apparently promising method: LAI in those studies were derived from the 
gap fraction as sampled from the first echoes of the laser beams, and it is a general concern that 
these first echoes underestimate gap fraction because the footprint size of the beam is too large 
to penetrate down small gaps (Lovett et al. 2003; Morsdorf et al. 2006). Hence, the method will 
apparently only work in forests where gaps smaller than the footprint size are infrequent, or 
eventually that they make up some constant fraction of the total gap fraction.   
 
The ALS data have, however, another and less used attribute that may be useful here: the 
intensity. Lovett et al. (2003) have presented the idea of estimating gap fraction by summing up 
intensity data. The intensity of an echo depends on the size of the hit object and its reflectivity. 
If the reflectivity were fairly constant and similar for canopy and ground, then the intensity will 
represent mainly the size of the hit object. A large object would produce a compact return pulse 
and a high intensity value, and vice versa. Thus, we might derive unbiased estimates of canopy 
cover and gap fraction by replacing the simple counting of echo categories by summing up their 
intensities. Small canopy objects will the be given less weight compared to large objects, and in 
this way correspond to the fraction of cover within the footprint. Hence, although it may be 
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correct that an entire laser beam can not penetrate down small gaps, the gap fraction might still 
be correctly recorded as a reduced intensity of an echo. Another option is also available: It 
seems likely that one would get higher penetration rates, eventually producing un-biased gap 
fraction estimates, by including the intermediate and last echoes of the pulses. These echoes 
represent the deeper penetration of the laser beam into the canopy.   
 
The aim of this study was to compare the usefulness of four alternative ALS methods for 
mapping of gap fraction and LAI, and in particular to test a hypothesis that we can derive 
unbiased estimates of gap fraction from ALS data by using intensity data and eventually all echo 
categories.   
 
2. Method 
 
2.1 Study area and data sets 
 
The data for this study is taken from a laser scanning campaign in 2005, which is a large and 
homogeneous data set, with three replicated sets of measurements and ALS acquisitions during 
the summer. The study area, data set and results are described in full detail by Solberg et al. 
(2006), and is briefly outlined here. The aim of that campaign was to map the defoliation caused 
by insect attack on the trees. ALS data together with ground based measurements of LAI were 
gathered. The study area was a 21 km2 large area along a river and a relatively flat, sandy valley 
area along it. The area was dominated by Scots pine.  
 
ALS data were gathered on May 10th; August 1st, and September 1st, with two pulses per m2, and 
a maximum scan angle after pre-processing of ±12°. The technical properties of the scans were 
as follows: 

• Aircraft: Piper PA31-310 
• Mean flight altitude: 650 m above ground 
• Laser scanner: Optech ALTM 3100C 
• Wavelength: 1064 nm 
• Pulse repetition frequency: 100 kHz 
• Pulse width: 16 ns 
• Pulse energy: 66 μJ 
• Peak power: 4.1 kW 
• Mean footprint diameter at the ground: 17 cm  

 
The discrete return pulses were categorized as ‘only’; ‘first of many’; ‘intermediate’; and ‘last 
of many’, and in the further data handling here the two former categories were grouped together 
and termed ‘first’ echoes. Each echo had the variables x, y, z, dz, intensity and echo category, 
where dz represents the height above ground and all these variables were provided by the ALS 
acquisition company.  
 
Twenty field plots were laid out over the area as a stratified, systematic sampling with four age 
classes (ranging from newly regenerated to old stands) and five replicates of each. At each of 
the three points of time LAI was measured at each plot using LICOR’s LAI-2000 plant canopy 
analyzer at five points of each plot (centre and 3m away towards the cardinal directions), and 
these measurements were tripled making a total of 15 measurements at each plot and each point 
of time. The measurements were done 1m above ground. Reference measurements at nearby 
open fields were done simultaneously and every 15 second, and every plot measurement was 
joined with the reference station measurement being closest in time. The LAI value obtained 
from LAI-2000 represents the hemi-surface area of the foliage objects, which is half their total 
surface area.  
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2.2 Calculus and statistics 
 
ALS penetration rates were calculated for four alternative approaches, which was combinations 
of either using first echoes or using all echoes; and secondly, either doing echo counting or 
intensity summing. First, the echoes were classified into canopy echoes if they had dz values 
above 1m above ground, and ground echoes if less than 1m. For the echo counting approach the 
following model was used: 
 

)/( cgg NNNP +=  ,    (1) 
 
where P is the penetration rate, Ng is the number of ground echoes, and Nc is the number of 
canopy echoes. This was done on ALS data for five circles of various size (5; 10; 15; 20; and 
25m) around each plot. In the case of using intensities the following model was used: 
 

)/( ∑∑∑ += cgg IIIP  ,    (2) 
 
where Ig and Ic are the intensity of a ground echo and a canopy echo, respectively. The influence 
of reflectivity was not included in this equation, because data on reflectivity was not available. 
This implies that if this approach should turn out to be successful, it would mean that 
reflectivity was equal for all hit objects. It can also be noted that this ratio is not affected by the 
variation in the distance from the laser scanner within the scanned area.  
 
The data from the LAI-2000 were first calculated into effective leaf area index, LAI using the 
following model provided by the producer: 
 

∑ −= iii dGFwLAI /)ln(2 1 ,     (3) 
 
where i is the ring number, GFi is gap fraction seen in the zenith angle direction of ring i; The 
terms wi and di are ring specific factors provided by the hardware producer, representing the 
observed canopy volume, and the view path length, respectively, for that ring. A median LAI 
value was then calculated based on the replicate measurements done at each plot and each point 
of time. The median was used in order to exclude the influence from outlier results, which may 
be frequent in such data due to the sub-optimal weather conditions during measurements, such 
as direct sun light and partly clouded sky. LAI was calculated with two alternatives: using rings 
1-4 only, and using all rings 1-5.  
 
The data from the LAI-2000 were secondly calculated into foliage orientation, - in two 
alternative ways, - first by assuming a spherical foliage angle distribution corresponding to a 
mean tilt angle of 60°, and second by calculating the mean tilt angle (MTA) based on the 
LAI-2000 data. The projected fraction of the foliage area, G(θ) is equal to cos(MTA), and this is 
half the hemi-surface area for a spherical foliage angle distribution. MTA was calculated with 
the default method using the Fv2000 software which is shipped with the LAI-2000 hardware. As 
for LAI, MTA was calculated both for rings 1-4 and for all rings 1-5. It turned out that this 
produced a number of cases having the inappropriate MTA values 0 and 90°. In order to 
counteract these problems, each plot was provided with its median MTA value, being calculated 
across replicates and across repeated measurements during the season, however, where all 
values of 0 and 90° degrees were discarded from the median calculation.  
 
Vertical gap fractions might be derived directly from the innermost ring, with its near-vertical 
view of ±12°. This gap fraction, however, suffers from large random errors as a very tiny bit of 
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the canopy is seen with this ring, depending strongly on where the instrument is put, which 
could be under a tree or in a between-tree gap. The alternative and robust method applied here 
was to utilize the data from the other rings of LAI-2000. The random error is then considerably 
reduced as a much larger canopy volume is measured. Each ring has a gap fraction in its view 
direction, and these gap fractions were recalculated into one common, vertical gap fraction 
based on LAI and on foliage orientation: 
  

)ln(
)(

1 1−= GF
G

LAI
θ

, and hence LAIGeGF ⋅−= )(θ  . (4) 

 
After this preparation of ALS and LAI-2000 data, they were combined for modelling. A gap 
fraction corrective, c, was introduced for handling of systematic under- (or over-) estimation of 
gap fraction when using ALS penetration rate: 
 

cPGF =  , PcGF lnln ⋅=     (5) 
 
This model has two intuitively suitable properties. First, it is a relationship that meets the 
requirement that the ALS penetration rate and the gap fraction have to be equal in two cases; - 
when gap fraction is zero (a completely opaque canopy layer) and when it is one (a clear cut), 
while in-between here the relationship can be either linear or non-linear. Second, it works as a 
scaling factor in a model used for estimating LAI based on ALS penetration, and hence, 
allowing LAI to be strictly linearly related to ln(P-1) even if the gap fraction estimate is biased:  
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 ,  (6) 

 
where the ALS penetration rate is an unbiased estimate of gap fraction if c=1; it underestimates 
gap fraction if c<1; and vice versa.  
 
In this study no-intercept regression models are widely used, and such models don’t have a 
trivial definition for the coefficient of determination (R2), and I used the following formula in 
accordance with recommendations from Kvålseth (1985). 
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where n is the number of observations, p is the number of model parameters, ŷ is the model 
prediction for a given observation y, and y is the mean of all observations y. 
 
3. Result 
 
For analyzing the relationships between ALS penetration rates and LAI-2000 gap fractions it 
turned out that the optimal selection of data (the strongest relationships) were obtained by using 
ALS data from within a 15m radius around the plot centre, and by excluding the outermost ring 
of LAI-2000. This is reasonable as the forest stands are fairly small and stand edges are likely to 
be seen by the outermost ring in many cases. Hence, the outermost ring does not contribute with 
valuable data, but rather produce noise only, and is hence excluded from estimation of both LAI 
and MTA.  
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All the alternative ALS penetration rates were strongly correlated to gap fraction, having R2 
values ranging from 0.71-0.94. However, none of the four methods produced unbiased estimates 
of gap fraction. Compared to the simple method of counting first echoes, all the three other 
methods produced higher penetration rates, as expected. Not only had these gap fraction 
estimates higher values, but they were biased the opposite way, - overestimating gap fractions. 
The results were fairly similar for the two alternatives for foliage orientation. Assuming a 
spherical foliage angle distribution was apparently quite right: The more detailed estimation of 
MTA indicated slightly more horizontally oriented foliage, however, the difference was minor, 
and also it introduced new random errors causing lower R2 values.  
 
The two alternative counting methods, i.e. using either first or all echoes, were equally good in 
terms of strength of relationship, and also they were equally much biased, although they were 
biased in opposite ways. As seen in Fig. 1 the penetration rates calculated this way were 
generally close to the gap fractions (circle symbols and solid fit lines, Fig. 1).  
 
In addition to being weaker related to gap fraction, the intensity based approaches suffered in 
general from a poorer fit than the counting methods. Inspection of residual plots revealed a 
tendency of non-linearity. The intensity based penetration rates represented an overestimation of 
gap fraction, particularly at higher values (triangles, Fig. 1). In particular, summing up 
intensities for all echoes produced much higher values than the gap fractions.  
 
Table 1: Results of no-intercept log-log models for LAI-2000 gap fractions against ALS penetration rates 

(Eq. 5). The estimated slope is an estimate of the gap fraction corrective, c. Results of the various 
alternatives for data selection and handling are presented (echo categories used; counts versus intensity 
sums; and foliage orientation assumed to follow a spherical foliage angle distribution or estimated mean 

tilt angle MTA)  
 

Echoes used Method Foliage 
orientation c R2  Residual 

check 
First Echo counts Spherical .77 .94 Ok 
--“-- Intensity sums --“-- 1.17 .86 Curved 
All Echo counts --“-- 1.12 .94 Ok 

--“-- Intensity sums --“-- 1.45 .87 Curved 
First Echo counts MTA .81 .83 Ok 
--“-- Intensity sums --“-- 1.22 .72 Ok 
All Echo counts --“-- 1.18 .81 Ok 

--“-- Intensity sums --“-- 1.51 .71 Ok 
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Figure 1: Gap fraction, GF, plotted against ALS penetration rates calculated in four alternative ways, 

based on rings 1-4 of LAI-2000 and assuming a spherical foliage angle distribution. The lines represent 
the fit functions (Table 1). A few GF values are above 1.0 which result from higher light intensities 

measured in a plot compared to the reference measurement in an open field nearby.  
 
 
Two models of LAI as a function of ALS penetration rates (Eq. 6) are shown in Fig. 2, and is a 
reformulation of the results shown in table 1. The tendency of a non-linear relationship for the 
intensity-based method is shown in Fig. 2, right. At low LAI values, this method tend to 
underestimate LAI. In comparison, the echo counting method is straight linear.  
 
LAI, as well as its changes from before to after insect defoliation, were now estimated based on 
each of the four alternative ALS penetration rates for the entire area with a 10x10m grid, 
producing a large data set of 139720 grid cells having four alternative LAI and LAI change 
values. The parameter estimates for the slopes in these LAI models were equal to c/G(θ). This 
corresponds to two times the c parameter estimate (Table 1), being 1.54; 2.34; 2.24; and 2.90, 
respectively for the four methods (counting first echoes, summing intensity of first echoes, 
counting all echoes, and summing intensities of all echoes). This is implicitly based on the 
assumption that foliage orientation is the same all over, which seems to be quite correct based 
on the results presented above (Table 1). All alternatives LAI variables were strongly correlated. 
However, again, the intensity based methods had a tendency of non-linearity, which tended to 
underestimate LAI at low LAI values and vice versa (Fig. 3, left), as shown above (Fig. 2, right). 
The two echo counting methods, however, were linearly related over the entire LAI range. All 
the LAI change variables were highly correlated, and despite its tendency of non-linearity, the 
intensity based method was the one being most strongly correlated to the LAI change based on 
echo counting (R2=0.93, Fig. 3, right).  
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Figure 2: LAI from ground based measurements with LAI-2000 based on rings 1-4 plotted against 

log-transformed ALS penetration rate data (P-1) from ALS data. The two alternative penetration rates are 
derived from using first echo counts (left) and first echo intensity sums (right).  

Data are from three repetitions in time: ● May; x August; and Δ September.  
 
 
 
 

 
Figure 3: LAI, and its change during the summer, calculated for a 10x10m grid using the two ALS 

alternative methods echo counting and intensity summing. N=139720.  
 
First echoes from the canopy had generally lower intensity than those from the ground, with mean 
values being 70 and 130, respectively. Defoliation caused both a higher fraction of echoes to 
penetrate the canopy layer and a reduced intensity of canopy echoes. The intensity of ground echoes 
was not affected. 
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4. Discussion 
 
Using the standard method of counting first echoes was the most appropriate method in this data 
set. Compared to LAI-2000 measurements it underestimates gap fraction corresponding to a 
20-30% underestimation of LAI. However; it is experienced in other studies that LAI-2000 
normally underestimates LAI with some 15% because of light scattering in the canopy (Chen et 
al. 1997). It is likely that such a systematic error is present in this data set, since the LAI-2000 
measurements often were carried out in sub-optimal weather conditions such as mid-day 
sunshine and partly cloudy. If we in the present data set adjust up the LAI data from LAI-2000 
with 15%, then the method of counting first echoes would produce almost un-biased estimates 
of gap fraction. The parameter estimates of the gap fraction corrective, c, in Table 1 would then 
increase to 0.89 for a spherical foliage angle distribution, and to 0.93 if using the calculated 
mean tilt angles. For comparison, the other alternative penetration rates would then strongly 
overestimate gap fraction, with parameter estimates, c, ranging from 1.29 and upwards.  
 
The results discussed above are not likely to depend much on footprint size and other 
acquisition settings. It is often claimed though, that the penetration of ALS downwards into the 
forest canopy depends on footprint size and pulse energy, and related factors such as flight 
altitude. However, a physical explanation for this is not evident and straight-forward: On one 
hand large footprints are intuitively less able to penetrate down small gaps as compared to small 
footprints. On the other hand, when large footprints hit the canopy they may be fragmented into 
a high number of non-detectable echoes, having their first detectable echo located deep down in 
the canopy, causing an apparent deeper canopy penetration. A careful review of a number of 
studies addressing the influence of footprint size and other ALS acquisition factors (Nilsson 
1996; Lovell et al. 2003; Næsset 2004) suggests that when using first echoes (echo categories 
‘only’ and ‘first of many’) the acquisition factors have generally minor influence on canopy 
penetration.  
 
As expected, it is possible to estimate gap fraction and LAI from summing up echo intensities. 
The relationships with ground based measurements were strong, having R2 values of 0.86-0.87.   
However, compared to the simpler method of counting echoes, it was a less appropriate method, 
having lower R2 values; showing a non-linearity in the relationships; and having systematic 
overestimation of the gap fraction. This overestimation becomes particularly large if we assume 
that LAI-2000 overestimates LAI. This overestimation may have two causes: The intensity is 
likely corresponding to the size of the hit object, i.e. the uppermost canopy objects the laser 
beam hits. The fraction of the footprint that is continuing downwards through the canopy is then 
handled as if it continued all the way down to the ground, representing gaps. However, the 
photons may well hit canopy objects further down. The interpretation is visualized in Fig. 4. If 
using the echo counting method, an echo is weighed as if the laser beam hit an opaque object 
covering the entire footprint, which obviously represents an underestimation of the gap fraction 
within that footprint. And if using the intensity summing method, the echo is given a weight 
corresponding to the size of the uppermost hit branch, which represents an overestimation of the 
gap fraction. A second problem with the intensity based method is that the reflectivity may 
indeed be variable, and hence, the results obtained here may only be valid for this type of forest, 
- pine trees growing on soils covered mostly by reindeer lichens. Pine trees are found to have a 
particularly low canopy reflectance as compared to many other foliage objects because of 
multiple scattering within the shoots (Smolander and Stenberg, 2003). Laboratory experiments 
have demonstrated that the backscatter from the reindeer lichens Cladina and Cladonia with the 
NIR wavelength used in ALS is very high, eventually being exceptionally intense when the 
lichens have complex branching structures (Kaasalainen and Rautiainen, 2005). 
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Figure 4: An imagined case where a circular laser beam footprint hits a canopy (black = uppermost 

canopy object, grey=canopy objects lower down and white=gap (left); discrete echo counted as a full 
reflection (black circle) causing underestimation of gap size (centre); and echo intensity corresponding to 

the size of the uppermost canopy object (black) causing overestimation of gap size as objects deeper 
down are taken as gap.  

 
Using echo counting and including all echo categories (i.e. including intermediate and last 
echoes) produced close to un-biased estimates of gap fraction, and had as strong relationships to 
ground based measurements as using first echoes only. As an estimate of gap fraction it was 
biased, i.e. overestimating gap fraction. However, even if it could not produce un-biased 
estimates of gap fraction, it represents a valuable method alternative to be used in very dense 
canopies. LAI estimation based on first echoes may easily get saturated in ALS scans having few 
pulses per square meter and if one wants to map LAI with a high spatial resolution. The 
saturation problem here refers to cases when there are no ground echoes, and then LAI can not 
be estimated. By including the intermediate and last echoes the saturation problem will be much 
reduced. However, the usefulness of this approach may be limited by the minimum time 
distance needed to separate two echoes: If the canopy layer has a low surface height, there 
might not be enough time to separate multiple echoes. And there may be hardware-specific 
differences in this minimum time distance, which would cause inconsistencies in multi-temporal 
ALS data sets from different producers. 
 
Finally, the methods based on intensity sums and counting of all echoes may be useful for forest 
health monitoring in forests having small gaps, due to their higher sensitivity to small gaps, and 
as they were strongly correlated to the other LAI change variables.  
 
4. Conclusion 
 
The aim of this study was to compare four alternative ALS penetration rates for estimation of 
gap fraction and LAI. None of the alternatives produced unbiased estimates of gap fraction. The 
best result was obtained by estimating gap fraction as the fraction of the first echoes that were 
classified as ground echoes. This produced slightly underestimated gap fraction values, however, 
they were strongly correlated to the ground measured gap fractions. The methods of summing 
up intensities and counting of multiple echoes overestimated gap fraction, however, they were 
still strongly related to gap fraction and LAI, and may serve as supplementary methods in dense 
canopies with many small gaps, due to their higher sensitivity to small gaps.  
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Abstract  
 
The concept for a new multi-spectral canopy LIDAR (MSCL) instrument was tested by 
simulating return waveforms using models providing tree structure (TREEGROW) and leaf 
reflectance (PROSPECT). The proposed instrument will take measurements at four different 
wavelengths, which were chosen according to physiological processes altering leaf reflectance. 
The modelling was used to assess both the structural and physiological information content such 
a device could provide, especially if the normally structure-dominated return waveform would 
pick up small changes in reflectance at the leaf level. Multi-spectral waveforms were simulated 
for models of single Scots pine trees of different ages and at different stages of the growing 
season. It was shown that the LIDAR waveforms would not only capture the tree height 
information, but as would also pick up the seasonal and vertical variation of NDVI computed 
from two of the four MSCL wavelengths inside the tree canopy. It could be demonstrated that a 
new multi-wavelength LIDAR predictor variable could significantly improve the retrieval 
accuracy of photosynthetically active biomass opposed to using a single wavelength LIDAR 
alone. It remains unclear, however, if these findings would persist for forest stands; thus such 
experiments simulating more complex scenarios will be the next task in this modelling 
framework.  
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1. Introduction  
 
Understanding the dynamics of the global carbon cycle is one of the most crucial scientific and 
societal problems of the 21st century. A key part of this understanding is being able to measure 
and monitor (a) the magnitude of terrestrial carbon sinks, by mapping their horizontal and 
vertical structure, (b) rapid as well as long term change resulting from natural and 
human-induced disturbances (e.g. deforestation, fire, desertification) and (c) the subsequent 
recovery processes. Laser remote sensing has been widely used to infer estimates of vegetation 
structure and biomass (Lim and Treitz, 2004, Hyyppä et al., 2001, Patenaude et al., 2004), at 
various scales ranging from single-tree level (Morsdorf et al., 2004) to landscape-level 
depending on the application and/or LIDAR system used. For example, the LIDAR waveforms 
obtained by the spaceborne GLAS instrument have been successfully exploited for estimations 
of above ground biomass (Rosette et al., 2008). On the other hand, passive multi- and/or 
hyperspectral earth observations (EO) systems have been used to provide estimates of the 
physiological state of vegetation, including the discrimination of healthy versus stressed 
canopies (Nichol at al., 2000 and 2002, Malthus and Karpouzli, 2003). The combination of both 
approaches into an active multi-spectral LIDAR should join the capabilities of LIDAR and 
passive multi-spectral EO, while remedying some of their shortcomings when used on their own 
(Koetz et al., 2007), such as the dependency on solar illumination when using passive 
instruments. The aim of this modelling study is to show some of the potential advantages of a 
multi-spectral LIDAR for both the estimation of vegetation structure and physiology state and to 
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feed back some insights into the constraints for the technical specifications of a prototype 
instrument. This will be achieved by combining a tree structural model, a leaf optical properties 
model and a model of the LIDAR measurement process together with auxiliary data about the 
typical physiological change occurring during a growing season. Our aim is to show that the 
MSCL would pick up both the structural and physiological change while adding explanatory 
value as opposed to using a single-wavelength LIDAR. 
 
2. Methods 
  
The modelling approach used to simulate LIDAR return waveforms in this study consists of 
three different models, one each for the leaf optical properties, the tree structure and the LIDAR 
measurement process. These different components and their inputs and outputs are described in 
the next three sections, followed by a description of the sensitivity experiment setup.  
 
2.1 Leaf Optical Model 
 
A widely used model of leaf optical properties (PROSPECT, Jacquemoud and Baret, 1990), was 
utilized to compute reflectance and transmission values of leaf tissue at the proposed MSCL 
wavelengths. PROSPECT was not explicitly designed to model needle reflectance, as it 
constructs the leaf from a number of parallel plates to resemble broadleaf structure. However, as 
was shown by Moorthy et al. (2008), inversion performance of leaf biochemical properties were 
just as good, if not better, using PROSPECT than the LIBERTY model (Dawson et al., 1998), 
which was specifically designed to model needles. PROSPECT has four main input parameters, 
which are leaf water and chlorophyll content, a leaf structure parameter (number of plates) and 
dry matter content. As we were interested in modelling the capability of detecting changes in 
NDVI during a growing season, we varied the chlorophyll concentrations for first and second 
year needles according to values measured by Moorthy et al. (2008), which are presented in 
Table 1. They measured the chlorophyll concentration in first and second year pine needles over 
four months. Chlorophyll concentration changes are quite large for first year needles and 
increase strictly monotonically. For second year needles, however, the increase over time is 
much smaller, with even a decrease from July to August. For each month, different chlorophyll 
values were used, leaving all other input parameters constant. Leaf water content would be 
expected to vary as well during a growing season, but would not affect the MSCL wavelengths, 
hence it was not considered here. 

 
Table 1: Chlorophyll concentrations used for modelling pine needle reflectance as measured and 

published by Moorthy et al. (2008). 
 

Measured Chlorophyll 
μg/cm2 First year needles Second year needles 

June 16.67 37.5 

July 22.90 43.8 

August 24.52 40.5 

September 29.28 42.2 
 
 
The gained reflectance and transmittance values (see Figure 1) were then assigned to cylinders 
in the TREGROW output representing shoots. For bark and twigs, the same measured spectra of 
pine trees were used, as in the study of Koetz et al. (2004).  
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Figure1: Spectral response of leaf reflectance and transmittance as modelled by PROSPECT. The filled 
green areas denote the range of values spanned by the chlorophyll concentrations presented in Table 1. 

The vertical black lines represent the proposed MSCL wavelengths. 
 
2.2 Tree Structural Model 
 
We used the TREEGROW model (Leersnijder, 1992) to produce ecologically sound 
representations of Scots pine trees at different ages. The model has been parameterized to 
simulate both Scots pine and Norway spruce trees found on a test site in Sweden (see 
Woodhouse and Hoekmann (2000) for details). It was used previously by Woodhouse and 
Hoekman, (2000) and Disney et al., (2006) to model radar backscatter and passive hyperspectral 
signatures, respectively.  
 

 
 

Figure 2: RGB composite rendering of the same modeled Scots pine at 5 different ages. The default 
TREEGROW light versus age curve (top left) was used to account for self-pruning and thinning. 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 260

The model output consists of cylinders of different sizes representing branches and shoots, with 
the age of each branch being stored by the model. These ages are later used to assess the 
development stage of each cylinder and assign reflectance values of either needles or bark to the 
cylinders. The cylinders representing the shoots are constructed using a semi-transparent texture 
in the POVRAY scene files, in order to account for shoots not being opaque (see Figure 2). A 
more sophisticated implementation of shoot scattering (such as described by Disney et al. 
(2006) or Smolander and Stenberg, (2003)) is currently in development. The default light versus 
age curve was used to establish thinning and pruning in the model trees, as if they would have 
grown in a managed forest stand, since in a later modelling stage these trees would be used to 
construct stand-sized forest patches.  
 
 
2.3 LIDAR Measurement Model   
 
The approach to model LIDAR returns used in this study was previously developed and 
published by Morsdorf et al. (2007). It builds upon the open-source ray-tracing program 
POVRAY, whose scene and light descriptions could be adapted to represent the LIDAR 
measurement process. It incorporates reflectance and transmission, and could potentially 
account for multiple scattering, however in the way that the model is implemented now, it only 
allows for single scattering. The POVRAY scene description enables the user to construct scene 
with arbitrary complex geometry, as such it was quite straightforward to convert the 
TREEGROW output into POVRAY readable files. Light distribution can be explicitly modelled 
across beam and thus can be set up to match those of existing LIDAR instruments. POVRAY is 
being used to model both a depth and an intensity image from the perspective of the 
emitter/receiver optics; these two images are then combined to form an approximate 
cross-section profile assuming the single canopy elements act as Lambertian scatterers. 
Following that, this cross-section is convoluted with a laser pulse of specific length and shape, 
again according to the specification of the prototype instrument. An illustration of the modelling 
process can be found in Figure 3 and the model development and validation is described in more 
detail in Morsdorf et al. (2007). 
 

 
 

Figure 3: Illustration of waveform generation process based on intensity and depth image (left). The 
cross-sections (middle, at bottom) derived from these images is convoluted with a Gaussian shaped laser 

pulse of 5 ns length (middle, at top) to obtain the modeled LIDAR return waveforms (right). 
 
2.4 Sensitivity study – structure and physiology 
 
TREEGROW was used to grow the same Scots pine tree from year one to year 50, with the data 
being exported to a POVRAY scene file every five years. Trees aged from 10 to 50 years were 
used, and tree heights obtained reached from 2.5 to just over 18 meters. For each of the tree ages, 
four different trees had shoot reflectance assigned with reflectances based on the chlorophyll 
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concentration for June, July, August and September. Note that first and second year needles 
would get different reflectance values based on their different chlorophyll concentrations. Thus, 
if the ratio of first to second year needles changes during maturing of the tree, it is expected to 
show in the modelled waveforms. 
 
The LIDAR model was set up in a way that a single tree would be situated on a flat, horizontally 
levelled, spectrally homogenous plane with a spectral response of an Ericaceae understory (see 
Koetz et al., 2004 for details). The simulated LIDAR instrument illuminated the tree from 
directly above, being placed at a height of 500 m. To ensure that the total energy available to 
scene would not change, the beam size was fixed for all trees at different ages (and thus sizes) 
by making sure that the tallest tree was fitting the illuminated area. The LIDAR pulse shape was 
set to be of Gaussian shape and the pulse length was set to 4.75 ns (~ 1.43 m) full width at half 
maximum (FWHM), resembling the pulse length of the prototype instrument. For each of the 
four LIDAR wavelengths (531,550,670 and 780 nm) to be modelled, a separate (greyscale) 
POVRAY scene file had to be produced, since POVRAY only allows for one transmittance 
value in its RGB colour model. 
 
3. Results and Discussion 
 
In Figure 4, three return waveforms for 30, 40 and 50 year old trees are plotted side by side with 
a “real” canopy volume computed from the model tree. It was possible to differentiate between 
photosynthetically active canopy volume (shoots) and woody material volume (twigs, branches) 
in the tree model. Canopy volume was chosen as a proxy for biomass, as its computation from 
the model trees is straightforward and correlation with biomass should be strong and linear. The 
modelled waveforms exhibit the same vertical structure for all four wavelengths, but have 
different amplitudes. For this reason (and to save space) we present only the 780 nm waveform 
in Figure 4. From those waveforms, the most striking effect is the amount of smoothing due to 
the rather long laser pulse of 1.43 meters at FWHM; all vertical features in the canopy volume 
profile smaller than this distance are smoothed out. A deconvolution of the return waveform 
with the original laser pulse could help to reveal these features again, but for this step the 
original laser pulse shape needs to be known. A second feature of the return waveform is an 
apparent increase in tree height as well due to the convolution with the laser pulse, which makes 
the trees appear about 0.75-1 meter taller in the return waveform. A regression (not shown here) 
of LIDAR derived heights with the real heights of the model trees resulted in an R2 of 0.99, 
with a mean overestimation of model tree height by LIDAR by about 0.7 m, which is an effect 
of the convolution with the laser pulse. As with the smoothing effect before, a remedy to this 
with a real LIDAR system would be to know the length and the shape of the transmitted pulse 
and do a deconvolution. This is the reason why this information is generally provided to the user 
in the two commercially available single wavelength, full-waveform systems from Optech and 
Riegl.  
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Figure 4: Canopy volume profiles and simulated LIDAR waveforms for trees of 30,40 and 50 years of 
age. Right panels show both photosynthetic active (PA) and woody volume components, while left panels 
show backscatter at 780 nm (blue), the NDVI (see Equation 1) profile (green) and a resulting waveform 

(red) from the multiplication of the two.  
 
So the height information can be very well retrieved from the modelled waveforms, which is not 
surprising, since LIDAR remote sensing is a more or less direct measurement of canopy height. 
But we were also interested in assessing the physiological information content of a multiple 
wavelength LIDAR system. To do so, a representative measure has to be derived from the 
waveforms; just visually comparing the waveforms at different wavelengths would not reveal a 
vertical signal in the physiology. Since two of the modelled bands are enclosing the red edge 
(the sharp increase of reflectance/transmittance between 670 and 780 nm, see Figure 1), we are 
capable of computing a NDVI profile for the modelled trees according to the equation below:  
 

NDVI =
R780 − R670

R780 + R670

           (1) 

 
This spectral band ratio is depicted as a green line in the right panels of Figure 4.  
 
We were interested in quantifying the seasonal variation in this NDVI profile, which should be 
induced by the gain in chlorophyll concentration. In Figure 5, the vertical profiles of NDVI are 
depicted for selected trees; the profiles are computed for the crown extension only. Vertical 
extent of the tree crown was inferred manually for each tree and height thresholds for 
distinguishing crown material/backscatter from non-crown parts were established. NDVI 
increases towards the end of growing season, reaching its maximum in September. A vertical 
variation of NDVI is visible as well and could be explained by either the light versus age curve 
used to alter the ratio of “green” and “brown” canopy elements or by the ratio of first to second 
year needles varying vertically inside the canopy, or a combination of the two. The increase in 
NDVI during the growing season is largest towards the top of the tree, which is explained by the 
top having a larger fraction of first year needles showing a much larger variation of chlorophyll 
concentrations from June to September as opposed to second year needles (Table 1). However, 
the seasonal signal of NDVI was smaller than the vertical variation inside the tree crown. 
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Figure 5: NDVI profiles during a growing season for model trees of different ages. Colours denote ages, 
line styles denote month. NDVI varies vertically and is largest towards the end of the growing season, 

when needles have their maximum chlorophyll concentration.  
 
One of the main benefits for a multi-spectral LIDAR would be to more accurately provide 
estimates of the photosynthetic active (or “green”) biomass, and thus providing a better estimate 
of gross primary productivity (GPP). It is well known that LIDAR instruments can provide good 
estimates of the vertical canopy profile, but it has not been shown in previous studies that they 
are able to discriminate woody and leafy canopy material, even though backscatter at 1064 nm 
would be of different intensity for those two vegetation components, at least in terrestrial laser 
scanning. However, the cumbersome calibration of airborne intensity data in vegetation and the 
spectrally and structural inhomogeneous canopy as illuminated by the laser footprint has yet 
prevented the exploitation of this information.  
 
We computed the total canopy volume for each tree crown and correlated those with the LIDAR 
backscatter from the tree crown. The LIDAR backscatter was processed in two different ways, 
first just by summing up the backscattered energy at 780 nm (not affected by changes in 
chlorophyll concentration) and then by multiplying the backscatter at this wavelength with the 
NDVI profile to possibly retrieve a backscatter value adopted to the ratio of “green” to “brown” 
canopy elements. In Figure 6, these two LIDAR backscatter indicators computed for each of the 
nine trees are plotted over photosynthetic active canopy volume. 
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Figure 6: LIDAR backscattered energy of the tree crown versus photosynthetic active canopy volume. 
Using just a single, unmodified waveform (780 nm, top) will yield lower r-square than using a NDVI 

corrected waveform (bottom).   
 
Using only the backscatter at 780 nm as a predictor variable, 77 % of the photosynthetic active 
canopy volume variation can be explained. Using the NDVI-corrected backscatter, this value 
increased to 89 % explained variance, revealing a potential benefit of using multiple 
wavelengths for estimation of photosynthetic active vegetation elements.  
 
4. Conclusions and Outlook  
 
The scope of this work was to illustrate the potential advantage(s) and data products of a 
multi-spectral canopy LIDAR (MSCL) in a modelling study. Using a tree structural model and a 
model of leaf optical properties, we were able to simulate multi-spectral return waveforms for 
Scots pine trees of different ages (thus heights) and different physiological states during a 
growing season. It was possible to pick up both the signal of tree growth (height evolution) and 
the change in chlorophyll content over a growing season by computing NDVI profiles of the 
trees. NDVI would vary vertically inside the tree crown to a larger extent than its seasonal cycle, 
with the largest seasonal variations being in the top part of the tree. The first year needles, that 
are abundant at the top of the tree, can explain this, since they show a much stronger seasonal 
variation of chlorophyll content. A new multi-spectral LIDAR predictor variable for 
photosynthetic active canopy elements was defined by multiplying the NDVI profile and the 
backscatter profile at the reference wavelength of 780 nm. This predictor variable explained a 
larger percentage of photosynthetic active canopy volume variation than a single wavelength 
alone was able to. However, it remains unclear whether this finding will persist as well in 
modelled forest stands, as opposed to modelled measurements of single isolated trees as done in 
this study. The modelling work presented in this paper is just the first of a whole set of 
modelling experiments undermining the concept of a multi-spectral LIDAR instrument. Further 
tests are going to be carried out with simulated stands constructed of TREEGROW trees of 
different ages, including a spectrally different understory layer and topographic undulations. 
Ultimately, these experiments will help explaining variations in waveforms as captured by a 
prototype instrument and lead to undermining the potential of future spaceborne missions with 
multi-spectral canopy LIDAR instruments.  
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Abstract 
 
The Weibull distribution is one of the most frequently used functions in forestry to fit diameter 
or height distributions. However, estimating the location parameter of the Weibull distribution 
frequently causes numerical problems because it is highly correlated with the scale and shape 
parameters. The location parameter is therefore usually fixed to a certain value. We propose to 
use the reversed generalized extreme value distribution (RGE) to overcome this limitation. The 
RGE is a reparametrization of the Weibull distribution that allows estimation of the location 
parameter. We apply the RGE in the context of a generalized linear model (GLM). In the GLM, 
the tree diameter is assumed to be the RGE distributed response. It is estimated using area-based 
methods (vegetation height metrics). While visual comparison reveals a good conformity of the 
RGE with observed diameter distributions, the smallest diameter (location parameter) is in 
tendency underestimated by the RGE. For the distribution means, the RMSE is 2.12 cm with a 
bias of 0.29 cm. 
 

Keywords: reversed generalized extreme value distribution, Weibull distribution, GAMLSS, lidar 
 
1. Introduction 
 
Several studies proved that small footprint airborne laser scanner data (ALS) can be used for 
estimating forest parameters either using single tree detection algorithms (e.g., Persson et al. 
2002, Peuhkurinen et al. 2007) or area-based (also referred to as plot-wise) approaches (e.g., 
Nilsson 1996, Magnussen & Boudewyn 1998, Næsset 2002). Due to their robustness, the latter 
are used in Scandinavia on operational scales since several years (Næsset 2004). Area based 
approaches usually provide plot level estimates such as total volume, basal area or mean height. 
However, for predicting timber assortments, the diameter distribution of a forest stand is needed 
as an important parameter. 
 
Generally, non-parametric (e.g., Maltamo & Kangas 1998) and parametric (e.g., Hafley & 
Schreuder 1977) methods can be used to model diameter distributions. Aim of parametric 
methods is to estimate the parameters of a distribution function. Due to the possibility of using 
biological interpretable parameters, parametric methods enjoy a high popularity. The Weibull 
distribution is an often-used function to model diameter distributions (e.g., Bailey & Dell 1973, 
Nagel & Biging 1995, Cao 2004). Several authors also used ALS to estimate the parameters of 
Weibull distributions (e.g., Gobakken & Næsset 2004, Mehtätalo et al. 2007). 
 
In managed forests, it frequently occurs that the smallest diameter on sample plots with large 
trees is larger than zero or the smallest measured tree (calliper limit). However, while the 
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Weibull distribution has a location parameter, its estimation causes numerical instability since 
the scale and the shape parameter are highly correlated with it. The location parameter is 
therefore usually fixed to a certain value (e.g., Breidenbach et al. 2008, Gobakken & Næsset 
2004, Cao 2004). The probability of the occurrence (density) of small trees will then be 
overestimated. 
 
In this paper we describe the use of the generalized extreme value distribution (Johnson et al. 
1995), which is provided by (Rigby & Stasinopoulos 2005) as the reversed generalized extreme 
value distribution (RGE). It is a reparametrization of the three-parameter Weibull distribution 
and can be used to estimate also the location parameter. We applied a generalized linear model 
(GLM, Nelder & Wedderburn 1972) with the diameter as the RGE distributed response. The 
parameters of the RGE distribution are estimated using plot-wise vegetation height metrics 
derived from small footprint, low density ALS data. Due to the plot design, a combination of 
several truncated RGE distributions was used. 
 
2. Material and Methods 
 
2.1 Study area 
 
The tree species composition of the 50 km² study site is a managed forest, dominated by 
Norway spruce (Picea abies L. Karst.) with a 70% proportion by area, beech (Fagus sylvatica 
L.) with 11% and silver fir (Abies alba Mill.) with 10%. More details on the forest structure are 
given in Table 1. 
 

Table 1: Forest characteristics of the study site 
 

 Minimum Median Mean Maximum 
Stem number [ha-1] 22.1 397.8 497.3 2829 
Stem volume [m3 ha-1] 7.2 412.7 413.2 1193 
Basal area [m2 ha-1] 1.8 36.8 36.8 81.9 
Basal area mean diameter [cm] 7.5 35 35.8 68.8 
Mean height [m] 5.1 25 24.6 40.7 

 
 
2.1.1 Plot establishment 
 
In 2002, a permanent sample-plot inventory was carried out on a 100 m (easting) by 200 m 
(northing) grid. Trees with a diameter at breast height (dbh) of at least 7 cm were measured on 
concentric sample plots with a maximum diameter of 12 m. To increase the efficiency of the 
inventory, trees with a dbh <30 cm were sampled on plots with smaller radii. This results in four 
possible plot sizes of 2, 3, 6 and 12 m, where trees with a minimum dbh of 7, 10, 15 and 30 cm 
are measured. 
 
2.1.2 Laser data 
 
The laser scan data were collected with an Optech ALTM 1225 laser scanner in winter 
2003/2004, i.e. about one year after the inventory took place. A flight altitude of approx. 900 m 
above ground yielded an average distance of 1 m between scan points on the ground. The first 
as well as the last pulse data were automatically classified by the data provider into vegetation- 
and ground points (reflection from terrain surface). 
 
A digital terrain model (DTM) with one meter pixel spacing was computed from the ground 
returns using the average height of returns if several reflections were located within one pixel 
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and bilinear interpolation if no return was within the pixel. The value of the respective DTM 
pixel was subtracted from the first pulse vegetation raw data to obtain vegetation heights. 
Vegetation height metrics (e.g., percentiles and mean) were derived for every sample plot 
(Næsset 2002). 
 
2.2 Parameter estimation 
 
The reversed generalized extreme value distribution (RGE) is obtained from the generalized 
extreme value distribution (Johnson et al. 1995, p.76) by replacing y with -y and ξ  by -ξ  
(Rigby & Stasinopoulos 2005). It has the density  
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If a is the location, b the scale and c the shape parameter, the density of the Weibull distribution 
is denoted  
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The RGE is a reparametrization of the Weibull distribution in that 

γ
θξ −=a , 

γ
θ

=b  and 
γ
1

=c . 

 
The parameters of the RGE distribution were estimated using plot-wise derived vegetation 
height metrics from ALS raw data. The equation ),,|( γθξyf  was therefore extended to 

),,|( iiiiyf γθξ . 
 
Due to the concentric sample plot design, we constructed four censored RGE distributions for 
every possible plot radii by  
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where U and L are the upper and lower bounds of the diameters for the concentric sample plot 
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with radius R, respectively. This resulted in the functions g2, g3, g6, g12. 
 
The likelihood function for the parameter estimation is therefore  
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The parameters are bound to the predictor variables with link functions h: 
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where x are the predictor variables, β  are the coefficients. The identity is the link function for 
ξ  and the natural logarithm is the link function for θ  as well as γ . 
 
The likelihood function was maximized using the Nelder-Mead algorithm implemented in the 
function optim (Venables & Ripley 2002), within an R environment (R Development Core Team 
2007) 
 
On average, 12 trees were measured on a sample plot. The predicted distribution can therefore 
not be compared with observations from one sample plot. Therefore, the observations from plots 
similar with respect to the explanatory variables are aggregated to what we will call vegetation 
height quartile classes for the remainder of the text. Then, the predicted RGE distribution can be 
compared with the histogram of the observations. 
 
3. Results 
 
The first and third quartile (Qu1 and Qu3) of the vegetation height were selected as predictor 
variables for all parameters. Their interaction term (Qu1 * Qu3) was considered as predictor 
variable for the ξ  and θ  parameters. 
 
The parameters of the RGE distribution can be predicted by  

iξ  = 4.15 + -1.20 Qu1i + 1.93 Qu3i + 0.02 Qu1i Qu3i 

iθ  = 0.97 + -0.03 Qu1i + 0.11 Qu3i + -0.001 Qu1i Qu3i    (6) 

iγ  = -0.31 + 0.03 Qu1i + -0.05 Qu3i 
 
 
Compared with a Weibull distribution (location parameter fixed at the calliper limit) directly 
fitted to the observations, the RGE distribution matches well to the observed diameter 
distributions (Figure ). The smallest estimated diameter of the RGE distribution is usually above 
the calliper limit and especially for plots with large trees, larger than for the Weibull distribution. 
However, compared with the actual observations, the size of the smallest diameter is still 
underestimated (Figure ). 
 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 270

Qu1: (24,26.8]  Qu3: (28.9,32.7] 
 Plots: 20 Trees: 242

D
en

si
ty

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Qu1: (18.2,21.1]  Qu3: (25.2,28.9] 
 Plots: 45 Trees: 472

D
en

si
ty

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Qu1: (21.1,24]  Qu3: (25.2,28.9] 
 Plots: 33 Trees: 436

DBH (cm)

D
en

si
ty

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Qu1: (15.4,18.2]  Qu3: (21.5,25.2] 
 Plots: 58 Trees: 725

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Qu1: (18.2,21.1]  Qu3: (21.5,25.2] 
 Plots: 38 Trees: 561

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Qu1: (12.5,15.4]  Qu3: (17.7,21.5] 
 Plots: 51 Trees: 676

DBH (cm)
0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Qu1: (15.4,18.2]  Qu3: (17.7,21.5] 
 Plots: 29 Trees: 430

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Qu1: (9.67,12.5]  Qu3: (14,17.7] 
 Plots: 40 Trees: 449

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

Qu1: (6.81,9.67]  Qu3: (10.3,14] 
 Plots: 22 Trees: 228

DBH (cm)
0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

 
Figure 1: Probability density distribution of observed DBH (histogram) and predicted RGE distributions 
(solid graph) for the 9 most densely populated laser-derived vegetation height quartile classes. The dashed 
curve marks the Weibull distribution which has been directly fitted to the observations. Qu1 denotes the 
class width of the first quartile (m) and Qu3 the class width of the third quartile (m). Plots and trees 
represent the number of sample plots and trees in the corresponding plot strata. 
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Figure 2: Smallest predicted DBH using the RGE and Weibull distribution and smallest observed DBH 
(solid line = 1:1 line). 
 
The means of the RGE and the observed distribution was computed for the 20 most densely 
populated quartile classes (containing at least 3 Plots). As the good conformity of the predicted 
distribution with the observed distribution supposes, the difference between the mean of the 
RGE distribution and the mean of the observations is rather small (Figure 3). The RMSE is 2.12 
cm with a bias of 0.29 cm. 
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Figure 3: Observed versus predicted mean DBH for the 20 most densely populated quartile classes 
(circles) and 1:1 line (solid line). 
 
4. Discussion 
 
Numerical problems may occur while estimating the location parameter of the Weibull 
distribution (e.g., Gobakken & Næsset 2004) because the parameters are highly correlated. 
Therefore, the location parameter is usually fixed to zero or some other value (e.g., Cao 2004). 
The reversed generalized extreme value distribution (RGE), as described by Rigby & 
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Stasinopoulos (2005), is a reparametrization of the Weibull distribution. Since the location 
parameter of the Weibull distribution is obtained from a combination of the three parameters of 
the RGE distribution that are not strongly correlated, it can be estimated. 
 
The proposed RGE distribution can be used to estimate diameter distributions. For the 
prediction of assortments, information about tree heights (for a solution see for example 
Mehtätalo et al. 2007) and tree species are also required. In this study, we assumed the 
observations to be independent of one another. Another topic of future research will be how 
spatial autocorrelation affects the statistical models. Standard errors of the coefficients will also 
need to be computed. To do so, derivations of the log-likelihood function can be used to 
compute the Fisher information matrix. The inversion of the Fisher information is the 
covariance matrix of the parameters. 
 
The GLM used here is the state of the art method to fit conditional distributions. It allows the 
prediction of parameters, also if reference data stem from small sample plots. Consequently, 
potential multimodal distributions are not likely to occur since small patches of forest are 
relatively homogenous. 
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Abstract 
 
Airborne laser scanning (ALS) data are often used for downscaling point based forest inventory 
(FI) measurements in order to obtain spatially distributed estimates of forest parameters. Such 
downscaling algorithms usually consist in a direct coupling between selected FI parameters and 
ALS data collected at the field sampling locations. Thus, adequate co-registration between FI 
and ALS data is an essential pre-processing step in order to get accurate predictive relationships. 
The current paper presents a new, automated co-registration approach which iteratively searches 
for the best match between an ALS based canopy height model and the tree positions and 
heights measured during the FI. While the basic principle of the algorithm applies to various 
types of FI sampling configurations, the co-registration approach has been specifically 
developed to take into account the tree selection criteria posed by angle count sampling. Several 
criteria are employed to detect possible ambiguous solutions and to reduce post-processing 
efforts by an image operator. Model validation was based on National Forest Inventory (NFI) 
and ALS data of the Austrian Vorarlberg province. 
 
Results show that 67% of the sample plots could be accurately automatically co-registered (i.e, 
distance to reference data set < 4 m). All solutions with deviations from the reference data set > 
4 m were correctly marked by the algorithm as being ambiguous. Applying the automatically 
co-registered sample plots in a growing stock model provided estimates that were clearly 
superior to those obtained with the original plot positions and even slightly outperformed those 
based on manual co-registration. As the developed algorithm will be part of an operational 
processing chain for Austrian NFI data, it has a high practical relevance.  
 
Keywords: LiDAR, relative orientation, relascope, Austria, mountainous environment   
 
1. Introduction 
 
Forest inventories (FIs) are usually based on field measurements performed at selected sampling 
units. This way of sampling provides statistically derived measures of forest conditions which, 
depending on the sampling density, are representative for large to medium size administrative 
units such as countries or provinces. If information is required for smaller administrative units, 
like municipalities or forest stands, the available forest information has to be downscaled using 
additional, spatially distributed information sources such as multi-spectral satellite imagery 
(Koukal, 2004) or aerial photographs (Holmström et al., 2001). In recent years, airborne laser 
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scanning (ALS) has proven a very promising alternative data basis for spatializing point based 
forest inventories (Maltamo et al., 2007). Its capability of accurately describing the horizontal 
and vertical distribution of canopy elements makes ALS well suited for the quantitative 
assessment of structural forest parameters such as tree density, tree height, and stem volume. 
 
The downscaling procedure generally consists of two consecutive steps: i) establishment of a 
consistent relationship between selected forest inventory parameters and laser scanning data of 
the field measurement locations (e.g., by k-nearest neighbours or multiple regression), and ii) 
deploying the relationship thus obtained to the entire laser scanning data set in order to obtain 
the spatially distributed forest inventory. Establishing a predictive relationship between FI data 
and ALS relies on a direct coupling between canopy height information contained in the ALS 
data and the forest and tree attributes of the FI. Therefore, accurate spatial agreement is of vital 
importance for accurate calibration of the established relationships (Farid et al., 2006; Hollaus et 
al., 2007). Nevertheless, the coordinates of sampling locations and tree positions are often still 
measured with non-differential GPS units, leading to positioning errors up to several meters. 
This is particularly true in mountainous terrain where due to topography the number of visible 
satellites is significantly reduced compared to flat terrain. In contrast, ALS data typically have 
planimetric errors of less than 50 cm, making it very suitable as a geographic reference for the 
FI data. If tree positions and heights of the trees within the sampling units are known, a data 
analyst can adapt the positions of the FI data to the ALS data set by visual interpretation. This 
might, however, be a time-consuming and tedious task, especially if several thousands of 
sampling units have to be co-registered, such as in the case of national forest inventories. 
 
To overcome this problem, the current paper presents a new, automated approach for the 
co-registration of FI and ALS data. While the basic principle of the approach applies to various 
types of FI sampling configurations the study will concentrate on data of the Austrian National 
Forest Inventory (NFI) which is based on angle count sampling (Bitterlich, 1948). Section 2 
describes more in detail the characteristics of the NFI, even as the specifications of the used 
ALS data. The co-registration procedure is presented in Section 3, while its results are presented 
and discussed in Section 4. Conclusions and outlook are given Section 5. 
 
2. Study site and data 
 
2.1 Study area 
 
The novel co-registration procedure was developed based on ALS and NFI data of the 
Vorarlberg province in Austria (Figure 1a). Elevation in the Vorarlberg province ranges from 
396 m to 3,312 m asl. The landscape is mainly characterized by high alpine areas, coniferous 
and mixed forests, shrubs, meadows, and sparsely settled areas in the valley floors. The average 
timberline ranges between 1,700 and 2,000 m. According to the NFI 2000/20023 Vorarlberg is 
covered with about 97,000 ha of forest, representing a forest cover fraction of 37.3%. The main 
tree species in Vorarlberg are spruce (Picea abies; 53.9% of the total area covered by forests), fir 
(Abies alba; 11.6%) and beech (Fagus sylvatica; 9.6%). 66.9% of the forested area can be 
classified as coniferous forest, 23.8% as deciduous forest, while the rest consists of open spaces, 
shrubs, and bare surfaces4. 
 
2.2 Airborne laser scanning data 
 
The ALS data were acquired within the framework of a commercial terrain mapping project 
covering the entire district of Vorarlberg. Since terrain mapping campaigns require snow-free 
                                                  
3 http://web.bfw.ac.at/i7/Oewi.oewi0002?geo=8&isopen=0&display_page=0 
4 http://web.bfw.ac.at/i7/Oewi.oewi0002?geo=0&isopen=3&display_page=22 
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and leaf-off conditions, a prerequisite that is usually not simultaneously met for valley floors 
and high altitudes, the data were acquired during several flight-campaigns in the years 2002 to 
2004. The data were acquired by the company TopScan GmbH, Germany deploying Airborne 
Laser Terrain Mapper systems (ALTM 1225, ALTM 2050) and the company Terra Digital 
GmbH, Germany which employed a Leica-Scanner ALS50. The flying heights of the ALS 
campaigns vary between ~500 and ~2,000 m above ground and minimum point density is 1 
point/m². For this study, georeferenced 3D-point clouds and digital terrain (DTM) and surface 
models (DSM) with a resolution of 1 m were provided by the Land Survey Administration 
Feldkirch. Canopy height models (CHM) were calculated by subtracting the DTM from the 
DSM. 
 

 
 

Figure 1: a) Location of Vorarlberg study site. Shown is the forested area overlain with the NFI sample 
units. b) Configuration of sampling units within a tract as employed at the Austrian NFI. c) Configuration 

of a sampling unit.  
 
2.3 Forest inventory data 
 
The development of the co-registration procedure was based on Austrian NFI data from the 
assessment period 2000/2002. The NFI is carried out in regular time intervals of six to eight 
years and comprises more than 170 attributes that provide information on quantity, quality and 
trends of the Austrian forests. The attributes relevant for this study are given in Table 1. The 
sampling design of the NFI is a permanent sampling grid pattern where tracts are regularly 
distributed (3.89 km grid size) over Austria. Each tract is made up of four sampling units spaced 
in a square at a distance of 200 m (Figure 1b). The single sampling units comprise a fixed large 
circular sampling area of 300 m2 (R=9.77 m), a fixed small sampling area of 21 m2 (R=2.60 m), 
and an angle count sampling plot (also called Bitterlich plot). While the fixed large circular plot 
is used to capture site specific properties, within the small sampling circle every tree with a 
diameter at breast height (DBH) between 50 and 105 mm is characterized. Within the angle 
count sampling the selection of trees is based on a relascopic measurement of DBH and 
consequently the plot has a variable size. A basal area factor of 4 was employed. For a subset of 
the sample trees heights were measured with a VERTEX III5, while data models were used to 
estimate heights of the remaining sample trees (Gschwantner and Schadauer, 2004). 
                                                  
5 http://www.haglofsweden.com/products/VertexIII/ 
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Within the forested area of Vorarlberg 132 sampling units are available (Figure 1). Since no 
reliable dGPS measurements were available to test the accuracy of the automated co-registration 
results, reference centre coordinates of each sample plot were determined by manually seeking the 
optimum fit between tree positions and heights measured by the NFI and the CHM. To do this, the 
absolute positions of the trees within each plot were calculated from the geographical coordinates of 
the sample plot centres and the polar coordinates of the individual trees. These coordinates were then 
converted into ArcGIS shapefiles which, in combination with the NFI heights of each tree, facilitated 
a visual comparison with the CHM and finally a manual adaptation (Figure 2). 98 of the 132 
sampling units could be unambiguously co-registered in this way. The errors of the measured NFI 
centre coordinates thus established ranged between 0.00 and 54.00 m with an average of 8.50 m. 

 
Table 1: Attributes of the Austrian NFI that are relevant for the presented co-registration procedure. 

 
Variable Unit Measurement principle 

Center coordinates (X,Y) of 
individual sample plots  

m 
(GK Austria meridian 

28 coord. system) 

Non-differential GPS. In case of bad 
receiving computed from GPS measurement 
in a nearby open space and eccentric 

Polar Azimuth from plot centre gon compass 
Distance from plot centre cm ultrasonic range instrument 
Diameter at breast height (DBH) mm Calliper, Measuring tape 
Tree height dm Ultrasonic measurement with VERTEX III 
Tree type and tree class (indicating 
vitality, growth stage, and relationship 
with neighbouring trees) 

- Using key proposed by (Schieler and Hauk, 
2001) 

 

 
 

Figure 2: Relative orientation between tree positions, sample plot centre coordinates and the CHM for 
sample plots 02104324 and 01803416. The red vector indicates the manual shift applied to co-register 

NFI data to the CHM 
 
3. Automated co-registration 
 
3.1 Model description 
 
An automated co-registration procedure was developed in order to overcome the manual 
adjustment step between NFI data and CHM described in the previous paragraph. The approach 
searches iteratively within a specified search window for the best fit between the tree heights 
measured during the NFI and the heights contained in the CHM (Figure 3-a). Thus, the height 
difference (D) for a given sample plot centre coordinate x,y within the search window can be 
given by: 
 

tCHMtNFI

N

t
tyx HHcD ,,

1
, −⋅= ∑

=

 (1) 

where N is the number of trees measured in one NFI sample plot, HNFI,t is the height assessed 
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during the NFI for tree t, and HCHM,t is the value of the canopy model at the location of tree t. 
Tree class parameter c is introduced in the cost function to account for the vigorousness of a tree 
and its social status with respect to the surrounding trees (Schieler and Hauk, 2001). It is thus an 
indicator for its “visibility” in the CHM. The tree class parameter can take a value of 1 (e.g. tree 
crown is part of bottom canopy layer), 2 (e.g. tree crown belongs to middle canopy layer), or 4 
(e.g. predominant or solitary tree). The c factor is normalized for the total number of trees in the 
sample plot. 
 
It is assumed that within an angle count plot the measured tree positions have an accuracy of 
±1.0 m relative to the sample unit centre. To allow both for these small measurement errors and 
for the uncertainties resulting from rasterizing the ALS data the NFI tree height is compared 
with the highest CHM value in a 3×3 pixels (i.e. 3×3 m2) window around the tree location.  
 
Calculating the height difference in the proposed way only considers tree height differences but 
does not account for the configuration of the angle count sampling. In fact, the angle count 
sampling only includes those trees that at a certain distance from the sample plot centre have a 
minimum DBH, defined by the basal area factor. To avoid solutions that conflict with this 
sampling principle, the minimum tree height required to fall within the sampling was introduced. 
This is done as follows: For every distance from the centre coordinate the minimum required 
DBH is calculated. Through an empirical relationship between DBH and height (Table 2), and 
correcting for the uncertainty in this function, the minimum required tree height for each 
distance from the sample plot centre is calculated (Figure 3-c). By subtracting the minimum 
required tree height from the CHM subset (which is defined by the position of the sample plot 
centre in the search window and by the distance of the outermost tree to the sample plot centre) 
one obtains the parts of the tree crowns that should be included in the angle count sampling 
(Figure 3-b). The hypothetical tree crowns that are actually included in the angle count sampling 
are derived from the NFI parameters by relating crown shape and extension to BHD according 
to the allometric functions proposed by (Hemery et al., 2005) (Figure 3-d). Subtracting the 
minimum required tree height (Figure 3-c) from the simulated tree crown model provides the 
image that is directly comparable with Figure 3-b (Figure 3-e) and in the ideal case would look 
identical. 
 
As can be seen in Figure 3-d and e the simulated crown shapes are only a rough approximation 
of the actual crown shapes. For this reason we decided not to compare the complete simulated 
and measured “visible” tree crowns but, instead, only compare the apexes of the trees while the 
rest of the simulated tree crown pixels were excluded in the cost function (Figure 3-f). Tree and 
non-tree pixels are equally weighted in the cost function, i.e. the sum of the weights attributed to 
the tree apices (while still accounting for social stand differences) equals the sum of all non-tree 
pixels (Figure 3-f). Hence, equation (1) can now be written as: 
 

pCHMpNFI

N

p
pyx HHcD ,,

1
, −⋅= ∑

=

 (2) 

 
where HNFI,p is pixel p in the adapted tree crown model (Figure 3-e), HNFI,p the equivalent pixel 
in the adapted CHM subset (Figure 3-b) and c the weight of the pixel according to Figure 3-f. 
The D-values of one sample plot is scaled between 0-1 and the coordinate x,y within the search 
window providing the smallest D value is eventually assumed the new, co-registered sample 
plot centre coordinate. 
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Figure 3: Example of data sets used for co-registration of sample plot 00504100: a) subset extracted from 
the input CHM around position x,y within search window; b) Difference between CHM subset and 
minimum tree height required to be sampled in Bitterlich plot (shown in c); d) simulated tree crown 

model; e) difference between simulated tree crown model and minimum required tree height (shown in c); 
f) weight attributed to every pixel in cost function.      

 
Table 2: Empirical regression functions between BHD and tree height based on Austrian NFI 2000/2002. 

  
Type Regression function # 

observations 
R2 

Coniferous Tree height = 7.3677 * 
BHD0.5957 

25201 0.73 

Deciduous Tree height = 14.455 * 
BHD0.4695 

7459 0.66 

Mixed Tree height = 8.9211 * 
BHD0.5604 

32660 0.70 

 
 
3.2 Quality flagging 
 
Even if the proposed iterative procedure leads to a global minimum, it is possible that due to 
errors in the CHM, NFI measurements, and model approximations the obtained minimum does 
not correspond to the actual optimum position. Identifying those sample plots that potentially 
have an ambiguous solution is a key element in the workflow since these samples may require 
manual post-processing by an image processor. Following criteria were considered when 
marking a solution as ambiguous. In this respect all sample plots that require manual 
post-processing should be included whereas as few as possible accurately co-registered samples 
should be included in order to reduce unnecessary quality controls by the image processor:  

1. When among the smallest residuals more than one spatial cluster exists (Figure 4 – 
middle).  

2. When residuals are sorted and plotted, a steep slope stands for an unambiguous 
solution while a flat slope suggests several plausible solutions. (Figure 4 – right) 

3. When sample plot has a predominance of deciduous trees, since these have less 
pronounced tree apexes than conifers and were acquired under leaf-off conditions 

4. When distance between original centre coordinate and co-registration result is larger 
than 20 m.  
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4. Results 
 
The accuracy of the automated co-registration procedure was investigated by computing the 
distances between the automatically co-registered sample plot centre coordinates and the centre 
coordinates that could be unambiguously manually allocated by the image processor. For visual 
interpretation the distances were sorted in ascending order (Figure 5a). The figure shows that 67 
of the 98 sample plots (i.e. 68%) were correctly co-registered, with a distance to the manually 
obtained results ranging between 0.08 and 3.64 m. The causes of several sample plots not being 
correctly co-registered (defined as those with a distance included the issues already pointed out 
in paragraph 3.2, i.e. the presence of multiple solutions and the predominance of deciduous trees 
(Figure 5c). In addition, two of the incorrectly co-registered sample plots had a manual solution 
outside the iteration search window (60 × 60 m2) and also CHMs with a point density of less 
than 1 point/m2 appeared problematic (Figure 5b). 
 
Figure 5 additionally shows the results of the quality flagging. It can be seen that all of the 
points with a deviation > 4 m were marked “ambiguous”, leading to an omission error of 0%. 
Similarly, all plots with a deviation < 4 m were marked “unambiguous”. Hence, the overall 
accuracy of quality flagging amounts 74%. In contrast, 26 plots showing only small deviations 
from manual co-registration results were incorrectly tagged as “unambiguous”, leading to a 
commission error of 45%. As a consequence, these 26 samples will be superfluously controlled 
during post-processing. 
 

 
 

Figure4: Quality measures considered during co-registration, demonstrated for sample plot 00504100 
(top) and 00903900 (bottom): the spatial distribution of residuals elucidates if more than one or very large 
clusters of minimum residuals exist (middle), the red triangle indicates the absolute minimum; the slope 
of the sorted residuals at the smallest absolute D-value indicates if the found absolute minimum is likely 

to be the global minimum or if several local minima exist (right).  
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5. Discussion and conclusion 
 
With a correct co-registration of 67% of the sample plots the automated algorithm has the 
potential of significantly reducing pre-processing efforts in order to obtain more accurate ALS 
based predictive models. This is best illustrated with a practical example. For this purpose we 
calibrated and cross validated the growing stock model of (Hollaus et al., 2008) for 3 different 
co-registration states of the NFI, using i) the original, ii) the automatically co-registered, and iii) 
the manually co-registered sample plot centre coordinates. The selection of centre coordinates 
was based on the 41 sample plots that during automated co-registration were marked 
“unambiguous”. Calibration and cross validation was based on in situ growing stock 
measurements collected at each sample plot within the framework of the Austrian NFI (Gabler 
and Schadauer, 2006). Four sample plots were excluded from growing stock measurements and 
model calibration due to the absence of trees with sufficiently large DBH. 
 

 
 

Figure 5: a) Distance between automatically and manually co-registered sample plot centre coordinates, 
sorted in ascending order. Black diamonds indicate the points that during co-registration were flagged 

“unambiguous” while red squares were marked “ambiguous”. b, c) Examples of incorrectly co-registered 
sample plots. b) shows a plot dominated by deciduous trees, c) is characterized by an insufficient ALS 

point density. Red triangles (crosses) show the original tree (centre point) locations, blue the results of the 
automated, and green the results of the manual co-registration.  

 
Figure 6 shows that using the automatically co-registered data yields significant improvement 
(both R2 and relative standard deviations (SD) obtained by cross validation) compared to the 
original sample plot centre coordinates and even slightly outperforms the accuracy obtained 
when using the manually co-registered sample plot centre coordinates.  
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Figure 6: Effect of co-registration on calibration of ALS based growing stock model of (Hollaus et al., 
2008). Left plot shows the results when original sample center coordinates measured by GPS are used, the 

middle (right) plot when automatically (manually) co-registered coordinates are used. 
 

 
The above example illustrates the practical relevance of adequate co-registration between FI and 
ALS data in general and the potential of the automated algorithm in performing this task in 
particular. Moreover, the quality flagging allows the user to identify those results that should be 
treated with precaution or require manual post-processing. Future efforts will concentrate on 
testing the developed algorithm on other data sets. In this context, a higher overall accuracy is 
expected when ALS data with a higher point density is used. Since the developed algorithm will 
be part of an operational processing chain for Austrian NFI data, it has a high practical 
relevance. 
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Abstract  
 
Individually segmented tree crowns are an increasingly common intermediate product for forest 
inventories using ALS and/or high resolution digital photography. Empirical models are often 
used to predict the species and sizes of the individual trees associated with each individually 
delineated tree crown (ITC). Data for such models can come from purposive sampling or from 
design-based probability sampling. In either case, the empirical predictions will have errors, 
both with respect to tree size and species. Furthermore, the data used for modeling will often 
have incorrect matches between ITCs and sample trees. Probability models are well suited to 
deal with the problem of incorrect matches, false positives and omissions. Examples of such 
models are shown for a forest in the southern U.S., consisting of pine plantations and naturally 
regenerated pine stands, with various amounts of natural fill-in of both pine and hardwood. The 
probability models, coupled with design-based probability sampling, can be unbiased for 
selected measures of yield by species at the stratum level. 
 
Keywords: remote sensing, sampling, tree crowns, matching. 
 
1. Introduction  
 
Forest inventories involving extensive remotely sensed data such as that from LiDAR, coupled 
with ground sampling, are in increasingly common use. The analysis of the remotely sensed 
data can be on an area basis (Næsset, 2004), or may be based on segmentation of individual tree 
crowns (ITCs). The latter approach may have the greater intuitive appeal. Næsset et al. (2004) 
and Maltamo et al. (2007) give overviews of recent experiences with the various methods.  
Gougeon and Leckie (2003) summarize research in individual crown segmentation going back 
over twenty years. Many different sources of remotely sensed data, singularly or combined, can 
be used to delineate individual tree crowns (ITCs).  Reports of crown delineation based on 
LiDAR include Hyyppä et al. (2001a), and Persson et al. (2002).  
 
Aside from the need for calibration, there are several basic problems which hinder the accuracy 
of predictions based on ITC.  These include incorrect segmentation, undetected dominant trees, 
hidden trees (Mehtatalo, 2006), incorrect species predictions, and the likelihood that allometric 
relationships used to predict diameter as a function of height and crown area will vary with 
stand history and other factors. Though species identification is improving over the 50% error 
rate reported by Hyyppä et al. (2001b), correct species identification of all or most ITCs has 
been an elusive goal. Progress in species identification has been reported by Gougeon and 
Leckie (2003) and Holmgren and Persson (2004),  
 
The data used to fit ITC to tree prediction relationships are often selected without benefit of a 
rigorous sampling methodology. The ITCs are the entities upon which the predictions are based; 
however they are seldom used to construct a sample frame. Furthermore, the linkages between 
the sample ITCs and the trees they correspond to are often very subjective or incomplete. The 
inventory study that is the subject of this paper utilizes the full set of ITCs to form a rigorous 
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sample frame. The linkage between sample ITCs and sample trees uses methodology which is 
almost free of subjectivity. The theory is reported in Flewelling (2006) and Flewelling (2008). 
Section 2 of the present paper has a brief description of the study material, and all the 
processing steps prior to the development of the probability models. 
 
2. Study Material and Preliminary Processing  
 
The forest being inventoried consisted of two blocks in the coastal plain of Texas, USA. The 
majority of the stands were either plantations of slash pine or loblolly pine.  Others were 
naturally regenerated pine. Significant amounts of hardwood were in the natural stands, and in 
the planted stands in one of the two blocks. An inventory was available showing past 
management practices including age of establishment and thinning history. Stand boundaries 
were in a geographic information system (GIS). The inventory described here excludes stands of 
age 12 and younger, and excludes stands which had been classified as hardwoods; those stands 
were inventoried using different methods. The inventory presented here is comprised of 1573 
stands with a total area of 14,800 ha.  
 
2.1 Remotely Sensed Data and Processing 
 
Two types of remotely sensed data were available: LiDAR and color-infrared (CIR) digital 
photography (red, green and near infrared channels). The LiDAR data were acquired using an 
Optech Altm 3100 sensor. Specifications were for a minimum of five postings per square meter. 
Only the first and last returns from each LiDAR pulse were retained. The LiDAR data were 
used to create a digital elevation map; the first returns were converted to values of height above 
ground, and further converted to 0.5 by 0.5 m pixels. Pixel heights were set to the highest return 
in each pixel; pixels without returns had heights imputed from neighbouring pixels. The CIR 
data were fused with the pixelized LiDAR data. 
 
Individually delineated tree crowns (ITCs) were identified over the entire forest by applying a 
semi-automatic valley-following technique (Kelle et al., 2007) with similarities to that of 
Hyyppä et al. (2001a). Each ITC is represented by a contiguous set of whole pixels. ITC height 
was determined as the greatest of the pixel heights; ITC area was determined as the sum of the 
areas of the pixels; ITC location was determined as the geometric mean of the pixel locations. 
ITC color was determined as the average of the color values of the pixels. 
 
All ITCs were assigned a species group (SPG). The two species groups were pine and hardwood. 
The assignments were made through a operator-guided training process, which was calibrated 
separately by stand type and block. The assignment methodology used a neural network 
approach, based mainly on the color data. This approach allows a species-group probability to 
be assigned to each ITC. Subsequently each ITC was assigned a putative species group: the 
species group with the higher probability. Every stand had species cover assessed ocularly. The 
putative species group assignments for the ITCs within each stand were adjusted to match the 
overall assessment for the stand. 
 
2.2 Sampling 
 
Stands were grouped into twenty-two sampling strata based upon block, species planted, 
thinning history, origin, and age. Within each stratum several stands were selected without 
replacement for sampling; the probability of selection was proportional to stand area; most 
strata had six stands selected; one strata had four stands selected. Within the GIS representation 
of each selected sample stand, two points were randomly selected to become plot centers. 
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A field crew was given the coordinates of each preselected plot center. They used survey-grade 
GPS equipment to travel to the preselected locations in the forest, and monumented plot centers 
at those locations. Fixed-area circular field plots, of size 0.04858 ha, were established at each 
location. Field measurements included the species, location, and diameter (DBH) of each tree 
whose diameter exceeded a threshold (Dmin) of 7.493 cm. Location data (horizontal distance and 
azimuth) were sufficient to allow for the calculation of the breast-height location of each tree 
relative to the plot center. A sample of heights was recorded for each species on each field plot.  
The height data were used to fit height-diameter curves by species for each plot; unmeasured 
tree heights were imputed from the curves. Sample weights, which are required for unbiased 
estimation, were computed for each ITC. Further details are as described in Flewelling (2008).  
 
2.2 Plot Registration    
 
The field plots are not assumed to have been located perfectly. The determination of the location 
of the field plot on the crown map is accomplished with a computer-assisted system that 
overlays the field-determined stem map on a representation of the remotely sensed data After 
the registration is completed, the location of the field plot’s center on the ITC map becomes the 
accepted location for the sample.  
 
2.3 ITC and Tree Matching 

A statistically valid procedure was required to identify the tree or trees to be associated with 
each ITC. Such a procedure is described by Flewelling (2008); that procedure was applied here 
to all the ITCs whose centers were within crown analysis plots of size 0.03644 ha, centered 
about each of the corrected plot centers.  The procedure used was similar to that described by 
Persson at al. (2002). Each ITC was expanded by up to 1 m in each direction to form Veroni 
tessellations. Field sample trees whose coordinates were within a particular ITC’s expanded area 
were tentatively matched to that ITC. Infrequently, trees not falling within any of the ITC 
tessellations were matched to the nearest ITC if the match appeared to be physically correct. 
The trees which are matched to particular ITCs can be referred to as directly associated trees.  
    
3. Methods 
 
Probability models were developed to predict the number and species of trees associated with 
each ITC. For trees predicted by these probability models, conditional regression equations were 
required to predict tree diameter. The resultant regression predictions of DBH were further 
modified using a common “tripling” technique which increases the dispersion of predicted 
diameters and heights, but which does not alter the predicted yield. Heights are predicted as a 
function of DBH and the LiDAR-based height of the ITC. A separate simpler model accounts 
for trees not associated with ITCs.  
 
3.1 Species and Count Predictions 
 
For each stand there are two components of the overall prediction: trees inferred directly from 
ITCs and an unseen component. The unseen stand component contains relatively few trees, 
which are usually smaller than the other trees. The unseen component is addressed in section 3.5. 
This section deals only with the directly associated trees. 
 
There are many possible combinations of matched trees for a single ITC. A notation system was 
devised to track the possible outcomes for an ITC match. The notation allows for a count (C) of 
the trees to be associated with a particular ITC, allows for identifying the species group of the 
associated trees, and tracks the trees by comparative DBH. The largest tree associated with an 
ITC is referred to as a primary tree; any smaller trees associated with an ITC could be referred 
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to as secondary trees.  Secondary trees which are not the second-largest are also referred to as 
tertiary trees.  
 
The independent data for the ITCs includes stratum, and: 
 
 SPGITC  Assigned species group: P=pine, H=hardwood 
 A  Crown area (m2). 
 HITC  Height of the ITC (m) 
 
All the ITC heights are 4 m or greater. The variables being predicted are: 
 
 SPGTREE  Species group for a tree: P for pine, H for hardwood. 
 DBH  Diameter at breast height. (cm.),   
 HT  Total tree height (m) 
 EC  Expected tree count; also expressed as E(C). 
 TRS  Tree-record sequence, a code used to track predicted trees. 
 
The first of the probability equations for ITCs classified as pine is: 
 
 Pr{C ≥ 1} = logit-1(L) = exp(L)/[ 1 + exp(L)]  (1) 
 
where L is a linear function of A, HITC, and their cross product. Other equations for the pine 
ITCs have the same form, but different coefficients. There are two more “count equations” ; 
these predict Pr{C ≥  2 | C ≥ 1 }  and  Pr{C ≥  3 | C ≥ 2 }. The unconditional probabilities 
for counts 0, 1, 2, and ≥ 3 can be computed by combining the foregoing empirical equations 
according to standard rules for probability expressions.  
 
The above equations deal with tree count. Tree species are predicted separately by the size order 
of the directly associated trees. Subscripts 1, 2 and 3 refer to the largest-DBH tree associated 
with an ITC, the second largest, and all others. Species probabilities are predicted for the pine 
ITCs as: 
 
 Pr{SPG1 = P | C = 1] = logit-1(c0 + c1 × A + c2 × HITC + c3 × A × HITC) (2) 
 
where the inverse logit function is as defined in Eqn. 1. Coefficients c0 through c3 for a 
representative stratum are (-2.43, -0.455, 0.1667, -0.01553). Other equations of the same form 
predict Pr{ (SPG1= P) | C ≥ 2 )}, Pr{ (SPG2 =P) | C ≥  2, SPG1 = P)}, Pr{ (SPG2 = P) | C ≥  2, 
SPG1 = P)} , Pr{ (SPG2 = P )|C ≥ 2, SPG1 = H) }. The latter equations are sufficient to calculate  
probabilities that the species of the largest and second largest trees are (P, P), (P, H), (H, P) or (H, 
H). The conditional expected count of tertiary trees for the pine ITCs, E{C of tertiary Conifers | 
C ≥ 3} and E{C of tertiary Hardwoods | C ≥  3} are estimated as constants.  
 
This completes all of the empirical computations for E(C) on possible realizations of the 
probability models for pine ITC’s. Table 1 shows all the realizations, and their expected counts. 
The tree-record  sequences (TRS) are arbitrary labels. Each ITC that had been classified as a 
pine produces twelve tree records with the expected counts shown in Table 1. The ITCs 
classified as hardwoods have a similar, but simpler set of prediction equations; these are not 
shown.  
 
3.2  DBH Predictions  
 
DBH is predicted as a function of crown area and ITC height, using the following model for all 
primary trees and second-position trees associated with pine ITCs: 
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 DBH = a0 + a1 × { 1 – exp[a3 × (A)a4 × (HITC)a5 ] }a2  (3) 
 
Most coefficients are constant across all strata, but do vary with TRS. An all-strata weighted 
regression is used to estimate the coefficients. Coefficient a3 is subsequently revised by stratum 
such that the weighted sum of predicted basal areas associated with the sample ITCs is exactly 
equal to the weighted sum of the basal area of the ground sample trees for that TRS and stratum.  
 
The tertiary trees associated with pine ITCs  use a different equation for DBH. The predicted 
values are always between Dmin and the predicted diameter of the second-largest associated tree. 
As with the previous equation, the fit is constrained so as to have unbiased predictions for basal 
area by stratum. 
 
3.3  Tripling 
 
Tripling is a commonly used mechanism to increase variance of model predictions. Each 
original predicted tree record is split into three, each representing one-third the original E(C). 
The DBHs for the three new records (i = 1,3 ) are: 
 
 DBHi = SQRT{ (Dmin)2 + (1 + fi × k) [ DBH2 – (Dmin)2]}  (4) 
 
where (f1, f2, f3) = (-1, 0, 1), and k is set so that the variance of the predicted DBHs are similar to 
the variance of the observed DBHs.  
 
3.4  Tree Height Predictions  
 
There are two sources of height predictions: one based on a commonly used height-DBH 
relationship, and the other based on the LiDAR derived height of the ITC.  The first of these is 
referred to as the allometric height prediction: 
 
 HTA = BH + a1 × exp( a2 / DBH )    (5) 
 
where BH is breast height, 1.37 m. Coefficients are fit separately by stratum and the species 
group of the tree.   
 
The above prediction of height is used as an independent variable in the final regression, which 
incorporates both sources of information: 
 
 HT = BH + a1 × (HTA – BH) + a2 × (HTITC – BH)  (6) 
 
Fitting is done separately for the planted strata and the natural strata. Coefficients vary with tree 
species group, and with match position. The coefficients are constrained such that the weighted 
sum of the product of basal areas and heights is unbiased.    
 
3.5 Unseen Trees 
 
Some trees are not detected at all in the ITC generation process, or fail to be linked to an ITC. 
For each sampling stratum, all such trees are put into a per-hectare listing of trees, showing 
species group, DBH and the count per ha. represented by each entry.   
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4. Results 
 
False positives, ITCs with no matching trees, were 9.9% of the total; for such ITCs which had 
been identified as pine or hardwood respectively, the false-positive rates were 9.1% and 16.4% 
The crown area of these false ITC’s was 4.0% of the total area of all ITC’s.  Unseen trees were 
2.5% of the total, representing 1.4% of the basal area. Results for all the matched ITCs and trees 
are in Table 2. Each such ITC is matched, on average, to 2.06 trees. The primary trees represent 
48% of the total number of matched trees and 74% of the total matched basal area. 
 
The forest-wide average stand tables for pine and hardwood are shown in Figure 1. The 
observed and predicted stand tables are in good accord. The two most notable errors are that the 
hardwood trees in the lowest DBH class (8 cm) are underestimated, and the peak prediction for 
pine at DBH class 12 cm does not exactly match the field data.  
 

Table 1: Predicted species and counts for trees associated with ITCs classified as pine. 
 
TRS Description SPGTREE E(C) 
1 Single Tree P Pr{C = 1} × Pr{SPG1 = P | C=1} 
2 Single Tree H Pr{C = 1} × [1 - Pr{SPG1 = P | C=1}] 
3 Larger of (P,P) P Pr{C ≥ 2} × Pr{ species=( P,P) | C ≥ 2} 
4 Smaller of (P,P) P Pr{C ≥ 2} × Pr{ species=( P,P ) | C ≥ 2} 
5 Larger of  (P,H) P Pr{C ≥ 2} × Pr{ species=(P,H) | C ≥ 2} 
6 Smaller of (P,H) H Pr{C ≥ 2} × Pr{ species=(P,H) | C ≥ 2} 
7 Larger of (H,P) H Pr{C ≥ 2} × Pr{ species=(H,P) | C ≥ 2} 
8 Smaller of  (H,P) P Pr{C ≥ 2} × Pr{ species=(H,P) | C ≥ 2} 
9 Larger of (H,H) H Pr{C ≥ 2} × Pr{ species=(H,H) | C ≥ 2} 
10 Smaller of H,H) H Pr{C ≥ 2} × Pr{ species=(H,H) | C ≥ 2} 
11 Tertiary pine P Pr{C ≥ 3} × E{C of tertiary Conifers | C ≥ 3} 
12 Tertiary Hdwd H Pr{C ≥ 3} × E{C of tertiary Hardwoods | C ≥ 3} 
 
 
Table 2: Summary of  matched ITCs and trees. Forest-wide estimates from 0.0364 ha analysis plots. 
 
       Trees per ha         Basal area (m2/ha)     
 Tree         ITC species             ITC Species     Basal
Match Species Pine Hdwd All Pine Hdwd All Area (%)
Primary Pine 308 13 321 13.1 0.4 13.5 68
 Hdwd 35 25 60 0.7 0.6 1.3 6
 All 343 38 381 13.7 1.0 14.8 74
Secondary Pine 216 6 222 3.4 0.1 3.4 17
 Hdwd 151 32 183 1.3 0.3 1.7 9
 All 368 38 405 4.7 0.4 5.1 26
All Pine 524 19 543 16.5 0.5 17.0 85
 Hdwd 186 57 243 2.0 0.9 2.9 15
 All 711 76 787 18.5 1.4 19.9 100
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5. Discussion 
 
The modeling and sampling approach presented here produces unbiased results at the stratuma 
level. Most other methods of using remote sensing in forest inventory estimation either are 
unbiased, or could be made unbiased through a strategy of adjustments based upon randomly 
located sample plots. For example, consider a system based on individual crown delineation 
coupled with empirical relationships to predict DBH and height as functions of crown 
characteristics. The regressions could be based on non-representative data and, as a consequence, 
could not be directly used for unbiased estimation. However, if the regression results were 
subsequently adjusted, perhaps with a ratio estimator, the adjusted results would be unbiased by 
stratum. 
 
 

 
 

 
Figure 1. Trees per hectare by 1 cm diameter classes for pine (left) and hardwood (right). Histograms 

represent observed ground plot data; the overlaid line are the predictions.  
 
The approach presented here has an added advantage of statistical efficiency due to an 
almost-exact matching between the remotely sensed sample and the ground sampling. Plot 
registration error is minimized, and correlations between the remotely sensed data and the 
corresponding ground data are maximized. Consider that a perfectly registered plot may have 
several crowns whose centers are near the plot boundary. Without crown and tree matching, it is 
just a matter of chance whether the trees actually associated with these ITCs will be inside the 
ground plot or outside the ground plot. With good matching, that uncertainty is removed, 
making each plot more valuable for the purpose of ratio adjustment. The benefit of highly 
correlated tree and crown data also accrues to the present method, even though there is no 
explicit ratio adjustment based on yields of sample plots.  
 
A goal that is hinted at in various papers and presentations is that data obtained from crown 
segmentation, together with good allometric relationships, may lessen or eliminate the need for 
on-the-ground sampling. That goal is unlikely to be realized while the non-primary trees 
associated with the ITC’s constitute over a quarter of the total basal area (Table 2). Mehtatalo 
(2006) reviewed the literature on unseen trees; such trees would often include what I have 
referred to as secondary trees. He concluded that the problem of unseen trees won’t be 
eliminated through direct analysis of remotely sensed data. He proposed using distributional 
models to correct for censoring.  However, it should not be assumed that tree size distributions 
will always be regular. The probability models presented here have the potential to account for 
unseen or secondary trees in most situations where the desired one-to-one correspondence 
between ITCs and trees is lacking. And the predicted DBH distributions appear to be reasonable.  
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Apart from the modeling, there remains a lot of uncertainty about how best to associate sample 
ITCs and sample trees. The method described here is a type of cluster sampling. To be valid, the 
matches must be invariant to the random positioning of the plots.  Though not a statistical 
requirement, the best methods will have matches which closely correspond to the apparent 
physical reality. Tree-top matching as shown by Korpela et al (2007) is probably better than 
matching based on ground projections. Another promising method could model the entire crown 
in three dimensions as proposed by Andersen et al. (2002), and then search for intersections of 
boles and crowns at some intermediate height.  
 
Reliable estimates of mean square error (MSE) for the estimators of basal area and volume by 
stand could not be obtained due to the small number of sample stands in each stratum.   
Flewelling (2008) reported on a different study with similar methodology but with fewer strata 
and more samples per stratum than in the present study. The reported root mean square error for 
stand basal area in that inventory was 9.7%.  The less-than-trustworthy pooled-variance result 
for the present study corresponds to a root mean square error for merchantable basal area of 
21.3%; the corresponding figure for merchantable volume is 24.3%. Merchantable trees are 
those with DBH ≥ 11.4 cm; outside-bark cubic volumes are from stump height (15.2 cm) to a 
7.6 cm small-end outside-bark top diameter. As should be expected in a studies utilizing LiDAR 
to predict diameter distributions and heights, the stand-level errors in volume are only slightly 
greater than the stand level errors in basal error, for errors measured as percentages.  If there 
had been more samples per stratum, the estimated variances would be expected to be lower, and 
the estimates of the variances would be expected to be much more reliable.  
 
One of the shortcomings in the present analysis is the forced binary decision on species group 
for each ITC. Estimates of species probabilities are potentially more useful than discrete 
estimates. The proprietary neural network approach to species classification did provide a means 
to estimate species probabilities for ITCs. Those probabilities were not used because of 
concerns as to whether the computations were correct. Without regard to that particular concern, 
most methods of assigning species should be able to also assign probability estimates for the 
species. For example, a discriminant analysis based on the three color channels and the separate 
mean profiles for pine and hardwood would produce species probability estimates for each ITC. 
The mean profiles for the two species groups could be from subjectively selected ITCs or they 
could be a random subset of the sample data. A different approach used in agriculture (Foody et 
al., 2006) focuses on the species of most interest, which would be pine in this case. The color 
values from the training set for pine could be used to describe a multivariate distribution. 
Relative probabilities of being pine would be assigned to the ITCs based upon probability 
density values computed from that multivariate distribution. There is no need for a similar 
multivariate distribution for hardwoods. The methods used in the present study, and the 
suggested alternatives, all share a common feature of keeping the computations on the CIR data 
separate from the other probability computations. Hence the analyses are simplified, at a cost 
being unable to fully explore interactions of the CIR data and the LiDAR derived characteristics 
of the ITCs. 
 
If probability estimates of species for the ITCs had been directly used, there would have been no 
need to make up separate sets of equations for pine-classified ITCs and hardwood-classified 
ITCs. Instead, a single set of probability equations could have been fit, using as one of the 
independent variables a logit transformation of the initially predicted pine probability. Such an 
approach would have retained more information on the species inference than was possible with 
the binary approach to species estimation. If ocular estimates of crown cover percentages were 
available for each stand, these could easily be brought into this estimation process by adding a 
stand-dependent constant to each logit-transformed probability such that the resultant  
ITC-area-weighted mean pine probability for a stand matched the ocular estimate.  
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Regardless of whether the models presented here or some other models are used, the statistical 
characteristics of errors for predictions based on ITCs will be substantially different from those 
seen in traditional stand-level inventories. Traditional inventories can be unbiased by stand for 
all major attributes, including the diameter distributions. Models based upon remotely sensed 
data, without ground sample data in every stand, are not unbiased by stand. At best, 
unbiasedness holds at the stratum level, usually for a small set of attributes. For the models 
presented here, unbiasedness at the stratum level holds for numbers of trees, basal area, and the 
basal area- height product, overall and by species. 
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Abstract  
 
Using a terrestrial laser scanner (TLS) in single-scan mode for achieving plot level reference 
data in forests is proposed in this paper. In single-scan operation the amount of data is small 
compared to multi-scan and the registration of different scans is not needed, thus both the 
measurement and the processing are faster and fully automatic. The scan geometry was utilized 
in the development of the processing method. The forest scene complexity and that some trees 
are totally shadowed by the others are the main limiting factors to the use of single-scan TLS. 
We expect our methods to operate well at least on single layer, pine dominated economically 
exploited boreal forests. The main result of the TLS based forest parameter method is the 
location and stem curve for each tree that was detected. In traditional forest ground truth 
reference measurements, each tree is manually measured in the reference plot and the tree 
location is not recorded. The possibility to record the location of major trees by TLS makes the 
plot information usage more practical: corrections can be done, they can be used as permanent 
plots, they serve as a basis of future individual tree based forest inventory. In our test area, 85% 
of the 52 trees that were manually found from the TLS data slice inside 60m range could be 
found automatically. 
 
Keywords: TLS, single-scan, one-storey-forest, stem curve 
 
1. Introduction  
 
Terrestrial laser scanning has been used for detailed modelling of individual trees and canopies 
in (Pfeifer et al 2004; Pfeifer and Winterhalder 2004; Gorte and Pfeifer 2004; Hosoi and Omasa 
2006; Fleck et al 2007; Danson et al 2007; Xu et al 2007 and Chasmer et al 2006). More 
automatic methods for forest parameter determination have been considered in (Bienert et al 
2006a, 2006b, 2007; Aschoff and Spiecker 2004 and Király & Brolly, 2007). Using TLS for plot 
level inventory offers a fast and efficient means of automatically determining basic tree 
parameters such as the number and position of trees, diameter at breast height (DBH) and tree 
height. In Aschoff and Spiecker (2004) semi-automatic tree detection method is presented. The 
method is based on first filtering the data and, thus, generating the Digital Terrain Model (DTM) 
and then processing the scanner data in horizontal slices and using the Hough transform to 
detect circular point distributions. The layer data are then rasterized and saved in image format 
with different horizontal layers in channel information; the trees are detected from the image 
data. In Bienert et al (2006a) and Király and Brolly (2007) the tree detection is also based on 
horizontal layers; starting from breast height, DTM is generated for ground point reduction in 
order to provide breast height measures for each tree. In Bienert et al (2006a) and Király and 
Brolly (2007) the points are clustered, in Bienert et al (2007) the clusters are rasterized and the 
shape of the clusters is studied in order to detect trees. In Bienert et al (2006a and 2007) a 
method for detection and modelling that works on both single- and multiple scan data was 
presented. 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 296

  
Most of the previously reported tree trunk modelling methods require total coverage of the trunk 
and are thus only usable in multiple scan mode (MSM) terrestrial scanner data. These methods 
operate on single-tree point clouds and the detection of trees is manual. The emphasis is on 
accurate modelling of the tree trunk and branches. In (Pfeifer et al 2004; Gorte and Pfeifer 
2004) an accurate cylinder based model of the trunk is described. A free form curve based 
model for trunks is presented in Pfeifer and Winterhalder (2004). In most of the models, 
cylinder or circle fitting is used in the horizontal layers to model the trunk. Least squares circle 
fitting algorithms are considered in Chernov and Lesort (2005). In Thomas and Mili (2007) a 
generalized M-estimator is used for robust fitting of circles to laser scanner data in defect 
detection. The noise level in the forest TLS data is large and the need for either more effective 
noise reduction or more robust circle fitting is evident in order to have reliably operating 
automatic forest parameter estimation.  
 
In this paper, we first present the geometric and technical background for processing the data 
using vertical sweep lines and then give details on the detection, filtering and modelling phases 
in chapter 2. In chapter 3 results of a pilot study in boreal pine forest are presented, the 
automatic result is compared with results manually measured from the same TLS data. The 
results and the applicability of the methods are discussed in chapter 4.   
 
2. Method 
 
The method presented in this paper consists of first detecting possible trunks in a range image 
clustering and then processing the point clouds corresponding to each cluster separately. The 
point clouds are first filtered to eliminate non-tree objects; second, the trunk point clouds are 
filtered to remove branches. For each trunk point cloud, the ground level is estimated using 
histogram of the points that are situated closer than 1 m from the trunk point cloud centre. 
Finally, a circle is fitted to each 20 cm horizontal slice of the trunk point cloud and a model is 
composed using the circles and their centres.  
 
As the scan progresses, vertical sweep lines of measured points are saved for each horizontal 
angle. In Figure 1 in the left image, the pink disc represents the fast vertical sweep pattern and 
the black arch slower horizontal rotation. In the right image the consecutive sweeps are coloured 
to visualize the sweeps on a trunk.  
 

  

 
 

Figure 1: Left: The operating principle of a typical terrestrial laser scanner. Right: A typical single tree 
trunk point cloud with prism colouring to visualize the vertical scan lines on the tree. 

 
Instead of starting with horizontal layers, the detection is done in range images. In single scan 
mode data objects that are occluded by others are not seen and thus for each pair of angles, only 
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one measured distance is possible. Only the points that are visible to the scanner are used in 
trunk detection. Horizontal layers are applied for each trunk separately after the detection and 
filtering. The branches that cause difficulties in stem modelling are filtered out before modelling 
phase. 
 
2.1 Data 
 
TLS-data was collected using a Faro 880HE80 terrestrial laser scanner, which is a high-speed 
scanner with a data acquisition rate of 120000 points per second. The scanner uses continuous 
laser to measure the distances based on phase-shift measurement. The scanning was carried out 
in November 2007 at the test site located near Kajaani in eastern Finland. The measurement 
resolution that was used in the scanning produced a point spacing of 0.6 mrad (6 mm at the 
distance of 10 metres) within the single-scan point cloud. 
 
2.2 Trunk detection  
 
The trunk detection algorithm is based on processing the range data as a row–column raster, 
where rows and columns represent relatively constant scanner angle values. Points close to each 
other with similar distances from the scanner are assigned to the same cluster. The distance from 
the scanner is corrected distance in cylindrical coordinates, not the original one in spherical 
coordinates, so that the distance of points forming a vertical line will be equal. The found 
clusters are further processed to select the ones with vertical shape and to unite trunks that have 
been cut into pieces because of occlusions by branches. The detection method used is described 
in Liang et al (2008).  Figure 2 shows the found trunks in a slice of the homogenous Kajaani 
test site and on a more complex mixed forest site in Nuuksio.  
 

Figure 2: Two pairs of images: original intensity image left and the corresponding found trunk clusters 
right (dark image). Left pair: a pine forest slice. Right pair: a more complex forest scene. 

 
From Figure 2 it can be seen that the method is working well on a single layer forest, but with 
more details and tilted trees, the performance is not as good. Due to the tree branching and 
occlusion from the canopy in the upper part of the trunk, there remain some points in the 
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clustered trunk that have to be filtered out in order to have an optimal trunk point cloud. It is 
probable that different forest types require different parameters in the clustering.  
 
2.3 Trunk filtering and local ground level determination 
 
The trunk point cloud obtained from the detection contained some branch and ground points that 
had to be filtered out before modelling. The sweep that contained mostly trunk points consists of 
points whose plane distance from the scanner is close to constant. In Figure 3, three trunk point 
clouds located at different distances from the scanner are shown. Although the vertical and the 
horizontal spacing between the consecutive points and sweep lines is a function of the distance, 
long vertical lines of scan points mark the trunk. The points that fall on the branches in the two 
sides of the tree result in shorter and more shattered lines. Lines where the minimum vertical 
difference between consecutive points exceeded some limit were removed and only lines whose 
length exceeded a suitable threshold were accepted in order to remove the branch points on the 
sides. Ideally the limits could be derived from the scanner geometry so that the limits would be 
distance dependent. 
 

 
Figure 3: Left and middle: two trunks of approximately the same diameter that are located in different 

distances from the scanner. Right: a trunk 59 metres away, the point cloud could not be modelled. 
 
A line was fitted to the sweep line points and points that deviated from the linear trend were 
filtered out to remove the branch points that were in the direction towards the scanner. Before 
line fitting, points further away from the line median distance than twice the standard deviation 
were discarded. In Figure 4, the line filter result and the principle are demonstrated. In the left 
plot, a very noisy set of trunk points is plotted in black and the stem points after line filtering in 
colours. A single sweep line filtering is shown in the right plot. The original points are plotted in 
black and the points that are selected as trunk points are plotted in cyan with the fitted line in 
blue. 
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Figure 4: Left: a very noisy point cloud in black dots with the line filtered trunk points in colour. Right: 

line filter operation in a noisy line: cyan points are selected as true trunk points 
 
To compare the modelling result with DBH reference measurement, the ground level was 
robustly determined using the histogram of the points inside 1 m radius from the detected trunk 
point cloud centre. 
 
2.4 Trunk modelling 
 
The trunk was modelled in a two-stage procedure, where first circles were fitted to the trunk 
point cloud in 20 cm high horizontal slices. The circle-fitting algorithm was least squares where 
the objective function is the Euclidean distance from points to the circle. The optimization 
method used was Nelder-Mead. Second the statistics of the distribution of the centre points and 
radii of the fitted circles were studied and the slices whose circle had a too large or small radius 
or whose centre was too largely offset from the others were discarded. The model is a collection 
of circles at different heights along the trunk. For this study we have used one circle per height 
meter. For each meter, the circle with the least deviation from the fitted radius value was 
selected. The centre points of the circles represent the stem curve of the tree. The trunk 
parameters can be estimated at any height between the maximum and minimum height of the 
model by linear interpolation from the closest circles. The different stages of the filtering and 
modelling process are shown in figure 5. 
 

 
Figure 5: From left: the original point cloud, the detected trunk cluster, filtered trunk point cloud, circles 

fitted to the point cloud and rightmost the circles selected to form the trunk model. 
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3. Results 
 
Manual trunk detection was performed on a slice of the pine forest data seen in Figure 2. Faro 
Scene software was used for the manual measurements. The location of the tree trunk was 
visually determined and measured from the intensity image of the scanned point cloud; also a 
3D-view of the measured points was used to verify the correctness of the measurement. The 
result for the manual detection is plotted in Figure 6 in red circles. The automatically found and 
modelled trunks are plotted on the same plot with black crosses (+). In addition to the modelled 
trunks, there were also trunks that were detected but could not be modelled. These are marked 
with ‘x’. (An example of a trunk point cloud that could not be modelled can be seen in Figure 3, 
far right.) The small trees marked with green circles in Figure 6 are so narrow that there were 
not enough scan sweep lines that hit the trunk for succesful 
detection.

 
Figure 6: Results for tree trunk modelling in one layer forest. The scanner is in the origo. Black asteriks 

inside a red circle denotes a succesful detection and modelling. Red circle alone is a trunk that the 
automate missed. Black asteriks alone is a trunk that was not found manually and black x an 

automatically found trunk that could not be modelled. 
 
The results for different distance slots from the scanner are presented in Table 1. In the columns 
“manual”, “automatic” and “automatic/manual%”, the manual result is considered to be true and 
the success in finding the same trees automatically is reported in the two following columns. 
There were also four trunks that were found by the automatic system but not by the manual 
detection, these were located at the distance 40 – 60 m from the scanner. The trunk detection 
location accuracy could not be evaluated, because the manual location is in the side of the tree 
and the automatic result is the centre of the trunk. The DBH was not measured manually 
because the accuracy of the result would be inconstant due to increasing point cloud deviation 
as the distance from the scanner increases. For trees within 15 m radius from the scanner, on site 
reference measurement was available. The reference material consists of DBH measures taken 
clockwise on the plot with no location data. The error from the reference was computed for 10 
trees that were inside the 15-meter reference plot, six trees from another data slice (in Figure 7.) 
that were not in the manual reference were included in addition to the four that can be seen in 
Figure 6. The Root Mean Squared (RMS) error from the calliper-measured reference was 
0.03 m. 
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Table 1: Detection and modelling results at different distances from the scanner for the slice in Figure 6. 

 
The cumulative detection percentage is represented two rightmost columns of Table 1. It can be 
seen that the detection result seems to be high through the distances. In reality, it is likely that 
small trees exist further away from the scanner also, but they have not been detected in the 
manual process. 
 
The detection and modelling result for another slice of data is shown in Figure 7. It can be seen 
that the result is similar to Figure 6. There was no manual reference data for this slice, but visual 
inspection of the point clouds proved that most of the detected point clouds were trees or of 
cylindrical shape. Results for both of the slices indicate that the visibility to the scanner is the 
main factor in detection and modelling success. As the distance to the scanner increases, the 
point cloud gets sparser. In circle fitting, however, the coverage of the trunk cross section is 
more relevant to the success of the modelling than the point cloud density. 

 
Figure 7: Trunk detection and modelling results for a test slice. The scanner is in the origo. Black x are 

the centers of trunk point clouds and black + are the centers of trunk models. 
 
In Figures 6 and 7, a modelled trunk is a trunk for which reasonable circles could be fitted and 
thus DBH, location and volume could be estimated. The trunk models could only be evaluated 
for DBH measures of the ten trees that were in 15 m distance from the scanner. For full model 
performance evaluation, field data from several heights is needed. In visual inspection, most of 
the model circles were well aligned with the trunk point cloud. The estimation of model 
performance using model deviation from trunk point cloud was not used, because this deviation 

Distance 
(m) 

Manual Automatic  Automatic 
/manual% 

Distance (m) Cumulative 
detection % 

0 – 15 4 4 100 %   
15 – 20 5 3 60 % 0 – 20 78 % 
20 – 30 7 6 86 % 0 – 30 81 % 
30 – 40 17 15 88 % 0 – 40 85 % 
40 – 50 9 9 100 % 0 – 50 88 % 
50 – 60 10 7 70 % 0 - 60 85 % 
Total 52 44 85 %   
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does not tell if the model describes the trunk, it only tells if the model fits the points. In close 
ranges the model deviation from point cloud is mainly indicative of the point cloud deviation 
(surface noise), further away the number of points is reduced and thus the deviation due to the 
large number of points is lessened. In high parts of the trunk, occasional branch points can lead 
to fitting a too large circle with small deviation from point cloud, which visual inspection can 
prove wrong although the model error is acceptable. This kind of errors cannot be handled if 
manual reference measurement is not available. 
 
4. Conclusion and discussion 
 
We anticipate that during 2010s, major forest areas in Scandinavia will be assessed using 
airborne laser scanning. Since the point density of laser scanning is also increasing, it is possible 
to start using individual tree based forest inventory techniques, which require reference plots 
having the following capabilities:  

• Small amount of dominant tree heights used to calibrate tree height underestimation of 
ALS 

• Location of trees to allow the calibration of tree finding capability of individual tree 
based inventory 

• Tree species classification for the detected trees 
• Correct basal area and stem volume of the plot to calibrate applied volume retrieval 

algorithm 
 

The height underestimation of ALS can be calibrated using e.g. couple of dozen correct height 
measurements obtained from several plots. High density TLS have previously shown to be 
superior to hypsometric measurements. The location information can be improved using several 
single scan TLS measurements without registration, since correct stem number and location of 
stem is expected to be more important to individual tree based ALS inventory than the 
knowledge of diameters of each tree. Accurate basal area and stem volume can be obtained even 
though the accuracy of individual stem diameter estimation would be in the order of several cm. 
We have a method for retrieving two of the four above listed capabilities, location and volume, 
and we expect in future studies to be able to model also tree species and dominant tree heights.  
 
The result of this study shows that in one-storey forest it is possible to automatically detect and 
model trees that are visible to the scanner and within some predetermined distance from the 
scanner, i.e. fixed plot size. The overall tree detection result of 85 % in 60 m range from the 
scanner is acceptable, though optimistic when more general plots are considered. Bienert et al 
(2006a) reported 87 % to 100 % results in single scan mode for 15 m circular plots and 100% 
for 12 m plot in multiple scan mode. In Bienert et al (2007) 97 % overall detection rate was 
reported for several 15 m plots and 94 % for a similar size plot with heavy branching. The result 
presented in Table 1 shows that instead of a distance limit, a visibility limit could be used in 
single scan TLS tree detection. According to our results, the achievable plot size for a single 
scan TLS measurement could be larger than the plot sizes used in manual measurements. New 
reference measurements form larger plots will be needed to validate this assumption.  
 
The modelling part of the work was left with less attention than the detection and filtering parts 
for two reasons 1: we did not have reference data from many heights and distances 2: we found 
that a clean trunk point cloud allowed for many different modelling schemes including cylinder- 
and circle fitting, and the model should be selected only after considering what is the purpose of 
the data collecting. Inside 15 m the RMS error to reference was 3 cm. Bienert et al (2006a) 
reported standard deviations from calliper-measured reference between 1.23 and 2.47 cm for 
different types of plots. In Bienert et al (2007) standard deviation from harvester data was 2.48 
cm. In Pfeifer and Winterhalder (2004) a single tree was modelled in multiple-scan mode with 
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stem point cloud deviation from the model 1.75 cm using cylinders and 1.54 cm using 
B-splines. 
 
We expect that the by the combined use of higher density ALS and TLS, a universal solution to 
forest inventory can be developed and the need to use forest inventory models will decrease. In 
such a concept the problems of plot boundary effects will decrease. We also expect that superior 
stem volume estimation can be obtained using individual tree based forest inventory compared 
to the distribution based inventory, since presently the individual tree based forest models 
(deriving stem volume from DBH and height) produce a significant systematic and random 
error source. When tree bark structure and the fact that the trunks do not have circular cross 
sections are considered, the use of DBH measures whose accuracy is very high is questionable. 
Our study indicates that single scan mode data are of considerable interest in single layer, pine 
dominated economically exploited boreal forests because the accuracy of the results compared 
with the multiple scan mode accuracy is eligible especially when processing time is considered. 
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Abstract  
 
This research was undertaken to study the influence of the sampling design and laser beam 
density of ground-based LiDAR measurements on the quality of laser datasets in terms of 
shadowing. The generation of virtual forest stands by means of stochastic L-systems as tree 
descriptors were opted for based on the study frame. The dynamic plant modeler and plant 
nursery natFX (Bionatics, CIRAD, Montpellier, France) was used to simulate full grown forest 
stands of two tree species (i.e. Fagus sylvatic and Platanus acerifolia). Next, hemispherical laser 
measurements with different laser beam densities were simulated according to three different 
sampling patterns (i.e. single, diamond, and corners) inside these virtual forest stands through the 
use of ray-tracing technology. An adjusted sampling design has proven its effectiveness since an 
average decrease of 27.27% in shadowing in comparison with a single measurement was 
obtained. This contrasts with an average decrease of 13.64% by increase of the laser beams 
density by a factor 25. Afterwards, contact frequency values, calculated from the virtual laser data 
sets, were utilized to successfully model the shadowed parts of the canopy demonstrating the 
potential of ground-based laser scans to capture the 3D leaf distribution inside a full grown forest 
stand. 
 
Keywords: ground-based LiDAR, virtual forest stands, sampling design, shadow effect 
 
1. Introduction  
 
One of the challenges of Light Detection And Ranging (LiDAR) research in forestry is the 
quantification of the 3D structure of forest canopies and their components (individual tree 
crowns) in an accurate and comprehensive manner. The forest canopy is a unique part of the forest 
ecosystem which fulfills the important role of cycling material and energy through photosynthesis 
and transpiration, maintaining forest microclimates, and providing habitats for various species 
(e.g. Erdelen, 1984; Fitzjarrald and Moore, 1995). The description of the structure of this interface 
between vegetation and atmosphere plays a key role in the understanding of biophysical processes 
at different levels. 

 
Ground-based LiDAR systems offer unique opportunities in terms of viewing angles and point 
densities needed to model canopy structure in high detail. The static setup of a ground-based laser 
scan, in comparison with a moving airborne platform, allows comprehensive beam coverage of 
the area of interest. Several studies on ground-based LiDAR systems have used one or a 
combination of single range imagery to make individual tree measurements or plot level 
summaries (e.g. Radtke and Bolstad, 2001; Parker et al., 2004; Watt and Donoghue, 2005). 
Hitherto, applications exploring the use of scans acquired from multiple viewpoints to assess the 
spatial distribution of canopy structure are rare (Henning and Radtke, 2006, Takeda et al., 2007, 
Hosoi and Omasa, 2006). The biomass profile, being the vertical distribution of phyto-elements 
(leaf, stem, twig, etc.) density above the ground, is the most commonly used parameter to describe 
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the biomass distribution in the measured forest stands. This vertical structure is often represented 
by the leaf area density (LAD) per height bin, where LAD is defined as the total one-sided leaf 
area per unit layer volume (Weiss et al. 2004) for a vertical stratified canopy. The LAI/LAD 
calculation from multi angular laser data can be based on the inclined point quadrat method by 
Warren-Wilson (1960, 1963) or on gap fraction inversion, a methodology also used to determine 
LAI of a forest stand using hemispherical photographs. Hosoi and Omasa (2006) described a 
methodology for voxel based 3D modeling of the LAD by calculating the contact frequency of 
the laser beams in an arbitrary volume. 

 
The level of detail in which the LAD distribution can generally be determined strongly depends 
on the laser beam distribution inside the forest canopy. This varies with the distance to the laser 
device and the leaf density of the measured space which causes shadowing (Van der Zande et al., 
2006). In case of a first return laser device, the laser measurement variability along angular 
viewing differences, or shadowing, is caused by the physical laser pulse/object interactions and is 
an intrinsic characteristic of the laser device. This is due to reflection of an emitted laser pulse by 
the first object it encounters. Spatial information of the vegetative elements located behind the 
target/object is therefore not available due to the shadow effect. Consequently, these background 
objects have to be measured from different angles to obtain comprehensive laser coverage. When 
quantifying the distribution of the vegetative elements inside a canopy, this shadowing needs to 
be minimized, firstly to secure a certain accuracy of the contact frequency measurements per 
volume of choice and secondly to minimize the ‘blind spots’ or areas of which no information 
could be gathered.  

 
To enable an accurate study of the interaction of laser beams with a complex organized object like 
a canopy, a detailed description of the 3D organization of the vegetative elements in the canopy is 
required. The lack of detailed, consistent, and precise reference information of forest structure 
hinders this approach. A solution is offered by simulation techniques which enable the 
reconstruction of forest stands in a virtual environment. Structural aspects such as leaf surface 
distribution are calculated directly during the simulation process, resulting in the generation of 
accurate reference data of the virtual forest stand. LiDAR range images can subsequently be 
acquired using ray tracing algorithms. Ray tracing algorithms are based on tracing the path of a 
ray of light through a scene as it interacts with objects in an environment and therefore strongly 
resembles the LiDAR principles. This technique allows detailed studies of light beam/canopy 
interactions and their effect on the quality of the LiDAR measurements which is only limited by 
the degree of complexity of the reconstructed forest stand. From remote sensing modeling point 
of view, it is important to obtain realistic descriptions of the forest stand, which complies with 
three main criteria: (1) a description based on architectural growth processes capable of 
simulating various tree species over various conditions (age, density, environment, etc.); (2) a 
description based on experimental data; and (3) a description capable of providing realistic 3D 
trees. The AMAP model (Atelier de Modelisation et d’Architecture des Plantes), developed by 
CIRAD (Montpellier, France), meets these criteria making it a valuable tool for simulating forest 
stands for quality testing of LiDAR measurement protocols. The AMAP model is a growth 
simulation software that respects the plant’s genetic coding and reconstitutes the tree morphology 
and natural esthetics in synthetic 3D images. These canopy models have gained acceptance as a 
research tool in forestry and have led to increasingly convincing visualizations due to recent 
developments in information technology, more specifically in the field of simulation technologies 
(Jonckheere et al, 2006). 

 
This research studies the influence of the sampling design and laser beam density of ground-based 
LiDAR measurements on the quality of the collected laser datasets in terms of shadowing. A total 
of three virtual forest stands were generated, varying in tree species (i.e.Fagus sylvatica, Platanus 
acerifolia) and thus structural built-up. Next, ray-tracing technology allowed for the simulation of 
hemispherical laser measurements, with varying laser beam densities, inside these virtual forest 
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stands. These individual laser measurements were simulated in three different sampling patterns 
(i.e. single, diamond, and corners) to determine the optimal sampling design guarantying a 
minimal shadow effect. 
 
2. Materials and Method  
 
2.1. 3-D canopy simulation 
 
Two homogeneous forest plots with fully grown broadleaf trees (Fagus sylvatica, Platanus 
acerifolia) were simulated in a virtual environment using the dynamic plant modeler and plant 
nursery natFX (Bionatics, CIRAD, Montpellier, France) that interfaces with an architectural plant 
model called AMAP (CIRAD, Montpellier, France). A forest plot consisted of four individual 
trees of the same specie placed in a regular pattern in a 3D volume with a ground surface of 15 m 
side and a height of 30 m. The total LAI of the forest plots was calculated during the simulation 
process and was 4.50 for the Fagus stand and 5.15 for the Platanus stand. The architectural 
differences between the species (Fig. 1) resulted in structural diversity between the forest plots 
enabling a robust analysis of the factors influencing shadowing and thus the quality of the LiDAR 
datasets.  
 

 

2.2. Laser measurement simulation 
 
Tracking of the virtual laser beams through the canopy was done using the physically based 
rendering theory (pbrt, Pharr & Humphreys, 2004) as ray-tracer algorithm. Viewing rays can be 
shot into the scene to see whether they interact with any of the objects in the scene (Pharr and 
Humphreys, 2004), which strongly resemble the LiDAR principles. Specifications of the 
commercially available Laser Measurement System 200 (LMS200, Sick AG, Germany) were 
used as a standard template to characterize simulated laser beams (i.e. wavelength and beam 
divergence) and hemispherical measurement pattern (GMP). The LMS200 is a non-contact 
optical active sensor which scans its direct surroundings in a 2D pattern. By mounting it on a 
dynamic measurement platform like a rotating table, a 3D hemispherical measurement pattern is 
enabled. The full description of the characteristics of the laser device and measurement platform 
can be found in Van der Zande et al. (2006). To reproduce the hemispherical GMP for the virtual 
laser beams, the environmental camera of the pbrt-package was selected. This camera traces rays 
in all directions around a specific point in the scene (i.e. laser measurement location). Each beam 

Fig. 1. Fully grown broadleaf trees of three species were simulated in a virtual 
environment using the Bionatics plant nursery, natFX: (a) Fagus sylvatica, (b) 

Platanus acerifolia. A forest plot consisted of four individual trees of the same specie 
placed in a regular pattern (c,d).
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was described by its polar coordinates (φ,α), where the zenith angle (α) ranged from 0 to π /2 and 
the azimuth angle (φ) from 0 to 2π. The zenith resolution was fixed at 0.25° while the azimuth 
resolution was set at 0.1° and exceptionally at 0.02° for the central standard measurements. 
Different laser beam densities were acquired by adjusting the azimuth resolution of a laser scan by 
considering portions of the emitted laser beams. Each laser beam was traced up to the first 
vegetative element (represented as a collection of triangles) it interacted with. As the LMS200 
was used as a template, at least 10% of the emitted light energy had to be reflected in order for the 
virtual laser system to register a distance measurement (Sick, AG). 
 
2.3. Sampling design 
 
By measuring a canopy scene from different directions the probability that a certain vegetative 
element (e.g. leaf) is reached by at least one laser beam increases since a more comprehensive 
laser beam coverage of the measured object is obtained. In this study, three different sampling 
strategies were investigated: (1) single, (2) diamond and (3) corners (Fig.2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The last two sampling designs consisted of five individual hemispherical laser measurements 
positioned in a specific geometric format (Fig.2) in an effort to minimize the shadow effect. By 
altering the azimuth resolution of the individual hemispherical measurement, different laser 
beams densities were available per measurement setup (Table 1). For comparison purposes, the 
azimuth resolution of the central single measurement was chosen so that the total amount of 
emitted laser beams matched that of the combination of the five separate laser scans of the 
diamond and corners setups. 
 
 
 
  
 
 
 
 
 
 
 

# laser beams Single Diamond & Corners 
(millions) (azimuth angle) (azimuth angle) 

6.48 0.02° 0.10° 
3.24 0.04° 0.20° 
1.30 0.10° 0.50° 
0.65 0.20° 1.00° 
0.26 0.50° 2.50° 

Fig. 2. Illustration of the three different sampling designs tested in this study: single, diamond and corners. 
The last two setups consisted of five individual hemispherical laser measurements positioned in a specific 

geometric format while the central setup function as a reference measurement. 

Table 1. Alternation of the azimuth resolution of the hemispherical laser scans 
resulted in different laser beams densities per measurement
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2.4. Laser data processing 
 
A single hemispherical laser measurement consisted of 259,200 up to 6,480,000 separate 
distance measurements depending on the resolution set up (Table 1). Each laser beam was 
characterized by a zenith angle, an azimuth angle and a beam divergence. The voxel-based 
contact frequency (Hosoi and Omasa, 2007) was generated in three steps from the virtual 
LiDAR datasets: 
 
1) Registration: The five datasets of the diamond and corners setup, with their own coordinate 
system, were registered into a single comprehensive laser data set or 3D point cloud using a 
standard translation and rotation algorithm based on their know relative positions;  
2) Voxelization: The 3D space considered was arbitrarily subdivided into ‘small’ cubic voxels  
of 10 cm in side. This resulted in voxel arrays of 150 x 150 x 250 voxels. Following the 
methodology of Hosoi and Omasa (2006), the ‘small’ voxels where characterized depending on 
beam/voxel interaction. For voxels with at least one intercepted laser beam attribute 1 was 
assigned. Attribute 2 was assigned to voxels that were intersected by laser beams without 
interception. Attribute 3 was granted to voxels that were not touched by any laser beam. 
3) Contact frequency calculations based on LiDAR measurements: The ‘small’ voxels were 
grouped into ‘large’ voxels of 100 cm in side consisting of 1000 ‘small’ voxels each. The 
contact frequency (CF) for each ‘large’ voxel was calculated as follows: 
 
CF (θ) = nI/(nI+nP)                                          
 
With nI the number of ‘small’ voxels with attribute 1 and nP the number of voxels with attribute 
2. The contact frequency was calculated for each ‘large’ voxel and could then be extrapolated to 
the small voxels which could not be reached by any beam (i.e. voxels with attribute 3). Only the 
laser beams exiting a voxel in the opposite side as from which they entered were considered as 
passing beams. This ensured a minimal traveling path of 10 cm through the voxel for an 
accurate contact frequency calculation.  
 
3. Results 
 
3.1. Relative shadow effect  
 
The extent of the shadow effect was investigated by determining the number of effectively 
‘filled’ voxels that were hit by at least one laser beam that interacted with the leaf material (i.e. 
voxels with attribute 1). The relative shadow effect (RS) was calculated as the proportion of 
‘filled’ voxels which were not seen by the laser system, these filled voxels were incorrectly 
given the attribute 2 or 3 instead of attribute 1. Fig. 3 shows the RS-values for each of the 
different sampling patterns in the two forest stands and this for five resolution settings.   
 
The average shadow effect for a single laser scan ranged from 68.74% to 82.38% depending on 
the beam density. This means that an increase of the number of laser beams with a factor of six 
reduced the shadow effect by 13.64%. The logarithmic character of the decrease of RS with 
increasing number of laser beams demonstrated that tackling the shadowing problem by sheer 
hardware improvement would not be cost-efficient. These results support the need for adjusted 
sampling designs of multiple laser scans from different locations to improve the probability that 
voxels would be reached by at least one laser beam. In the case of the diamond set-up the 
average RS-values ranged from 46.67% to 74.4%. This decrease of 27.75% due to increasing 
resolution settings differed significantly from the decrease of 13.64% in the case of a single 
measurement. These results also show that the use of five low resolution scans instead of one 
high resolution scan, with a similar amount of total laser beams, significantly reduced the 

(1) 
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shadow effect with 27.75%. Considering the RS-values, the corners sampling design showed 
results similar to the diamond set-up. Fig. 4.b illustrates the direct comparison of the vertical 
distribution of the filled voxels (attribute 1) derived from the LiDAR datasets with the reference 
profile and this for the different sampling designs. The shadow effect becomes visible as the 
measured profiles show an underestimation compared to the reference profile. This 
underestimation is considerably higher in case of the single LiDAR measurement compared to 
the diamond and corners setups which is consistent with previous results (Fig. 4). The general 
shape of the reference profile is observable in the three measured profiles showing the potential 
of laser systems, like the LMS200, to capture essential structure information which could be 
used to model the actual leaf distribution.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2. 3D distribution of the shadow effect 
 
The 3D distribution of the measured filled voxels, and thus also the 3D shadowing, were 
visualized as a collection of horizontal slices for the different sampling patterns in the Fagus 
stand (Fig. 5). The availability of this detailed 3D description of the shadow effect enables a 
more thorough analysis of the actual laser beam/canopy interaction. Where the study of the 

Fig. 3. The relative shadowing (RS) decreased significantly as a function of the different 
sampling setups for the two virtual forest stands ((a) Fagus and (b) Platanus). The diamond 

and corners setup were compared to the single design. 

Fig. 4. Direct comparison of the vertical distribution of the filled voxels (attribute 1) derived from 
the LiDAR datasets with the reference profile for the different sampling designs (Fagus (a,b), and 

Platanus (c)). 
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relative shadowing did not reveal a significant difference between the diamond and corners 
setup, this 3D study exposed that the central area suffered mostly from shadowing and that this 
is more profoundly present in the corners measurements. The peripheral areas on the other hand, 
are less affected by the shadowing using this last set-up. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3. Contact frequency calculations for modelling purposes 
 
Whereas an adjusted sampling design shows great potential in minimizing this effect, values of 
up to 55% are still detected. This means that for an accurate structural description of the actual 
leaf distribution, at least 55% of the canopy needs to be modeled using the information extracted 
from the measured parts of the canopy. Up to this point only the voxels with attribute 1 were 
used for the analysis enabling the shadow effect mapping. In order to correct for the shadow 
effect, more information needs to be extracted from the LiDAR datasets. This is done by 
including the empty voxels (voxels with attribute 2) in the further analysis. The method 
presented by Hosoi and Omasa (2006) introduced the calculation of contact frequencies per unit 
of volume from the ratio calculated using Eq. 1. This ratio is then extrapolated to the voxels in 
that unit of volume for which no information is available (i.e. voxels with attribute 3). This 
methodology was used to study the potential capacity of a LiDAR scanner to estimate the real 
leaf distribution in forest canopies. The large voxels that had a coverage of 100% were analyzed 
as an accuracy assessment for the estimation of the leaf density inside those large voxels. For 

Fig. 5. The 3D distribution of  the measured filled voxels. The 3D shadowing is visualized as a 
collection of  horizontal slices for the different sampling patterns in the Fagus stand. 
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the diamond setup in the Fagus stand, a total of 1807 voxels (37% of total) were available for 
analysis. A linear regression between the calculated contact frequency and the actual leaf density 
resulted in a R²-value of 0.97. The linear regression model showed an underestimation of 22% 
which could only be caused by leaf/laser beam interactions since every small voxel in the 
considered large voxels had been scanned and no direct shadow effect was present. The large 
voxels were grouped according to their laser coverage and on each of these groups this accuracy 
assessment described above was repeated. Table 2 presents the linear relations between the 
contact frequencies, calculated from the diamond and corners LiDAR datasets, and reference 
datasets. The decreasing laser coverage results in decreasing slopes of the linear regressions. 
This indicates that the degree of underestimation of the leaf densities from contact frequencies 
increased with shadowing. While these underestimations reach values up to 89.00%, the R² 
values indicated that even with low laser coverage an accurate estimation of the leaf density is 
possible. 
 
 
 
 

 
 
Using these findings, two sets of correction factors per laser coverage class were extracted 
enabling the correction of the leaf density estimation based on measured contact frequencies. 
Fig. 6 demonstrates the corrected profiles in comparison with the reference profile. This proved 
the potential of the ground-based LiDAR technology to measure complex structure of objects 
such as forest canopies. Even when shadowing and leaf/laser beam interactions are responsible 
for the fact that almost 55% of the leaves could not be measured, the LiDAR datasets still 
contain enough information to accurately describe the distribution of vegetative elements in a 
3D space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Fagus     Platanus    
  Diamond   Corners   Diamond   Corners   

Laser Coverage slope R² slope R² slope R² slope R² 
Full 0.78 0.97 0.80 0.98 0.90 0.94 1.00 0.99 

80%-100% 0.45 0.86 0.52 0.89 0.59 0.82 0.85 0.81 
60%-80% 0.21 0.85 0.29 0.90 0.39 0.78 0.74 0.84 
40%-60% 0.15 0.86 0.21 0.85 0.39 0.78 0.71 0.83 
20%-40% 0.09 0.74 0.12 0.71 0.37 0.69 0.90 0.60 
0%-20% *** *** *** *** *** *** 1.38 0.39 

Table 2. The slope and R²-values of the linear relations between the contact frequencies, calculated 
from the diamond and corners LiDAR datasets, and reference datasets are presented. 
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4. Discussion 
 
This paper explored the potential of simulation and ray tracing techniques for structural 
algorithm development for LiDAR datasets. The results showed substantial improvements in the 
quality of the datasets when measuring a forest stand from different locations in comparison 
with a single measurement. This allowed laser beams to enter the canopy under a variety of 
angles and directions and that increased the probability of a laser beam to penetrate the canopy 
deeper than it would be possible when measuring from a single location. This caused a decrease 
of the shadow effect, as it also enabled more accurate density estimates of the shadowed parts of 
the canopy. In order to maximize the quality of the LiDAR datasets, these results suggest a 
combination of the diamond and corners sampling setups. However, an increase in the number 
of separate laser scans would in reality imply more labor and time consuming field campaigns, a 
factor of unimportance in virtual LiDAR studies. The registration of the separate laser scans to 
one comprehensive scan was errorless in this controlled environment while under real 
circumstances the combined registration error could negatively affect the results. Hence, a 
delicate balance should be pursued between the number of measurement positions and the 
shadow effect. 
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Abstract  
 
A new measuring device – the Laser-camera - was tested under typical forest conditions. With the 
device, constructed of a Canon EOS 400D digital reflex camera with an integrated Mitsubishi 
ML101J27 laser line generator, diameters of trees can be measured from the centre of a sample plot 
without having to visit the trees. The Laser-camera's principle is based on the reflection of a laser 
line and a point on a tree stem and the processing of digital images. The study material was gathered 
during the period in 2007-2008 from 13 circular sample plots and included a total of 728 diameter 
measurements from 265 trees. The standard error of the diameter observations, using semiautomatic 
interpretation, was 6 mm (5.3%). The accuracy of the diameter observations (standard error) was 
maximum for spruce (5.0 mm, 4.4%, followed by birch (6.4 mm, 3.3%) and pine (7.6 mm, 7.6 %). 
The most common errors were caused by the laser point not hitting the tree stem, branches in front 
of the stem hampering visibility or incorrect definition of the direction and height of the 
measurement. Overall tree diameter measurements can be obtained with a Laser-camera rapidly (10 
s/tree) and with good reliability and efficiency. The future goal will be to integrate laser technique 
with an altimeter, data collection unit and GPS receiver inside a weatherproof Laser-camera device. 
This will enable ready checking of the measurement results in the field from the screen of the digital 
camera and the measuring of the diameters at any height of a tree, the heights, locations, as well as 
quality variables of trees.  
 
Keywords: forest mensuration, stem diameter, laser, image processing, digital camera 
 
1. Introduction  
 
Tree diameter is one of the most important stand variables used in forest resource inventory, 
forest planning and timber measuring. Diameter-at-breast height (d1.3) is in most cases the 
independent variable in single-tree and stand-level models describing the growing stock.  
Decisions concerning forest management procedures (silvicultural treatments, thinnings and 
final cuttings) are often made either directly or indirectly from tree diameter measurements. 
Tree diameter has traditionally been measured using a various callipers or a tallmeter. The use of 
such devices has always required the observer to visit the tree. 
 
The future of forest resource inventory and forest planning will be based to an increasing extent 
on remote-sensing, airborne laser scanning (ALS) and methods based on digital 
photogrammetry. Remote-sensing methods give results at least as accurate in measuring 
standwise total volume (e.q.Naesset 2004; Naesset et al. 2004; Holmgren 2003) and single-tree 
information (e.q. Hyyppä and Inkinen 1999; Korpela 2004; Korpela et al. 2007;Hyyppä et al. 
2004-2007; Maltamo et al. 2004) as traditional field measurement methods that are used in 
operative forest planning.  
 
Field measurements that are based on traditional methods are expensive, hence the need to 
develop more accurate, efficient and simple ways to measure growing stock variables. The 
objective is to develop a method that does not require actual visits to the tree, i.e. 
remote-sensing methods that are used from within the forest. 
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Terrestrial laser scanning (TLS) methods have brought new opportunities to the measurement of 
growing stock attributes, particularly those that measure tree quality (Jutila et al. 2007, Henning 
ja Radtke 2006, Watt ja Donoghue 2005, Hopkinson et al. 2004). Currently, however, 
postprocessing of TLS data is laborious and time-consuming due to the lack of available 
algorithms and software programs with which one can generate attributes that depict the desired 
sample plot growing stand attributes from 3D data clouds collected by the TLS (Watt and 
Donoghue 2005). TLS research in the field of forest applications has so far focused mainly on 
the estimation of single sample plots and individual tree attributes, not on the development of 
inventory methods applicable to large forest areas.  
 
TLS has been used on the stand level in projects aiming at developing ways to combine 
two-dimensional laser observations with harvester measuring (Miettinen et al. 2007). The aim 
of these studies was to develop an automatic method for the mapping of tree locations (Forsman 
and Halme 2005) and to define the diameter distributions of a stand (Jutila et al. 2007). Based 
on the spatial information gathered and the diameter distribution, it is then possible to formulate 
a plan for the removal of trees. 
 
Laser-based devices for the measurement of tree diameter have been developed and tested, e.g. 
in the United States (Carr 1992, 1996; Williams et al. 1999), but the devices have not been easy 
enough to use efficiently and their prices have not been competitive against traditional 
forest-planning measurement devices (Skovgaard et al. 1998; Parker and Matney 1999). 
Devices that are based on multisensor systems or laser technologies have likewise not been 
reliable enough in terms of diameter measurements; the measurement accuracy was in one case 
19.6 - 24.6 mm (Clark et al. 2001).  
 
Kalliovirta et al. (2005) developed a device - the Laser-relascope - that enables measurement of 
tree variables without having to visit the tree. The device includes a laser rangefinder, a 
variable-width slot with a fixed-length arm, an electronic altimeter, a data collection/processing 
unit, and a Global Positioning System (GPS) receiver and makes it possible to measure the 
diameter distribution of a sample plot and the heights and locations of the trees from the centre 
point of the sample plot. It uses distance and angle information to determine the diameter of a 
tree and functionally is a combination of a relascope and dendrometer. The standard error of the 
diameter measurements was 8.2 mm at best (Kalliovirta et al. 2005). The accuracy was 
dependent on the distance, measuring time of a tree, d1.3, the observer and the individual´s 
familiarity with the laser-relascope (Kalliovirta et al. 2005, Laasasenaho et al. 2002). The 
standard error varied from 6.8 mm to 15.8 mm depending on the observer (Laasasenaho et al. 
2002). Measuring precision of the height (S.D. 4.9 cm) and the location (32 cm) measurements 
were favourable and unbiased (Kalliovirta et al. 2005).  
 
The goal of Ojanen (2005) was to develop a method to measure tree diameters with a ± 5 mm 
level of uncertainty and to eliminate error caused by the observer. The method tested in 
laboratory conditions is based on laser technology, digital camera technique and digital image 
processing. The optimal measurement distance varied between 1 - 15 meters. The Laser-camera 
is the first prototype in which the method was tested under forest conditions.  
 
Varjo et al (2006) studied the accuracy of diameter measurements at different heights of the 
stem using a simple digital camera (Canon PowerShot). A method was developed in which a 
tapering model (Lappi 1986) was used in supervising the image interpretation (Juujärvi et al. 
1998). The distance to the tree was defined by using laser distance-measuring device. The 
geometry of the image plane of the camera in relation to the tree measured was solved 
automatically using a reference marker stick in front of each tree and trigonometry.  
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The aim of this study was to determine the efficiency and accuracy as well as technical 
feasibility and adaptability of a laser- and digital photography-based device under forest 
conditions. The Laser-camera was developed at the Centre for Metrology and Accreditation with 
the objective to develop a device for the measurement of growing stock variables (diameter 
distribution, tree heights, locations and quality attributes) from the centre of a sample plot, 
without having to visit the trees. The focus of the study was on the improvement in diameter 
measurement accuracy elimination of error caused by the observer and integration of laser 
technology with a digital camera. 
 
2. Method  
 
2.1 Study material 
 
The study material was gathered during the year-end period in 2007 - 2008 from two different 
locations in Espoo, Finland: Nuuksio (n = 10, r =7.98 m)) and Espoonlahti (n =3, r = 10.0 m), 
from a total of 13 circular sample plots. The sample plots were located so that the variation in 
their growth stock, development stage (advanced growth forest to mature forest) and site type 
(rich site to very poor site) was as wide as possible.  
 
For testing of the device, the trees of the sample plot were numbered by attaching a number 
label on the side of each tree with the label’s lower edge at breast height. The diameter 
measurement was taken below the number label. Tree species and d1.3 (vertically against the 
centre of the sample plot) were determined for the trees with a steel caliper. The study material 
included a total of 728 diameter measurements from 265 trees (Table 1). The distribution of 
diameter observations by tree species is illustrated in Figure 1. 
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Figure 1. Diameter distributions of spruce, pine, birch and other deciduous sample trees. 

 
 
Table 1. Description of the study material. Number of tree diameter measurements (n1), number of sample 
trees (n2) and the minimum/maximum values, average and standard deviation (S.D.) of the tree diameter 

measurements by tree species. The reference diameters were measured using a steel caliper. 
 

n1 n2 minimum maximum average S.D.
Pine (Pinus sylvestris) 153 53 4.4 46.5 15.7 11.7
Spruce (Picea abies) 386 137 5.2 40.9 14.8 7.8
Birch (Betula sp.) 108 42 5.0 40.4 22.8 7.7
Deciduous1 81 33 4.7 47.8 20.9 11.7
All observations 728 265 4.4 47.8 16.9 9.7

1) aspen (n1 = 51), rowan (n1 = 17), alder (n1 = 13)  
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The trees were photographed with a Laser-camera in the field from the centre of the sample plot. 
Afterwards the tree diameter measurements were interpreted from the photographs. If the tree 
was not visible from the centre of the plot, the observer moved several steps in order to enhance 
visibility. The majority of photos taken with the Laser-camera were interpreted afterwards with 
the help of an interpretation software program developed for this specific purpose. Repetition 
measurements were conducted, starting from the fourth sample plot in such a way that from the 
three following sample plots two diameter measurements were measured per tree and from the 
last sample plots (7) four measurements were done. The number of measurements was increased 
when new information concerning functioning of the devices was obtained.  
 
The time spent conducting the sample plot measurements was defined to an accuracy of 1 min 
based on time stamps recorded on the image files. The sample plot measurements were 
conducted by measuring tree diameters with a Laser-camera. Two photographs were taken from 
each tree during each measurement occasion. The number of observations gathered from each 
tree varied from one to four observations.   
 
2.2 Laser-camera 
 
The Laser-camera under study consists of a Canon EOS 400D digital reflex camera with an 
integrated Mitsubishi ML101J27 laser line generator. The Laser-camera used Canon’s EF 70 - 
300 mm f/4.5 – 5.6 DO IS USM objective. The resolution of the camera is 10 megapixels. A 
software program for the visual interpretation of photographs and validation of measurement 
results was developed with a Canon Software Development Kit. With the program, one can 
check the measurement result by visual means as well as by adjusting the camera settings, if 
desired. If the border markers are incorrectly placed, they can be manually adjusted to their 
correct locations and thus help determine the true diameter. Interpretation of images was 
performed using the image-processing software either under real-time field conditions or 
afterwards. 
 
The laser line generator is turned on automatically as the camera focuses. An electronic 
altimeter can be added to the device (Masser Ltd.), to enable the gathering of diameter 
observations from different stem heights. The weight of the Laser-camera is approximately 1.5 
kg; the camera (0.51 kg) and the objective (0.72 kg) make up most of the weight. The price of 
the laser camera prototype is 2600 - 3000 €, while the field computer costs around 1000 € 
(Kivilähde 2008). 
 

A)    B)   
 

Figure 2. A) The Laser-camera consists of a Canon EOS 400D digital reflex camera with an integrated 
Mitsubishi ML101J27 laser line generator. An inclinator can also be added to the device. B) Principle of 

breast height diameter measuring. (Photographs© Jani Kivilähde & Mikko Vastaranta) 
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2.3 Principle of diameter measuring 
 
The principle of measuring tree diameters with the new Laser-camera prototype is based on the 
reflection of a laser line and point on a tree stem (Figure 2). The laser line reflection breaks at 
the border lines of the tree stem so that the stem diameter can be measured, based on the length 
of the reflected laser line. The length of the laser line can be obtained from the photograph as 
the number of pixels and local image scale. The scale of the photograph can be derived from the 
invariable distance between the laser line and point. The interpretation software focuses on the 
stem and automatically recognizes the laser beam and laser point reflected on the tree stem 
calculating the tree diameter based on these. The measurement is obtained from the centre of the 
photograph. 
 
The program functions either fully automatically so that the user has only to open the picture 
from the file (.jpeg) and the diameter measurement is found directly from the screen or 
semiautomatically. If the user notices errors in the photograph resulting from the automatic 
photo interpretation method, the diameter measurement can be derived from the photo manually, 
either during the field measurements or afterwards. 
 
2.4 Accuracy of diameter measurements 
 
Tree diameter measurements measured with a Laser-camera were compared with measurements 
conducted with a traditional method (a steel caliper). Bias, S.D. and standard error were 
calculated for all the study material and separately for Norway spruce, Scots pine, birch and 
other deciduous trees (aspen, alder, rowan). 
 
The diameter measurement error was defined as 
 

reflaser ddde 3.13.1_ −=       (1) 
 
where d1.3ref represents the reference diameter and d1.3laser the diameter measured with a 
Laser-camera. 
 
The reliability of the measurements was examined using estimation of mean-square errors 
(MSE). Since the true values of diameter were assumed to be known, MSE can be divided into 
the variance and square of the bias (Cochran 1977). The estimate of bias was given by 
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where n is the number of observations and d is the diameter. 
 
When calculating standard errors for different methods and the measurement errors are 
independent, the standard error of reference method can be taken into account as follows:  
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 [ ] [ ] [ ]22 ___ refmethod desdesdes −= ,    (4)  

 
where s[e_d]ref  is the standard error for steel calipers. 
 
Clear outliers were excluded from the material. The main reason for excluding the outliers was 
either that the laser point reflected by the Laser-camera did not hit the tree stem (the laser point 
was either reflected on the branches in front of the tree, or they did not hit the tree stem at all) or 
the measurement height of the diameter observation or direction did not correspond with the 
reference measurement. The number of clear outliers was significant (176 in total) as the 
measurement results were not immediately visible to the measurer in the screen of the camera 
having most of them been measured without the use of a field computer. Another reason for the 
high number of outliers was that the measurement height was constant and did not reflect, for 
instance, visibility that impacts the precision of measurement results. 
 
If it was observed during postprocessing that the automatism of the diameter observation did not 
function correctly, the border markers that depicted the tree stem (semiautomatic interpretation) 
were moved to match the true border lines of the tree in the image. The goal was to make the 
measurement depict the situation under field conditions. The measurement can be verified in the 
field enabling the observer to exclude outliers and make a new diameter observation 
immediately. 
 
2.5 Efficiency of measuring the diameter 
 
The efficiency of the measuring device was determined by measuring sample plots in different 
stand types and comparing the results with reference measurements. The time spent measuring 
the sample plots was documented to an accuracy of 1 min.  
 
3. Results 
  
3.1 Accuracy of breast height diameter measurements 
 
The standard error of diameter observations using semiautomatic interpretation was 6 mm 
(5.3%). The proportion of bias was 2.5 mm, i.e. the results obtained with the Laser-camera were 
slightly overestimated. The relative standard error was approximately 4% for trees with widths 
of above 7 cm, and approximately 10% for trees with widths below this. (Figure 3). 
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Figure 3. Relative differences in diameter observations obtained with a Laser-camera and reference 

diameter (d1.3laser-d1.3ref), as a function of diameter. 
 
The accuracy of the diameter observations (standard error) was maximum for spruce 5.0 mm 
(4.4%), followed by birch 6.4 mm (3.3%) and pine 7.6 mm (7.6%). Other deciduous trees 
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(aspen, rowan, alder) resulted in a standard error of 6.1 mm (6.0%). Bias for all tree species, 
excluding other deciduous trees, was positive. Pine resulted in a bias almost twice the 
magnitude of that for spruce and birch (see Table 2). The results were calculated, assuming that 
the reference measurements were the true values. 
 

Table 2.  Precision of breast height diameter observations using  
semiautomatic image processing. 

 
n d1.3 bias, mm bias, % S.D, mm S.D., % S.E., mm S.E., %

Pine (Pinus sylvestris ) 124 17.2 4.6 4.8 6.0 5.8 7.6 7.6
Spruce (Picea abies ) 272 16.9 2.2 1.8 4.5 4.0 5.0 4.4
Birch (Betula sp. ) 88 22.8 2.5 1.0 5.9 3.1 6.4 3.3
Deciduous1 68 21.9 -0.6 1.5 6.1 5.8 6.1 6.0
All observations 552 18.5 2.5 2.3 5.5 4.8 6.0 5.3

1) aspen (n1 = 51), rowan (n1 = 17), alder (n1 = 13)  
 
The success rate of the diameter observations, using semiautomatic image interpretation, was 
approximately 80% for all tree species except spruce, which had a success rate of 70%. The 
measurement of diameter was clearly more successful (by as much as 20%), when 
semiautomatic image interpretation was used instead of the fully automatic method. (Table 3.) 
 

Table 3. Success rate of observations by tree species and for all study material. 
 

Automatic method Semiautomatic method
Pine (Pinus sylvestris) 51.6 81.0
Spruce (Picea abies) 58.0 70.5
Birch (Betula sp.) 80.6 81.5
Deciduous1 60.5 84.0
All observations 57.4 75.8  

 
A diameter result was obtained for approximately 60% of all observations, with a standard error 
of 12.7 mm, when the automatic method was used. This method, thus, required manual checking 
of the diameter results, to ensure that they were reliable enough. 
 
The measuring distance had no impact on measuring accuracy. The trees were located not more 
than 10 m from the sample plot centrer point. For the purpose of the project goals, the optimal 
operational distance was defined as 2 - 15 m. 
 
3.2 Efficiency of tree diameter measurements 
 
It required approximately 7.5 min to measure a sample plot of about 22 trees and 10 sec to 
measure the diameter of one tree stem. The measurement time included observation of the tree 
stem at breast height, focusing of the camera objective and taking of the image. The results did 
not include checking of the measurement result under field conditions, since they were checked 
afterwards. 
 
4. Discussion 
 
The results obtained with the Laser-Camera were very promising compared with the 
measurements taken with traditional measuring devices. The accuracy of a Laser-camera is at 
least as good as that of a steel caliper. In earlier studies, the standard error of a steel caliper 
varied between 2.7 mm and 6.9 mm (Hyppönen and Roiko-Jokela 1978;  Päivinen et al. 1992). 
The results obtained with the Laser-camera were clearly better than those obtained with other 
laser technology-based devices. The Barr & Stroud and Criterion laser dendrometers (Williams 
et all 1999) showed standard errors of 8.8 mm and 14.3 mm for measuring upper diameters. 
According to a study by Varjo et al. (2006) the standard errors of diameters varied between 7.0 
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mm and 9.4 mm, depending on the measuring height (2.5-6.5 m) and the size of the tree. 
Compared with results obtained with the Laser-relascope, standard error was approximately 3 - 
5 mm lower. 
 
Traditionally, it has been assumed that diameter measurements obtained with a steel caliper, are 
true values. In reality, however, standard errors are also found in steel caliper measurements. If 
the standard error of reference measurements is taken into account, the accuracy of the 
Laser-camera (semi-automatic) is 7.1 mm for pine, 5.8 mm for birch and 4.2 mm for spruce. For 
all the study material, the standard error was 5.4 mm. It was assumed that the standard error of a 
steel caliper is 2.7 mm (Hyppönen and Roiko-Jokela 1978). 
 
Tree diameter measurements can be obtained with a Laser-camera rapidly (10 s /tree), with good 
reliability and efficiency. Another advantage of the device is that the procedure for each 
measurement can be documented and be returned to if exceptions or errors are found within the 
results. Future diameter measurements will be obtained from various tree stem heights enabling, 
for instance, the usage of more than one tree diameter measurement result when calculating tree 
volume. This will enable the use of more accurate volume models (Laasasenaho 1982; Varjo et 
al.. 2006).   
 
The future goal will be to integrate the laser technique with an altimeter, data collection unit and 
GPS receiver inside a weatherproof Laser-camera device. This will enable ready checking of the 
measurement results in the field from the screen of the digital camera, measuring of the 
diameters at any height of the tree and measuring the heights, locations, quality variables of the 
trees. To integrate this type of quality into the Laser-camera, more cooperation will be required 
with camera manufacturers. 
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Abstract  
 
Precise description of forest 3D structure at plot level is required for sustainable ecosystem 
management. However, a detailed structure description from traditional field measurements is 
tedious. We propose an innovative method to quantify in 3D the spatial distribution of forest 
structure from terrestrial lidar data. The method rests on the hypothesis that the normalized 
number of laser returns within a given volume element is proportional to the density of 
vegetation material inside this volume. The developed model is based on analysis made inside 
Svoxels (spherical voxels) to compute a spatialized vegetation density index. The model was 
tested on two different scans of the same plot. The resulting vegetation density index well 
represents the vegetation structure as observed within the lidar point cloud. Quantitative 
analyses confirmed a global consistency of the results within and between scans. However, we 
observed a slight bias in the computed density indexes. It might be mainly explained by 
occlusions, which cause 1) a slight decrease of the density index with distance and 2) local 
differences in density index between scans. Future work will focus on improving our algorithm 
and correcting biases. These results are promising for the development of quantitative measures 
of the 3D forest structure. 
 
Keywords: Terrestrial lidar, forest canopy, 3D model, architecture, stand structure 
 
1. Introduction  
 
Precise description of 3D structure of forests is useful for timber resource monitoring, 
ecosystem management and preservation, or improved understanding on ecosystem functioning. 
However the spatial complexity of forests makes structure measurement very difficult, 
particularly since structure is not a satisfyingly defined feature (Fleck et al. 2007). A complete 
3D plot description is not conceivable using traditional field inventory methods. The recent 
development of terrestrial lidars allows to acquire very detailed 3D data on forest structure. It 
opens up new opportunities to derive metrics closely linked to forest structure and to reduce 
time and costly field measurements (Hopkinson et al. 2004). 
 
Terrestrial lidars were originally developed for civil engineering (see Lichti et al. (2002) for 
examples of systems and applications). Recent studies expanded their use on tree or stand 
structure measurements. Most of them focused on estimating traditional field-based forest 
parameters. Hopkinson et al. (2004) first demonstrated that it is possible to locate and identify 
individual trees with high precision and to measure total tree height and diameter at breath 
height (dbh). Tree heights were however underestimated of about 1.5 m when compared with 
field validation data. This was mostly due to low sampling density at the upper canopy level 
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caused by occlusion effects of the signal and a suboptimal survey protocol. Results for mean 
dbh differed by only 1 cm from tape measurements. Similar results were obtained by other 
authors for both height and dbh measurements using semi-automatic data extraction methods 
(Watt and Donoghue 2005; Fleck et al. 2007; Wezyk et al. 2007). Other forest parameters such 
as stem density, total basal area, gross and merchantable timber volume were also estimated 
from terrestrial lidar data with a good agreement when compared with traditional field 
measurements (e.g. volume estimations within 7 % of the traditional field estimations 
(Hopkinson et al. 2004)). Other efforts dealt with automatic tree location and height, dbh, stand 
basal area or timber volume estimations (Aschoff et al. 2004; Bienert et al. 2007; Király and 
Brolly 2007; Wezyk et al. 2007).  
 
The very high sampling rate of terrestrial laser systems allows to generate detailed 3D canopy 
models therefore opening up the possibility to analyze fine scale stand structure, foliage 
distribution, canopy light transfer or leaf area indices that are important to understand and 
model forest function and dynamic. However few studies have demonstrated the interest of such 
systems for ascertaining parameters beyond those from the traditional inventories. As an 
exception, Fleck et al. (2007) proposed a method to quantify canopy projection far much precise 
than the 8-point canopy projection from a ground operator used in traditional inventories. As 
other non-traditional measures, Danson et al. (2007) proposed a method to estimate canopy 
directional gap fraction and Van der Zande et al. (2006) an approach for vegetation profile 
reconstruction. Studies using terrestrial lidar show much opportunity for developing new 
methods for forest canopy metrics that will take full advantage of terrestrial lidar datasets. One 
of the main issues will be to solve the problem of the distance-dependent varying point density 
from the lidar returns. 
 
This paper introduces an innovative approach to analyze the vegetation structure from 3D point 
clouds acquired with terrestrial lidar. The method quantifies the 3D spatial distribution of forest 
canopy material in volume elements (~dm level). It makes available operational calculations 
linking the 3D point cloud recorded by a terrestrial lidar with the spatial distribution of the 
vegetation. This study was also performed considering the link between airborne lidar and field 
data with the aim of improving information extraction from airborne lidar data on forested areas. 
Indeed airborne lidars proved capable to estimate the spatial distribution of forest parameters 
such as height, crown area, timber volume or biomass at both tree or stand level (Lim et al. 
2003). However these airborne estimates require local calibration through acquisition of field 
data. 
 
2. Method 
 
2.1 Study area and field data  
 
The main study site is part of a National Environmental Observatory (ORE Draix) located in the 
southern part of the French Alps. It is part of the Haute-Bléone state forest, mainly composed of 
black pine (Pinus nigra) planted in the 1880’s to protect against soil erosion. Most of the stands 
are even-aged and mature. Elevations range from 802 to 1263 m. Traditional field inventory was 
conducted during December 2007 within circular plots of 15 m and 9 m radius. Within the plot 
the following characteristics were measured for all the trees with dbh > 7 cm: dbh, total and 
timber heights, crown base height, crown diameter and tree position. For the purpose of that 
study, we focused on a 15 m circular plot having a tree density of 66 stems/ha and located on a flat 
area. 
 
2.2 Data acquisition with the terrestrial lidar  
 
Terrestrial lidar surveys were made on March 2008 using an ILRIS-3D system (Optech Inc, 
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Toronto, Canada). The system measures the laser returns within a window 40° wide in both 
horizontal and vertical directions. The laser emits and measures light at 1,500 nm. Point density 
of each scan is controlled by the operator. The system can register the intensity and distance for 
either the first or the last backscattered signal. In our study, we selected primarily the last returns 
considering that they would provide a better statistical representation of the vegetation 
distribution compared with first returns. However, first and last returns were recorded at some 
particular system base stations (i.e. system location) for comparison and quality assessment. The 
ILRIS-3D base stations were selected outside the plot at varying distance from the plot centre 
and separated by an angle of about 120° relating to the plot center. Artificial targets (polystyrene 
spheres with 8 cm diameter) were distributed within the plot and measured using differential 
GPS and total station to improve the alignment (co-registration) and the georegistration of the 
scans acquired from different base stations. 
 
2.3. Method developed for quantifying the spatial distribution of vegetative elements  
 
The objective of this study was to develop an algorithm to calculate vegetation density from 
lidar returns visible in the form of point clouds. The point density needs to be locally 
transformed into density of vegetation components. We used a statistical approach 
hypothesizing that the interception rate is related to the vegetation density. Such an approach 
was preferred to a formal physical-based model (e.g. Beer-Lambert law) because of the 
heterogeneity of distribution of canopy components and also because of the relatively small 
footprint of the laser beam compared to vegetation elements size. Estimation of density index 
throughout a scene involved first dividing the plot-space into constant volume elements (voxels). 
For each voxel, we calculated (1) the number of lidar points within the voxel and (2) the number 
of laser beams entering the voxel. The density index of each voxel is given by the ratio (1) / (2). 
Our method has two spatial characteristics: a regularly spaced grid of voxel centers and the use 
of spherical voxels.  
 
2.3.1. Regular 3D grid and spherical voxels 
 
Voxel centers were arranged on a 3D grid regularly distributed along x, y and z axes. The grid 
was georeferenced in the Lambert III conformal conic coordinate system and was used to 
process each scan of a same plot. Computations from all scans of the plot could therefore be 
compared and integrated. Before processing each scan, the Lambert III grid is changed into the 
Cartesian system of the scan. The transformation model is computed using (1) The Lambert III 
coordinates of target centers, measured on the field (total station + DGPS), and (2) the Cartesian 
coordinates of the targets, measured on each scan by fitting a spherical shape on its 
corresponding point clouds. The 3D Reshaper ® software was used for that purpose. A 
minimum of 4 spheres was required for computing the transformation model.  
 
Data acquisition with the terrestrial lidar follows a spherical geometry. We therefore adopted a 
spherical geometry to simplify computations on the resulting point cloud from lidar 
measurements. Lidar position was taken as the origin of the spherical system. The space 
illuminated by the lidar was already divided into voxels. Therefore each voxel center was 
associated with a spherical coordinate (r, θ, φ) and bounded with the following conditions: 

1. 4 angles: θmin = θ - dθ, θmax = θ + dθ, φmin = φ - dφ and φmax = φ + dφ, 
2. 2 distances: rmin = r - dr, rmax = r + dr, 

with dr set to half the grid resolution. This new volume is referred to as the spherical voxel or 
Svoxel (Figure 1). We set dθ and dφ to ensure a constant volume of Svoxels (V = R3, with R the 
3d resolution of the grid). The resulting Svoxels have the following properties: 

1. Distortion of a Svoxel compared to the reference voxel is proportional to r (cf. figure 1), 
2. Distortion of a Svoxel increases when angles θ and φ increase, 
3. Svoxels are not strictly contiguous. Small overlaps or gaps can occur which are more 
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important for larger values of θ and φ, 
4. For a given center point, the Svoxels generated from different base station locations will 

not strictly overlap due to slight changes in shape and orientation. The highest 
differences will occur when comparing Svoxels from scan with a 45° (modulo 90°) 
difference between viewing angles. 

 
Even with these properties, differences between voxels and Svoxels remain small and it is thus 
assumed that they are not detrimental to precise density index computation. 
 

A  b  
 

Figure 1: Shape of a Svoxel at 1 m (a) and at 3 m (b) for 50 cm grid resolution. 
   

2.3.2 Algorithm to calculate density index of the grid points 
 
The following algorithm was implemented to calculate the density index of each Svoxel in the 
lidar scanning field of view: 

1. Generation of a 3D regularly spaced grid in Lambert III at a resolution R, 
2. Projection of the grid in the sensor Cartesian system, 
3. Switch scan point cloud and grid into spherical system, 
4. For each point of the grid : 

1. Computation of the theoretical number of laser beams (Ntheorical) entering the Svoxel 
based on the point density selected for the scan. This number decreases with 
distance to the sensor due to the scanning geometry.  

2. Evaluation of the number of laser beams intercepted before the targeted Svoxel 
(Nbefore: points satisfying the 4 angles equation with a distance lower than rmin). The 
difference between Ntheorical and Nbefore represents the number of beams reaching the 
Svoxel. 

3. Identification of the number of returns inside the targeted Svoxel (Ninside: points 
satisfying the 4 angles and 2 distances equations). 

4. Computation of the vegetation density index D, such as:  
 

D = Ninside / (Ntheorical - Nbefore)*100     (1) 
 
If Ntheorical - Nbefore = 0, a no-data value is assigned. If Ntheorical - Nbefore is lower than a 
given threshold Ts, results are considered as non-significant because too few beams 
are available to assess Svoxel density. Output of results in Lambert III. 

5. Steps 2 to 5 can be reapplied to other scans of a same plot acquired from other base 
stations. 

 
2.4 Data analysis and validation  
 
For this preliminary study the algorithm was applied on 2 out of the 8 scans available for the 
plot. Scan density was set to 6.24 mm (resp. 7.02 mm) at 15 m for scan 1 (resp. scan 2) and the 
last returns were recorded. Three Svoxel resolutions were selected: 0.25, 0.5 and 1 m. Results 
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were first evaluated from a preliminary visual assessment where Svoxels with a positive and 
significant density index were visualized on the lidar 3D point clouds of selected trees. 
Preliminary tests allowed us to adopt a value of 50for the threshold defined for non-significant 
values (Ts).  
 
Then two sets of procedures were realized:  

1. In order to evaluate the result consistency inside a given scan, several stand crowns 
located at various distances from the base station 1 were extracted and the distribution 
of positive and significant density indices were analyzed. Results on four black pines 
and one Spanish fir (Abies pinsapo) were compared (cf. Fig 2). 

2. Density index values obtained from two different base stations were also compared to 
evaluate the consistency of the results between different scans. This preliminary 
analysis defined if results from multiple scans can be compared and merged. 

 
 

1
2 5

3
4s

Base station

Viewing 
direction 1

2 5

3
4s

Base station

Viewing 
direction

 
 

Figure 2: The tree crowns selected for analysis are shown on the 3D point cloud obtained from the system 
position 1 and viewed from the top. Crowns represent black pine (1, 2, 3 and 5) and Spanish fir (4). 

 
3. Results and discussion 
 
3.1 Visual analysis 
 
The method gave visually consistent results. Figure 3 compares the point cloud from the 
original scan and the values of the density index for Svoxels on a vertical slice of a black pine 
crown. The tree shape is well described by Svoxels with density index values apparently 
reasonable: highest density values are logically located along the trunk and close to large 
branches regardless of the Svoxel size. Tree outline description quality is getting coarser when 
Svoxel size increases. However decreasing the Svoxels size increases the rate of non-described 
areas (no-data Svoxels) of the crown due to occlusions (i.e. mutual shading) particularly at the 
back part of the tree. Therefore researches have to be conducted to define the Svoxel size 
providing the optimal description of the vegetation structure. The optimal Svoxel size is 
expected to vary with the stand structure (density, tree dimensions and tree arrangement). 
Furthermore the number of beams generated by the lidar should be high enough to allow enough 
intercepted beams by the tree structures of the scene. While the point density at each Svoxel 
varies greatly according to the scanning parameters and the occlusion effects between canopy 
elements, the computed density indexes are relatively homogeneous within the crowns. The link 
between spatial distribution of canopy components and density index of Svoxels follows the 
general density patterns expected for these conifers. However, a slight dissymmetry remains 
between density index of Svoxels of the crown facing the scanner system and those on the back 
part of the tree. This may be explained by a heterogeneous spatial distribution of vegetation 
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elements. The occlusion of some vegetation elements may bias the density index values (Fig. 4). 
At tree level, underestimation and overestimation effects do not offset each other inducing a 
slight underestimation towards the back of the crown (Fig. 3). 

 

Figure 3: Density index were computed for the three grid dimension (0.25, 0.5, 1m). Density index are 
superimposed on their corresponding Svoxel centre on the lidar 3D point cloud. Results are given for a slice 

cut through a tree in the scan direction (a). Density index were separated into 4 classes using quartiles. 
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Figure 4: Effect of occlusion on the density index: (a) When Trunk B in the Svoxel is hit by 3 beams out of 
9 it leads to a density index of 33 %. (b) When Trunk A external to the Svoxel is hit by 3 incoming beams 
but does not mask another canopy element in the Svoxel, the density index becomes 50 %. (c) When Trunk 

A masks trunk B and no other vegetation components is hit in the Svoxel, the density index is 0 %. 

 
3.2 Comparative analysis of different tree crowns in a same scan 
 
Results for the five selected trees are summarized in table 1. The number of Svoxels with a 
positive and significant density index gives an indication of the number of Svoxels used for 
computing each mean tree density index. It varies significantly from one tree to another and 
cannot be simply related to distance from the lidar system. This number depends on Svoxel size, 
tree size, distance from the sensor and occlusion patterns. As for the mean density values, we 
expected similar values for a same species. Although values were relatively similar for the 4 
black pine trees (table 1), their mean density index varied respectively from 10 to 13.4 %, 9.8 to 
12.8 % and 8.3 to 14.6 % for the 25 cm, 50 cm and 1 m Svoxel resolutions respectively. Since 
only few trees were analyzed this could be due to natural tree heterogeneity. However, further 
tests on more trees are required to validate if a bias could originate from occlusion effects, 
similarly as what was observed for the density index in front and towards the back of individual 
crowns. In such case density index would decrease with the amount of obstacles in the path of 
the light beams. This trend can be observed from our dataset for all Svoxel resolutions but not 
very clearly (table 1). For instance when comparing results for black pine 3 and 5, tree mean 
index is clearly affected by the vegetation present between the lidar system and the observed 
tree: black pine 3, is less affected by occlusions (see figure 2) than black pine 5 and has a higher 
density index (table 1). We hypothesize that occlusions of the incident beams might be the main 
contributor to this bias. The anomalies related to the distance probably result from (1) a decrease 
of the sampling density with distance to the lidar system and (2) a change in the spatial 
distribution of the laser beams entering the Svoxels. Occlusions transform the regular sampling 
pattern into an irregular. In heterogeneous middles, this transformation may biased the density 
index computation. Additional analyses are necessary to evaluate the incidence of this bias on 
the quality of vegetation characterization. Combining scans acquired from various base stations 
will allow to quantify and partly correct this bias. 
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Table 1: For each tree crown density index mean and standard deviation were computed for 3 grid 

resolutions: 25, 50 and 100 cm. The theoretical entering beam number gives an indication of the crown 
distance from the lidar system. 

 
Svoxel 

resolution 
 Spanish fir 

4s 
Black Pine 

1 
Black Pine 

2 
Black Pine 

3 
Black Pine 

5 
Distance   15 m 21 m 33 m 39 m  39m  

Number of Svoxel with significant 
positive value inside the crown 

3455 7328 1172 1558 457 

Mean Ntheorical 1821 585 285 212 214 
Mean density index 14.2 12.9 13.4 11.4 10.0 

25 cm 

(standard deviation) (15.1) (14.0) (14.8) (13.1) (13.2) 
Number of Svoxel with significant 
positive value inside the crown 

705 1859 777 566 349 

Mean Ntheorical 7199 2317 1103 840 829 
Mean density index 15.9 12.8 11.3 10.5 9.8 

50 cm 

(standard deviation) (15.7) (12.8) (12.1) (11.5) (12.8) 
Number of Svoxel with significant 
positive value inside the crown 

136 396 244 136 116 

Mean Ntheorical 28405 9271 4380 3354 3288 
Mean density index 17.8 14.6 11.0 10.8 8.3 

1 m 

(standard deviation) (18.4) (14.0) (11.3) (11.7) (9.6) 
 

 
Histograms of the density index values allow to compare the distribution for the 5 selected 
crowns for the three grid resolutions. Figure 5 presents the histogram for a Svoxel grid 
resolution of 50 cm. The histograms are comparable for all the pines. For the Spanish fir a slight 
difference can be noticed on figure 5 and was observed at all the 3 resolutions: density index 
frequencies are higher than those from the pines for densities ranging from 20 to 50. 
Consequently standard deviations were similar for all the black pine crowns and were higher for 
the Spanish fir (table 1). A higher foliage density for this species could explain this result, even 
if the density index computation bias is likely to contribute to this difference. This open up the 
possibility to classify species using density index distribution.  
 
3.3 Comparison of density index for two scans 
 
Table 2 recaps the results of the comparison of the 2 studied scans for two grid resolutions (0.5 
and 1 m). The total number of Svoxels was calculated for a grid including the circular plot. After 
merging two scans from different base stations we noticed that the no-data values represented 
only about 12 % of the total number of Svoxels in the plot for all grid resolutions. The Svoxel 
centers, for which a significant density index value was computed from both scans, are only 
about 55 % of the total number of Svoxels of the grid. This low value is explained by the fact 
that only the bottom part of the plot was scanned in the second scan. The significant differences 
in the magnitude for the “Mean density index difference” and the “Mean difference for positive 
and significant density index values” are explained by a high number of Svoxels located in 
vegetation gaps. These Svoxels, with a null index value, are consistent between scans. Large 
differences in density index values are observed inside the vegetation elements. For the 50 cm 
grid resolution about 15 % of the density index values differ from less than 1 % and 45 % from 
less than 5 % but 20 % of the Svoxels have index values with a difference higher than 20 %. 
Part of these differences can be explained by (1) the difference between the Svoxel shapes 
observed from two points of view and (2) by the type of vegetation material hit by the laser 
beams. For example trunks or large branches can be sources of differences since they are not 
seen at the same place according to the base station location (back part of them, relative to view 
point, is occluded). Some differences may also be related to the potential bias we previously 
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mentioned. All these hypotheses will have to be verified. Merging results from various scans is 
expected to improve the reliability of the density index. Lastly, we observed from the results 
that mean differences decrease with resolution while standard deviation increase. This tends to 
confirm the influence of large wooded elements present in the Svoxel on density index value 
differences. Actually, when grid resolution is getting coarser the proportion of large wooded 
elements inside the Svoxel decreases thus reducing the mean difference. 

 
Figure 5: Histograms of density index values (positive and significant) for 5 tree crowns and for a Svoxel 

resolution of 50 cm. 

 
 
Table 2: Results of comparison between density index values computed for two scans. 

Svoxel 
resolution 

Total number 
of Svoxel in 

the grid 

Mean difference of density indices 
(SD) [Number of Svoxels] 

 

Mean difference for positive and 
significant density index values 

(SD) [Number of Svoxels] 
1 m 58499 -1.4 (6.4) [432175] -4.1 (11.5) [698] 

50 cm 467999 -0.7 (5.4) [208531] -3.1 (16.1) [2266] 
 
 
4. Conclusion  
 
We proposed an innovative method to quantify spatial distribution in 3D of forest structure from 
terrestrial laser scanner data. The method rests on the hypothesis that the amount of laser beam 
returns inside a Svoxel (volume element defined in the lidar spherical coordinate system) is 
proportional to the density of vegetation material included inside this Svoxel. First results appeared 
very promising despite a persisting bias resulting from occlusions. While the density indexes 
globally confirm our hypotheses, some adjustments are required to improve further the 
interrelationship between the lidar returns and the amount of forest components in the Svoxels. 
Future work will focus on improving our algorithm, refining calculations, and correcting biases. 
In-depth analysis of scans acquired in both first and last pulse modes and multi-scan comparisons 
and combinations at different grid resolutions also need to be tested out. Our analysis was an 
essential prerequisite for developing a method aiming at merging the different scans acquired on a 
same plot. This study was realized considering the prospect of establishing a link between airborne 
lidar data and field data with the aim of improving information extraction from airborne lidar data on 
forested areas. These results are very promising for the development of quantitative measures of the 
3D forest structure that will meet the actual information needs in the fields related to forest ecology 
and management.  
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Abstract  
 
The directional gap fraction in forest and woodland canopies is the primary information that is 
used for the non-destructive estimation of canopy leaf area index (LAI). In this study the 
directional gap fraction of a mixed species forest stand was measured using three different 
terrestrial laser scanners providing measurements with two different beam divergences at two 
different wavelengths. Gap fractions estimated from the laser scanners were compared to the 
gap fraction derived from hemispherical photographs recorded near simultaneously. The results 
showed that differences in wavelength gave rise to contrasting intensity images which contained 
complementary information on canopy composition. Wider beam divergence gave rise to lower 
estimates of gap fraction, and the terrestrial laser scanners underestimated gap fraction when 
compared to data derived from the hemispherical photographs. Beam divergence, laser 
wavelength and range-related variation in intensity all affect gap detection. These issues are 
discussed and future data processing techniques to provide consistent estimates of canopy gap 
fraction from terrestrial laser scanners are discussed.  
 
Keywords: terrestrial laser scanner, gap fraction, forest canopy 
 
1. Introduction 
 
There has been an explosion of research examining the interaction of airborne laser scanner 
(ALS) data with forest and woodland canopies (see Omasa et al., 2007 for a recent review), and 
some significant advances in measuring and modelling these interactions have been made over 
the last decade (Nilsson 1996;. Hyyppä et al. 2001; Næsset 2004). ALS provide both spatial and 
spectral (intensity) data on vegetation properties and the laser scanner data may be related to 
canopy cover or leaf area index, or may be used to estimate canopy height and crown shape 
(Koetz et al. 2006; Morsdorf et al. 2004; Hopkinson and Chasmer, 2007). In contrast to ALS, 
terrestrial laser scanners (TLS) have the advantage of higher point density, rapid and cheap 
deployment and multi-angular sampling capability. These features make TLS suitable for point 
or plot-based surveys of forest structure, and potentially an information source for validating 
ALS data collected for the same sites. 
 
There are relatively few studies that have used TLS to measure vegetation structure despite the 
advantages indicated above. Most of the studies published to date using TLS have focussed on 
the measurement of forest stand variables, including tree height, stem taper, diameter at breast 
height and planting density (e.g., Hopkinson et al. 2004; Thies et al. 2004; Watt and Donoghue 
2005; Henning and Radtke 2006a). A small number of studies have attempted to use TLS for 
characterizing canopy variables like leaf area index, canopy cover and the vertical distribution 
of foliage, and a notable early contribution was the work of Tanaka et al. (1998) who coupled a 
laser source and a digital CCD camera to measure foliage profile in vegetation canopies. The 
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system was developed to use two different laser wavelengths to map the woody and green 
material in the canopy (Tanaka et al. 2004). Radtke and Bolstad (2001) used a laser range finder 
to conduct a point quadrat survey in order to determine vertical foliage profile in a broad-leaved 
forest. LAI estimates from the laser survey were not significantly correlated with LAI derived 
from litter fall surveys however, and problems with such hand-held systems were highlighted. 
Lovell et al. (2003) used a tripod-mounted laser scanner to determine directional gap fraction in 
woodland stands of different species and found close correlation with data from hemispherical 
photography. They also successfully estimated LAI of the stands by using gap fraction data. 
Henning and Radtke (2006b) tested the application of a TLS to measure a wide range of 
variables in mixed species broad-leaved woodland and published the first comparisons of single 
site multi-temporal TLS data for vegetation canopies. Estimation of plant area index and LAI 
was based on the computation of laser hits within voxels of 0.5m. More recently, a TLS 
voxel-based approach to the calculation of leaf angle distribution to derive LAI was adopted by 
Hosoi and Omasa (2007). 
 
Most ALS studies to estimate LAI and canopy cover have been based on the assumption that the 
ratio of ground returns to total returns is equivalent to the gap fraction in the zenith direction. 
TLS have the advantage of sampling canopy gap fraction in multiple directions and in this case 
a Poisson model may be used to derive LAI. With TLS it is the ratio of total laser shots in a 
given direction to laser shots with a return signal above the noise threshold in the same direction  
that yields gap fraction estimates; this is are likely to provide more accurate estimates of LAI 
than the vertical sampling of an ALS. 
 
Wagner et al. (2006) developed a special form of the radar equation to compute the return power 
of a laser pulse for a given geometric setting, in which they introduce the cross-section of the 
scatterer: 
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Where Pr is the power at the receiver, Pt the laser pulse energy at the transmitter, Dr is the 
aperture diameter of the receiver optics, R the distance between the laser and the target, βt is the 
beam divergence and σ is the backscatter cross-section, defined as: 
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Where Ω is the angle defining a backscattering cone due to surface roughness, ρs is the 
reflectivity of the scatterer and Ae is the illuminated area of the scattering element. From 
Equation 1 we can see that, for a given TLS, the beam divergence, pulse energy and receiver 
optics are fixed, and so return power depends on range, target reflectivity and the area of the 
target within the beam. The return power required to record a laser ‘hit’ also depends on the way 
in which the instrument analyses the return waveform. Target detection uses a threshold signal 
above the instrument noise and this threshold may be fixed or depend on a function related to 
the peak amplitude of the return intensity. A further issue is that target detection will also depend 
on the wavelength of the laser, since the return signal depends on target reflectivity. Hence, a 
target with low reflectance may not be detected at the same range as one with a higher 
reflectance. The objective of this research was to explore these relationships by comparing the 
directional gap fraction measured at a single forest plot using three different TLS with two 
different beam divergences, and two different wavelengths.  
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2. Methods 
 
The study area was Martinshaw Wood, located 10km NW of Leicester, UK at British National 
Grid reference SK510072.  The woodland consists of 102ha of mixed species stands owned 
and managed by the Woodland Trust.  The stand used for the measurements consisted of an 
overstorey dominated by Corsican Pine with Scots Pine and Oak, and an understorey of Hazel, 
Sycamore, Birch, Hawthorn and Goat willow. Three different Riegl™ TLS (Table 1) were used 
to collect data following the methodology of Danson et al. (2007a), where the laser scanners 
were mounted on a tripod at a height of 1.5m and oriented to scan in hemispherical mode over a 
zenith angle range of -90° to +90°, using the full 80° field of view of the instruments. Two 
orthogonal scans were recorded so that most of the hemisphere was imaged by the two scans; 
gap fractions from the two orthogonal scans were later averaged. The angular sampling 
resolution was set to 0.108° with all instruments recording the ‘last return’ only. A single scan 
consisted of approximately 1.2 million points and each point was recorded as a set of x, y, z and 
intensity values. The complete set of measurements (3 TLS × 2 scans) was completed within 
approximately 50 minutes. A Nikkon digital SLR fitted with a hemispherical lens was mounted 
on the tripod and levelled, and two orthogonal photographs taken. This lens provides a 180° 
field of view across the image diagonal and the two orthogonal images were later merged to 
form a single image of approximately 9 megapixels covering most of the hemisphere (Figure 1). 
 

Table 1: Technical comparison of terrestrial laser scanners used  
 

Riegl model Beam 
divergence Wavelength Angular step sampling Maximum range 

ρ>80% 

LMS-Z210i 2.7 mrad 900nm 0.108° 650m 

LMS-Z390i 0.3 mrad 1550nm 0.108° 400m 

LMS-Z420i 0.27 mrad 1550nm 0.108° 1000m 
 
To compute the directional gap fraction for the laser scanner data the number of ‘hits’ (laser 
shots with measured echo) in 5 degree zenith bands (0-4.9, 5-9.9, etc.) was computed by 
comparing the measured data with the expected number of ‘shots’ in the same zenith bands, 
derived from a model which takes into account the scan geometry and angular step sampling of 
the scanners (Danson et al. 2007a). The ratio of hits to shots was used to derive the average 
canopy gap fraction in a given zenith band. The hemispherical photographs were analysed using 
the Gap Light Analyzer software (Frazer et al. 2000) with different thresholds to differentiate 
the canopy from the sky. 
 

 

 
 
Figure 1. Merged hemispherical photographs of 
canopy. Red circle shows the position of the 
horizon and illustrates the area of the 
hemisphere not imaged. 
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3. Results 
 
Simple visualisation of the laser scanner data showed the striking difference in intensity values 
caused by differences in laser scanner wavelength (Figure 2). The Z210i data show low intensity 
for the tree stems and branches and higher intensity for dense areas of foliage. In contrast the 
Z390i and Z420i scans show high intensity for the tree stems and relatively lower intensity for 
the foliage. There is also evidence in Figure 2 that the Z210i ‘sees’ fewer gaps in the canopy 
than the other two TLS. It should be noted that cross comparison of the intensity values between 
the intensity images from the three scanners is not advisable since the intensity data are not 
cross-calibrated between the scanners. 
 

Figure 2. Intensity images of forest canopy in cylindrical projection from Z210i (left), Z390i (middle) and 
Z420i (right). Sky gaps are blue. 

 
 
The canopy directional gap fraction computed from the three laser scans showed a similar 
pattern with a very low gap fraction at zenith angles between 0° to 20°, maximum gap fractions 
of approximately 13% at zenith angles between 25° to 30° and lower gap fractions at higher 
zenith angles. The Z210i data showed a 2-3% lower gap fraction across all zenith angles; the 
Z390i and Z420i showed very similar gap fractions up to 35° and thereafter the Z420i showed a 
3-4% larger gap fraction (Figure 3).  
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Figure 3. Directional gap fractions computed from three different laser scanners. 

 
 

Comparison of the gap fraction computed from the laser scanners and the hemispherical 
photographs showed large differences in the magnitude and shape of the gap fraction 
distributions (Figure 4). Gap Light Analyzer allows different threshold to be applied to separate 
sky and non-sky elements. Using an automatic threshold of 128 (T128) produced a maximum 
gap fraction of 26% compared to 13% for the Z390i. Using a higher threshold (T200) which 
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reduced the sky fraction in the photographs resulted in a lower gap fraction, closer in magnitude 
to that of the laser scanner data, but again different in shape (Figure 4). 
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Figure 4. Comparison of gap fraction derived from Z390i laser scanner, and hemispherical photographs 

with two different thresholds (T128 and T200) 
 
 
4. Discussion  
 
The variations in intensity in the laser scanner data (Figure 1) are related to differences in the 
reflectance properties of the scattering elements. At a laser wavelength of 900nm (Z210i) the 
reflectance of vegetation is greater than the reflectance of the tree stems, since this is the 
wavelength region of greatest scattering and lowest absorption for green vegetation. In contrast, 
1550nm (Z390i and Z420i) is a region of water absorption for vegetation and it is likely that the 
green vegetation has a lower reflectance than the tree stems. These spectral contrasts provide an 
opportunity for classification of laser data, according to intensity, in order to separate woody 
and green material using multiple wavelengths. Two factors add complexity here however, first, 
where the scattering elements do not fully occupy the laser beam, a lower intensity may be 
recorded and this may be interpreted as comprising objects with lower reflectance, second, we 
have identified a range-dependent variation in intensity which is related to the scanner optical 
system rather than to the physics of the radar equation (Danson et al., 2007b). It will be 
necessary to characterize and correct this variation before the intensity data can be properly 
interpreted. It will also be necessary to examine the directional reflectance properties of forest 
canopy targets since the return intensity is also affected by variation in target bidirectional 
reflectance distribution function. 
 
The differences in measured canopy directional gap fraction between the three laser scanners are 
primarily related to differences in beam divergence. The Z210i produces a beam that is 30mm 
wide at 10m range whereas the Z390i and Z420i produce beams which are 3mm and 2.7mm 
wide at 10m range respectively. The Z210i therefore does not ‘see’ the smaller gaps in the 
canopy because the probability of a scattering element appearing within the wider beam is 
greater. The directional gap fraction measured by the Z390i and Z420i, with similar beam 
divergence, is very similar up to the 35-40° zenith band, but the higher gap fraction for the 
Z420i at larger zenith angles is difficult to explain. The Z420i has a much longer range and 
slightly narrower beam than the Z390i and these may affect the echo detection characteristics; 
further investigation and experimentation of this point is clearly required. It may also be the 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 340

case that the Z420i was measuring a slightly different part of the canopy since no attempt was 
made to accurately co-locate the scans from the three instruments.  
 
The difference in directional gap fraction estimates from the laser scanner data and the 
hemispherical photography is striking and we hypothesise that it is related to the way in which 
pulses are detected by the laser scanners. Small objects, occupying a small proportion of the 
area of the beam, appear to be detected by the laser scanners. If gaps occupying less than 50% 
of the laser beam are detected by the laser scanner then this will lead to an underestimation of 
the gap fraction. We have experimented with filtering the laser scanner data to remove points 
with low intensity hypothesised to correspond to larger gaps. Removal of these points increases 
the gap fraction estimates but the range-related intensity variation mentioned earlier must be 
addressed before this approach can be properly tested.  
 
5. Conclusions 
 
Terrestrial laser scanners have the potential to revolutionise the measurement of vegetation 
canopy structure. However, commercially available instruments are primarily designed to 
measure ‘hard’ objects like buildings and terrain. The application of this technology to measure 
soft targets like vegetation canopies presents some real challenges of data collection, data 
interpretation and modelling. Comparisons with hemispherical photographs are useful since 
such data have been used to measure forest canopy gap fraction for many years. It is clear 
however that further data processing will be required before the measurements converge. 
Further research is required to explore the use of intensity data in the calculation of gap fraction, 
to address some of the issues identified above. It is clear that intensity calibration will be vital if 
we are to use this information to improve gap fraction calculations. A better understanding of 
the interactions of TLS with vegetation canopies should yield new methods for characterising 
forest and woodland canopies and provide a practical way of validating studies undertaken with 
ALS data. 
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Abstract 
 
Most of the research using lidar on vegetation has focussed on deriving forest and single tree 
characteristics. Very few studies have looked at mapping vegetation, including low vegetation, for 
topographical mapping. The aim of this study was to evaluate the classification and extraction of 
vegetation characteristics for topographic mapping using full-waveform airborne laser scanning 
data. The laser data were captured at a height of approximately 950m above ground level 
providing a point density ranging from 0.5-0.8 points per m2. A subset of points representing the 
various surfaces – vegetation, roads and buildings – was extracted and analysed to identify 
surface attributes to be used for further analysis and classification. Vegetation was classified into 
three categories based on height from the ground. The training dataset comprised approximately 
16000 points selected from one million data points. A Triangulated Irregular Network (TIN) was 
created from the elevation of the points. Classification was undertaken on the point cloud based 
on the local statistical variation of attributes of TIN triangles as well as attributes of the 
individual points. We show that a decision-tree classifier performs significantly better than 
k-means clustering based on the train-all-test-all accuracy. Future work will establish the 
accuracy of the classification of vegetation objects on untrained data. 
 
Keywords: Full-waveform Lidar, Vegetation, Mapping, Classification 
 
1. Introduction 
 
The measurement of distances using laser scanning (Lidar), is fast becoming a standard tool in the 
fields of remote sensing, surveying and mapping. Laser scanning can provide accurate and fast 
digital models of the topography, and vertical structures of target surfaces at much lower 
field-operation costs point-for-point, with reduced post-processing time and effort compared to 
traditional survey methods. There are two distinct techniques used in lidar systems based on how 
the return signal is recorded. The more commonly used discrete return lidar systems record single 
or multiple return signals for every emitted pulse. The other emerging technique is 
waveform-digitizing lidar which samples and records the full waveform of the return signal to 
capture a complete elevation profile within the target footprint, or the area illuminated by the laser 
beam (Flood, 2001).  
 
Most of the research on vegetation studies using lidar has been in forestry and can be divided into 
stand-based and individual tree-based studies. Stand-based studies have focussed on extracting 
characteristics like canopy height, canopy openness and tree-species composition and derived 
information like average stem diameter, forest biomass, Leaf Area Index and canopy volume 
(Harding et al., 2001; Hollaus et al., 2006). Individual tree-based studies mainly look at location, 
crown delineation, height and species identification (Holmgren and Persson, 2004; St-Onge, 1999; 
Suárez et al., 2005). These studies were based on lidar data alone, or lidar with optical imagery 
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(Bork and Su, 2007; Hill et al., 2002; Hill and Thomson, 2005; Hyde et al., 2005). There are only 
a few studies, which have looked at mapping vegetation, including low vegetation, for 
topographical mapping from lidar data. 
 
The classification of vegetation points from lidar point clouds is considered to be a challenge, 
especially in the case of low vegetation, and is a focus of current research. The analysis of discrete 
return data relies on the spatial relationship of the points. However, the full-waveform data give 
additional information about the objects in the path of the laser pulse (Wagner et al., 2006). This 
could lead to the development of classification methods based on the information from each point 
with less reliance on spatial relationships, which would simplify the processing significantly. 
Many analytical waveform solutions are based on Gaussian decomposition (Hofton et al., 2000; 
Wagner et al., 2006). The assumption is that the scattering properties of a cluster of targets can be 
described by a Gaussian function. An extended target could be described by a series of Gaussian 
functions, where each pulse represents a cluster of targets too close to be differentiated. This 
method gives estimates of the location and scattering properties of the targets. These include pulse 
width, amplitude, range and cross-section of each detected echo, and the number of returns and 
total cross-section of each laser pulse (Wagner et al., 2008). 
 
Some of these attributes, which are direct properties of the return signal, have been used for 
distinguishing vegetation and non-vegetation points from full-waveform data (Ducic et al., 
2006; Wagner et al., 2008). Their values, however, could be dependent on the method of 
waveform decomposition used.  
 
Classification mainly employs parametric classification, decision-tree approaches and k-means 
clustering. Ducic et al. (2006) used a decision tree, but could classify the returns only into 
vegetation and non-vegetation due to the difficulty in separating trees and shrubs (vegetation) 
from grass, roof and road (non-vegetation). This could be because their aim was to classify 
points without using elevation or relationship to adjacent points. 
 
Charaniya et al. (2004) have been able to classify discrete return lidar data into trees, grass, 
roads and building roofs with a classification accuracy of 66% - 84%. In their study, the lidar 
data were interpolated to a regular grid, and classification was based on normalised height, 
height variation, multiple returns, luminance and intensity. The luminance values were obtained 
from an additional grey scale aerial image.  
 
Increasingly further attributes of the surface derived from the lidar, e.g. roughness and mean 
slope etc., are used for classification. Miliaresis and Kokkas (2007) employed parametric 
classification and k-mean clustering for the extraction of building and vegetation classes from 
lidar DEMs based on elevation, roughness, mean slope and standard deviation of the slope of 
grid cells. 
 
This study classifies points based on parameters extracted from full-waveform data into 
vegetation, roads and building roofs. The classified points are converted to polygons by 
dissolving Thiessen polygons based on the estimated class. The points within the vegetation 
polygons will be analysed in future work to classify vegetation itself into different sub-classes to 
be represented within a three-dimensional topographical map. 
 
2. Study Area and Dataset 
 
A full-waveform lidar dataset was obtained, over the Avonmouth area of Bristol, using 
LiteMapper5600 Airborne Lidar Terrain Mapping System in August, 2006. The study area is 1 
km2, from Easting 354000 to 355000, and Northing 178000 to 179000 (OS British National Grid 
coordinates), which includes a range of land use and landcover types. In addition to stands of 
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trees, there are trees along the road, shrubs in gardens in the residential areas as well as grassland. 
The land use includes residential, commercial and institutional areas and agricultural land.  
 
The LiteMapper system makes use of RIEGL LMS-Q560 laser scanner, and data were captured at 
a height of approximately 950m above ground level. The point density ranged from 0.5-0.8 points 
per m2 per flightline. Four flightlines, with overlaps, covered the whole study area. The raw 
waveforms were decomposed using the standard method, Gaussian Pulse Fitting, available in the 
commercial package RiAnalyzeTM 560. RiWorldTM 560 was used to transform the data into WGS 
Cartesian coordinates. This was converted to British National Grid before further analysis.    
 
The extracted points were displayed in ArcMapTM using the various attributes. All the returns 
were made use of for the analysis, which along with the overlapping swath widths of the flight 
lines generated above 1000000 points giving an average point density of approximately 1 point 
per m2. The topographic features could be distinguished to a certain extent by displaying points 
by elevation, amplitude, pulse width and the number of returns (Fig. 1). Elevation from mean 
sea level is calculated from the location and orientation of the sensor, and the distance or range 
to the target. The amplitude is a measure of the strength of the return pulse. The pulse width 
refers to the standard deviation of the pulse in the Gaussian decomposition. The number of 
returns denotes whether the point is one of a single, two, three or more hits of a single emitted 
pulse.  
 

a b 

c d 
 Ordnance Survey © Crown Copyright. All Rights 

Reserved 
Figure 1: Lidar Points displayed by elevation (a), amplitude (b), pulse width (c) and number of returns (d) 

The extent shown is a subset of the original dataset from Easting 354000 to 354500 and  
Northing 178250 to 178750.  

 
3. Methodology 
 
Attributes of individual points as well as attributes based on the spatial relationship of points to 
neighbouring points were used in the classification process. Amplitude, pulse width and the 
number of returns of each point were used as attributes of the individual points. A Triangulated 
Irregular Network (TIN) was created from all the extracted points. Local height variation of a 
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point was taken as the difference between the maximum and the minimum elevation values of 
the nodes of TIN triangles attached to each point. Variation of slopes and aspects of attached 
TIN triangles were used to analyse whether the different surfaces could be separated. The 
parameters considered were average and standard deviation of slopes and aspects.      
 
An approximate terrain model was created from the lidar points making use of the lowest point 
in a 10m grid. A TIN was created from these points. There were a few outliers, which were 
removed manually. They could be identified as nodes of the triangles with steeper slopes or with 
higher elevation than the surrounding points. These were removed in two steps by creating a 
TIN after each selection. The final TIN, generated from the selected points, was converted to a 
2m grid. The terrain elevation was subtracted from the elevation of each point to get the 
elevation of the point above the ground, or the normalised elevation. 
 
The topographic features can broadly be classified into natural and man-made features. The 
natural features consist mainly of vegetation and were divided, based on the elevation, into low 
(<0.5m), medium (0.5 – 2.5m) and high (>2.5m). The intervals were chosen based on the 
approximation of terrain elevation and the assumption that building roofs are higher than 2.5m. 
The man-made features were divided into roads and buildings. The buildings were sub-divided 
into those with flat and pitched roofs. Training polygons were created for the above six 
landcover classes using lidar points and an ortho-rectified aerial image. The training polygons 
contained 16378 points in all, out of which 9835 were vegetation points, 2367 road points and 
4176 building points. 
 
The lidar points were classified using five methods. First we used a k-means clustering 
requiring 12 clusters. In the second method, the means of the attribute values for the various 
classes in the training dataset were given as the seed points for clustering. The first four principal 
components of the data were seen to represent 79% of the total variance of the original data, and 
were used for unsupervised classification in the third method. Next, the means of the canonical 
variables grouped by the landcover type were used as initial cluster centres for classification. 
Elevation was grouped into three – less than 0.5m, 0.5 to 2.5m and greater than 2.5m – and a 
classification was done using this instead of the actual elevation from the terrain for each of the 
above methods. The last method involved generating a decision tree using the training dataset for 
classifying the lidar points into the six classes (Figure 2). The significance of the attributes was 
analysed by taking out one attribute at a time and testing the accuracy of the classification, 
maintaining similar number of nodes for the decision tree. 
 

 
 

Figure 2: The pruned decision tree for classification 
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4. Results 
 
Landcover maps were generated using the various classification methods (Fig. 3a-e). Some of the 
misclassifications become evident on visual analysis, and some by comparing with OS 
MasterMapTM polygons and an aerial photograph (Fig. 3f-g). 
 

 a  b  
c

 d  e 

  f  g 
Ordnance Survey © Crown Copyright. All Rights Reserved

 
Figure 3: Landcover maps generated using the classes from a) unsupervised k-means classification,  

b) unsupervised classification with attribute means from the training dataset as seed points, classification 
using c) variables from principal components analysis, d) canonical variables, e) decision tree classifier  

and f) OS MasterMapTM, g) Aerial Photograph 
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Table 1 shows the number of correctly classified points from each category, and the overall 
accuracy for each method. The accuracy assessment makes use of only the training data. Only 
36% of the points were correctly classified by the first method. All the flat roofed buildings 
were misclassified, and the accuracy was very low for trees (3%). The accuracy was the highest 
for grass and road (88% and 84% respectively). The overall accuracy of the classification 
increased to 58% in the second method though the accuracy was still low for flat roofed buildings. 
The misclassification between pitched roofs and trees decreased with this method. The overall 
accuracy using principal components was higher than that of the first classification, but lower 
than that of the second. There was an increase in the classification accuracy for pitched roofed 
buildings and trees. The overall accuracy from canonical variables was almost double of that 
using the principal components. The accuracy of classification of flat-roofed buildings increased 
from 0 to 93%. The significant misclassification was that of shrubs as grass.  
 

Table 1: Overall accuracy for k-means Classifications 
 

 Veg < 
0.5m 

Veg 0.5 – 
2.5m 

Veg > 
2.5m 

Roads Flat Roof Pitched 
Roof 

Overall 
Accuracy 

Method 1 2189 412 166 1989 0 1139 35.99 % 
Method 2 2078 754 2100 2188 1 2440 58.38 % 
Method 3 2009 59 817 2095 0 2286 44.36 % 
Method 4 2420 930 4979 2207 628 3202 87.72 % 

Number of 
points 

2496 1927 5412 2367 674 3502 16,378 

 
Grouping the elevation attribute into three, increased the classification accuracy from 36% to 
54% for the first, from 58% to 60% for the second and from 88% to 94% for the fourth method. 
However, for the third method based on principal components, the accuracy reduced from 44% 
to 40%.     
 
The overall accuracy of the classification using the decision tree on the training dataset was 98% 
(Table 2). The pruned decision tree does not make use of the two attributes, standard deviation of 
aspects and the number of returns. It was seen that the classified elevation and amplitude 
contributed the most to the accuracy of the classification. Excluding elevation from the decision 
tree reduced the overall accuracy to 80% and excluding amplitude reduced the accuracy to 88%. 
Excluding pulse width reduced the accuracy only slightly from 98.1% to 97.65%.     
 

Table 2: Error Matrix for Classification using the pruned Decision Tree 
The accuracies are for the data used in the training dataset on a train-all-test-all basis. 

 
 Veg < 

0.5m 
Veg 0.5 
– 2.5m 

Veg > 
2.5m 

Road Flat-roof Pitched-roof User’s 
Accuracy

Veg < 0.5m 2492 3 0 1 0 0 99.84 
Veg 0.5 – 

2.5m 
1 1922 4 0 0 0 99.74 

Veg > 2.5m 0 1 5268 0 1 142 97.34 
Road 36 7 28 2296 0 0 97.00 

Flat-roof 0 0 0 0 670 4 99.41 
Pitched-roof 0 0 152 0 13 3337 95.29 
Producer’s 
Accuracy 

98.54 99.43 96.63 99.96 97.95 95.81 98.10 
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5. Discussion 
 
The height variation is a measure of the roughness of the surface and is expected to be high for 
vegetation. This was seen to be more useful than standard deviation and absolute deviation from 
the mean of elevations within a window in the case of rasterised data (Charaniya et al., 2004). 
Local statistical variation of attributes of grid cells has been used for separating buildings from 
other surfaces (Alharthy and Bethel, 2002; Miliaresis and Kokkas, 2007). This was adapted for 
point data by making use of the variation of attributes of TIN triangles attached to a point. Out 
of these, the average aspect was found to be of not much use since even flat surfaces could have 
minor differences in their aspects.  
 
Box-and-whisker plots were used to analyse the various attributes grouped into categories. The 
amplitude values of roads and trees seem to be lower than that of grass, shrubs and buildings. 
Though the values overlap, amplitude seems to be a useful attribute in separating roads from 
low vegetation. The pulse widths are higher and of a wider range for vegetation than for grass, 
roads or buildings as seen from earlier studies (Ducic et al., 2006). The number of returns is 
more than one for vegetation and building edges. There are some multiple returns from roads, 
which could be from overhanging vegetation or vehicles. 
 
The normalised elevation, or elevation from the estimated terrain, is useful in separating 
buildings from the other classes, especially road and grass. The lower outliers in vegetation are 
probably from, or close to the ground. The mean slope of the TIN triangles, which has the point 
as the common node, seems useful in identifying trees, which have larger height variations and 
hence, higher average slopes. The higher values of the outliers in the roads could be from 
vehicles, or branches of trees. The standard deviation of slopes of TIN triangles attached to a 
point is lower and less variable for road, grass and buildings with flat roof. This additional 
attribute is expected to aid in the correct classification of surfaces if the terrain itself is sloping. 
The standard deviation of aspects of attached TIN triangles was found to be lower for buildings 
with pitched roofs than those with flat roofs. This could be because even for a relatively flat 
horizontal surface, there are minor variations in the aspects. This is less pronounced in sloping 
roofs. However, this is only of limited use since this is not applicable in the case of ridges and 
features on the pitched roof. Nevertheless, this attribute is included as the separation of 
vegetation and pitched roof seems to be the most difficult, and it could be useful in the 
classification process.  
 
A matrix of scatter plots of the various attributes, grouped by the landcover classes, was 
generated to analyse the inter-relationships between the attributes. Amplitude and average slope 
seem to bring out the best separation between the classes. Some of the derivatives of elevation – 
height variation, average slope, standard deviation of slope and standard deviation of aspect – 
seem to have a high correlation (Table 3). The average slope has a high correlation with 
elevation as well as height variation, which is to be expected.   
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Table 3: Matrix of correlation coefficients of the attributes 

 
 Amplitud

e 
Widt
h 

Elevatio
n 

Av_slop
e 

Std_slop
e 

Std_aspec
t 

Ht_va
r 

Nu
m 

Amplitud
e 1        
Width -0.3 1       
Elevation -0.28 0.34 1      
Av_slope -0.43 0.38 0.75 1     
Std_slope -0.19 0.29 0.45 0.44 1    
Std_aspec
t -0.13 0.05 -0.09 -0.03 0.02 1   
Ht_var -0.38 0.29 0.54 0.77 0.26 0.04 1  
Num -0.4 0.07 0.28 0.57 0.12 0.07 0.42 1
 
5.1 Classification by clustering 
 
Cluster analysis groups objects into clusters or groups based on the similarity of their attributes. 
The k-means method is considered to be suitable for clustering large amounts of data. It partitions 
the observations in the data into k mutually exclusive clusters in a c-dimensional space where c is 
the number of attributes used in the classification process (Mathworks, 2008a; Miliaresis and 
Kokkas, 2007). The required number of clusters, k, has to be provided by the user. 
 
Subtractive clustering is an algorithm for estimating the number of clusters and the cluster centres 
in a dataset. The range of influence of the cluster centre has to be specified for each dimension, 
and 0.2 to 0.5 is considered to be the optimum range of values. A value of 0.5 would mean that the 
range of influence is half the width of the data space for the particular attribute (Mathworks, 
2008b). Values from 0.2 to 0.5 were considered for the range of influence with an increment of 
0.1. The number of estimated clusters were 12, 7, 4 and 3 respectively. Twelve clusters were 
considered for further work since it would be easy to re-classify this into the six landcover classes.    
 
The attribute values were transformed using z-score to standardise the differing value ranges of the 
attributes. In z-score transformation, the mean of the attribute values is subtracted from the data 
value and the resulting value divided by the attribute standard deviation. The training dataset was 
partitioned into twelve clusters in the first method. The initial cluster centroid positions are chosen 
at random by the k-means classifier, and the classification would differ depending on the location 
of the seeds. To avoid this, the cluster centres generated by subtractive clustering were used as the 
seed points. The clusters were then re-classified into the six landcover classes based on their 
proximity to the mean of the attribute values for the different classes in the c-dimensional space. 
This was done by a k-means classification of the centroid locations, with six as the desired number 
of classes and the attribute value means as the seeds. In the second method, the attribute value 
means from the training dataset were chosen as the initial cluster centres.    
 
As shown by the correlations between attributes (Table 3) there is some redundancy in the 
information content of the whole data set. Principal components analysis is a method to reduce 
this by generating a new set of variables. All the principal components are orthogonal to each 
other and each component is a linear combination of the original variables. As in the unsupervised 
classification, the number of clusters was determined by subtractive clustering. Six clusters were 
identified, and the k-means classification was done using the mean attribute values of the 
transformed dataset from subtractive clustering as seed points. The six clusters were reclassified 
into the six landcover classes as earlier based on their proximity.  
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The canonical variables are linear combinations of the original variables, chosen to maximize 
the separation between groups, or the six landcover classes. Among all possible linear 
combinations, the first canonical variable has the maximum separation between groups. The 
second canonical variable has the next maximum separation subject to it being orthogonal to the 
first, and so on. The first four canonical variables were used for the k-means classification with 
the means of the canonical variables as the seed points. 
 
5.2 Classification Using Decision Tree 
 
The first four methods are based on the assumption that the populations of each group are 
normally distributed. Decision trees offer a non-parametric alternative and do not require such 
assumptions or simplifications. The attributes – amplitude, pulse width, elevation class, average 
slope, standard deviation of slopes, standard deviation of aspects, height variation and the number 
of returns – were used as the input for creating a classification tree. Maximum deviance reduction 
was chosen as the splitting rule for generating the decision tree. This created a decision tree with a 
large number of nodes, which clearly over-fitted the training dataset. The dataset was partitioned 
into ten random subsamples. For each subsample, a tree was fitted to the remaining data, which 
was then used to predict the subsample. This was used to derive an optimum level of pruning for 
the decision tree (Mathworks, 2008b). The ‘best’ level appeared to change with each trial due to 
the random selection of the subsamples. So, the mode of the best pruning level out of hundred was 
selected. The original decision tree contained 491 nodes, which was pruned to 31 nodes with a 
pruning level of 23. This decision tree was used to classify the original dataset.  
As seen from the decision-tree diagram, it is difficult to separate buildings with pitched roofs 
and vegetation higher than 2.5m. This was mainly for the building edges and features like 
chimneys on the roof. Medians on roads, marked in a lighter colour, have higher amplitudes and 
are classified as low vegetation. Similarly, some of the vehicles are classified as vegetation of 
medium height. Some points on trees, possibly with dense foliage, are classified as buildings. It 
can be seen from the MasterMap data that some of the buildings are not detected, and are 
classified as vegetation of medium height. This is mainly because some of the smaller buildings 
are less than 2.5m in height.    
  
6. Conclusion and Future Work 
 
We show that a decision-tree classifier performs significantly better (98% accurate) than k-means 
clustering (88%) based on the train-all-test-all accuracy. Though it was seen that the standard 
deviation of aspects and the number of returns were not as useful as expected, it could be due to 
the selected classes. Standard deviation of aspects could be useful in segmenting the pitched 
roofs for roof modelling and the number of returns could be useful in sub-classifying vegetation. 
The average slope and height variation are dependent on the point density, and the pulse width 
depends on the method of waveform decomposition. These will have to be modified for other 
datasets. Amplitude is dependent on various factors like the sensor, flying altitude, incidence 
angle and surface reflectance. Amplitude, corrected for these factors, would be a useful attribute 
if the classification method is to be applied on other datasets. The classification could be further 
improved based on the spatial relationships between the classified polygons (de Almeida et al., 
2007). Further work is required to test the accuracy of the classification on untrained data. 
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Abstract 
 
Natural resources management, for both economical and conservative purposes, needs detailed 
and precise spatially related information. Forest inventories based on field assessment are the 
basic source of information to support forest management at local level as at large area level for 
strategic forest planning. Forest information acquired in the field are extremely expensive, even 
if acquired on small areas o the basis of sampling techniques. Information available through 
Airborne Laser Scanning (ALS) based on LIDAR (Light Detection and Ranging) technology is 
potentially useful in estimating vertical and horizontal structure of forest, such information 
cannot be detected by traditional optical sensors. 
 
The precision and accuracy of LIDAR based estimations are strongly influenced by site 
conditions and by the characteristics of the sensors. 
 
The purpose of this work is to evaluate the accuracy of tree height estimations obtained with the 
use of LIDAR and compare it with field real data in a multilayered complex forest dominated by 
Auracaria angustifolia located in Curitiba,PR (Brazil). The first results cast a promising light on 
the possible use of LIDAR data in estimating forest structure even in such complex conditions. 
 
Keywords: LIDAR, tree heights, VERTEX 
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Abstract 
 
The LINHE project aims to develop applications for forest management based on the combined 
use of LiDAR data, images from spaceborne (multi and hyperspectral) and airborne sensors 
(panchromatic, colour, near infrared), and NIR field data from a portable sensor. The integration 
of the different types of data should be performed in a rapid, intuitive, cost-effective and 
dynamic way. In order to achieve this objective, new algorithms were developed and existing 
ones were tested, for the correlation of data collected in the field and those gathered by the 
different sensors. Specific software (LINHE prototype viewer) was developed to support data 
gathering and consultations, and it was tested in three different forest ecosystems, so as to 
validate the tool for forest management purposes. The optimisation of the synergic capabilities 
derived from the combined use of the different sensors will allow the enhancement of their 
efficiency and provide accurate information for operational forestry. 
 
Keywords: LiDAR, Digital photogrammetric Camera, hyperspectral spaceborne sensors, land 
NIR sensor, forest inventory 
 
1. Introduction  
 
The use of LiDAR (Light Detection and Ranging) technology in different forestry applications 
is a research line in which universities, technology centres and private companies are currently 
involved. Commonly, research in LiDAR topics is mainly focused on developing algorithms 
able to analyse the vast quantity of data gathered. These algorithms (or filters) aim to obtain 
different digital elevation models of the terrain and of objects attached to and detached from it. 
Most of these filters were tested and analysed in Sithole and Vosselman (2003). ALS (Airborne 
Laser Scanning) provides information about forested areas by a direct quantification of certain 
forest parameters such as tree height (Hyyppä et al 2005; Pearsson et al 2002; Popescu et al 
2002; Riaño et al 2002) or density related variables as the penetrability index (Morsdorf et al 
2005; Riaño et al 2004), and biomass products (Lefsky et al 1999) as forest fuels, carbon 
sequestration or leaf area index (Roberts et al 2005). Measuring the backscattered intensities of 
the laser pulses at different heights allows studying the vertical stratification of the canopy cover 
at a stand level. However, works on LiDAR data applications for forest inventory, such as forest 
stand control and assessment (Næsset et al 2004; Parker et al 2004), are scarce. 
 
The optimization of the synergic capabilities derived from the combined use of different types 
of sensors enhances their efficiency by providing accurate information which can be very useful 
for operational forestry. This approach allows, for instance, adjusting the relationship between 
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altimetric LiDAR information and individual trees of the forest stand. Even more, it allows 
relating accurate estimates of sub-stand parameters, i.e. crowning dimensions, height and 
diameter at breast height or DBH (Hyyppä and Inkinen 1999), with stand density -by means of 
canopy detection algorithms-, and structure -by mapping the spatial distribution of dominance 
and canopy gaps. LiDAR may benefit from image support (Riaño et al 2007; StOnge et al 2001), 
supplied by video film or by a conventional photogrammetric camera, in order to establish 
structures. Although it has been hinted that the intensity of the return may provide information 
about structures, the necessary software has yet to be developed, and at this point this line of 
research is still at an academic level. Moreover, digital cameras offer RGB colour, panchromatic 
and infrared images as georeferenced digital products. Combining ALS and photogrammetric 
data, simultaneously obtained using the same aerial platform, might enhance the possibility of 
gathering information from ecosystems by adding biological and physical environmental 
features to the metric parameters obtained by laser. 
 
Additional information captured by other sensors (mid-infrared sensors, near infra-red -NIR- 
and/or visible spectrum) aids the classification of LiDAR data and it is eventually used to 
expand the range of predictions across those areas where the use of LiDAR will be too 
expensive or unfit for the estimation of other valuable information (species distribution, tree 
health or phenological stage). The infrared spectrum has been traditionally used to evaluate 
vegetative stages of plants, assess fire damage, track the evolution of pests or pathologies, etc. 
Combining several sensors offers the advantage of obtaining different kinds of data during the 
same flight (the principle of capture once and use several times…), although it also poses 
multiple technical problems yet to be resolved. On the other hand, the possibility of obtaining 
thematic cartography in real time is opened. “Real time mapping” is currently receiving much 
attention as will drastically reduce the production cycle (in hours or days) and therefore the 
production costs.  
 
Hyperspectral images are ideal tools for environmental applications. Fine spectral resolution is 
important for the discrimination of certain features such as vegetation health or distribution, 
which can be difficult to detect with medium resolution optical systems or commercial aerial 
photography configurations. Vegetation has a unique spectral signature which enables it to be 
distinguished readily from other types of land cover in an optical/near-infrared image. Hence, a 
characteristic spectral signature can be used for the identification of vegetation types or 
conditions. The level of resolution of those images offers a local improvement to the use of 
medium resolution optical from satellite platforms since it can provide a better definition of the 
relationships between stand structure (stand density or canopy cover) and reflectance. This 
provides more flexibility in terms of data acquisition, and improves the chances of getting cloud 
free images. Furthermore, they can provide the sampling material for extending predictions over 
large areas using cheaper data such as satellite images or thematic layers in a software GIS. 
 
2. Project description and objectives 
 
This paper intends to be a brief description of the LINHE project. The project aims to design 
and develop a framework (LINHE tool) able to integrate and analyse georeferenced data in 
order to set up viable and operational applications for forest management purposes. The LINHE 
tool for forest management consists on a set of procedures and utilities, including techniques for 
processing and analysing the different data types, the methodologies employed for data 
acquisition and a prototype viewer. LiDAR data, images from spaceborne (multi and 
hyperspectral) and airborne sensors (panchromatic, colour, near infrared), and NIR field data 
from a portable sensor were handled, as well as field measurements and estimations of different 
forest parameters. The LINHE tool is intended to allow the integration of data in a rapid, 
intuitive, cost-effective and dynamic way. In order to achieve this objective, it was proposed to 
implement new algorithms and to test existing ones dealing with data correlation. 
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The project proposes a methodological model to apply the mentioned technologies to the 
improvement and sustainability of forest management, dealing with and taking advantage of the 
different spectral, temporal and spatial resolution offered by the sensors. In order to design a 
system capable of monitoring both high and low frequency changes in forests, a cross spatial 
and temporal resolution system must be established, using data from multiple satellite and 
in-situ data sources. As a consequence, gaps and overlaps in earth observation data, ground 
systems, methods, and scientific knowledge were identified from the experience gained in 
developing and executing prototype projects.  
 
Additionally, the following objectives were pursued: i) to increase operational use of 
earth-observation data for policy decision making at national, regional, and global levels: ii) to 
provide validated products which can be used to derive reliable information concerning the 
forest component of the carbon budget for research and policy use; iii) to promote common data 
processing standards and interpretation methods, which are necessary for inter-comparison of 
regional studies; iv) to stimulate advances on multiple sensors, large volume datasets and 
information management and dissemination; v) to use data from multiple sensors, in 
combination with in-situ data, to produce validated prototype products which satisfy the 
identified users requirements; vi) to enhance the use of earth-observation products for forest 
management and scientific research concerning forest biophysical processes; vii) to provide the 
necessary tools for enhancing the actual use of current Spanish National Forest Inventories in 
order to support decisions at an operational level; and viii) to optimize ALS missions intending 
to reckon flight parameters for the determination of optimal and minimal configurations for the 
parameters retrieval at stand and tree levels. 
 
During the Project, and in order to accomplish these objectives, different tasks have been carried 
out such as: i) analysis and definition of the requirements for simultaneous management of 
heterogeneous data; ii) establishment of LIDAR and digital camera data acquisition 
methodology; iii) definition of hyperspectral sensors characteristics; iv) establishment of land 
mobile platform data acquisition methodology; v) definition of characteristic parameters and 
specifications of the study ecosystems; vi) hyperspectral, LIDAR, NIR and in situ data 
acquisition; vii) post-process software development; viii) and analysis of data correlations. 
 
3. Study areas 
 
Three different forest ecosystems were considered in the present project, with different species, 
forest structure and climatic conditions, as well as very different management needs. The three 
study areas are located in Spain, as shown in Figure 1. A brief description of them is presented 
here.  
 
The Pedroches region is located in Cordoba, in Southern Spain, and is covered by sparse 
vegetation dominated by Quercus ilex (dehesa forest). The main interest of the study was to lay 
the groundwork for the integration of different sensors, with different spatial, spectral and 
temporal resolution, in order to optimize the methodology for complex ecosystems assessment 
and monitoring.  
 
The second study area, the Rodenal Region, is located in Guadalajara, in the Peninsula 
North-Central part of Spain. In July 2005, a forest fire affected around 12000 ha of Pinus 
pinaster and Quercus pyrenaica forests.  The main interest in this area was to employ remotely 
sensed data to estimate fire severity levels and vegetation recovery, which provide very valuable 
information for forest managers to plan restoration works.  
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The third study area is Valsaín, a Scots pine (Pinus sylvestris L.) forest located in the province 
of Segovia, in Central-Northern Spain. The main interest of the study in this area was to 
determine the main parameters that could be estimated by LiDAR in order to provide inventory 
data which could help decision making of forest managers, not only for wood production 
purposes, but also for conservation measures, as the Valsaín forest is home for protected species, 
such as imperial eagle (Aquila adalberti), black vulture (Aegypius monachus) or the Graellsia 
isabellae butterfly. 
 

 
 

Figure 1: Study areas: (1) Pedroches, (2) Rodenal, (3) Valsaín (Terra-MODIS image acquired on 
30/07/2005, downloaded from MODIS Rapid Response System) 

 
4. Material and methods 
 
For the three regions, flights were performed for the acquisition of combined LiDAR and 
photogrammetric data, using an ALS50_II Leyca SN073 LiDAR sensor and a DMC ZI SN020 
digital camera simultaneously. The flying height was 1200 m above the ground, with a flight 
speed of 140 knots. Laser sensor parameters were set to a maximum scan frequency of 78 kHz 
and a laser field of view angle of 31º. For the photogrammetric survey, the following parameters 
were set: 12 cm ground sample distance, 60% forward overlap and 50% overlap between strips. 
In addition to the data obtained in the aforementioned flights, different kinds of field and 
satellite data were obtained and processed for the three study areas, as explained below. 
 
The sensors involved were LiDAR, Landsat TM, Z/I DMC digital camera, a portable NIR 
spectrophotometer, and a GER 3700 spectroradiometer. To calibrate and validate the various 
sensors, six areas (of approximately 100 ha each) were selected, where on-field inventory data 
were collected: coverage of pasture, bushes and trees, existence of Quercus ilex regeneration, 
height, diameter at brest height, etc. The LiDAR and Z/I DMC camera survey was over 13000 
ha wide.  
 
In the Rodenal Region, a Landsat-TM satellite acquired 5 days after the fire (05/08/2005) was 
employed for the estimation of fire severity levels, while data from the LiDAR and 
photogrammetric flight were used for the monitoring of vegetation recovery. Field data 
consisting on a visual classification of fire severity levels were collected in July 2006. A second 
field survey was carried out in October 2007, which provided information about vegetation 
height and coverage, in order to estimate vegetation recovery in the area. The area surveyed by 
the LIDAR flight was about 4600 ha.  
 
In Valsaín, a first survey allowed to complete some lacking information of forestry monitoring. 
Amongst other, different forestry parameters such as trunk and stem dimensions, tree heights, 
first branch heights, tree positioning, etc., were measured. The research has been carried out in a 
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high-relief, dense forest compartment with tall trees in even aged stands. Some of the stands 
may be two-storied due to the presence of regeneration. Other accompanying vegetation are 
oaks (Quercus pyrenaica), common juniper (Juniperus communis), legume bushes such as 
Genista florida, ferns (Pteridium aquilinum), etc. Other surveys were focused on GPS 
georeferencing to support the LiDAR flights. The area surveyed by LIDAR was about 850 ha. 
 
5. Results 
 
5.1 Pedroches region (Cordoba, Southern Spain) 
 
Spectral reflectance was measured on field intended to compile a specific spectral library as 
reference for elements identification (trees, pasture, soil) in remote sensing images. Vegetation 
coverage (especially tree coverage) is a fundamental parameter in forest management. In this 
work, an approach to vegetation coverage estimation has been planned by the combination of 
the different sensor advantages, at diverse spectral, temporal and spatial resolutions.  
 
For detailed scales, an airborne digital camera Z/I DMC was used. DMC images (15 cm pixel 
size) were classified into a two-step procedure: Firstly, an unsupervised classification for sun lit 
soil discrimination has been applied to band 1 (in the blue region), which showed a better 
separability for the targeted classes (vegetation and shadowed soil -with low DN values- vs. sun 
lit soil, with higher DN values). Two classes were discriminated and a mask was applied to the 
image in order to separate the tree-crowns and their shadows. Then, a supervised classification 
was applied to the previously selected area. Three classes were considered: sun lit vegetation, 
shadowed vegetation and shadowed soil; a maximum likelihood algorithm was used for pixel 
classification. Tree coverage was obtained as a sum of both sun lit and shadowed tree crowns 
fractions in seven control plots, showing values from 6,6 up to 35,5% of tree coverage.  
 
Using spectrometry field measurements on known-reflectance tarps (grey plastic-made, black 
plastic-made and white reference tarps -Spectralon, 99% diffuse reflectance standard- and a 
rocky surface), linear calibration equations have been derived for each DMC band, showing r2 
higher than 0,99 in all cases. These equations relate values measured by the digital camera to 
reflectance values at wavelength intervals corresponding to the four DMC spectral bands. 
 

 
 

Figure 2: Tree coverage (values ranking from 0 to 1) per Landsat pixel in Pedroches area (Córdoba, 
Spain). 

 
For a medium scale, Spectral mixture analysis was used to estimate subpixel vegetation 
coverage on a Landsat TM image (17th july, 2007). Given the forest coverage homogeneity in 
the study area, four components were considered: Quercus ilex trees (green vegetation in 
summer), dried pasture, soil and shadow. A linear mixture model was obtained using spectral 
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field data (spectral libraries mentioned above). The model was validated using the previous 
DMC-based forest coverage estimate in seven plots, showing a correlation of r2= 0,89; also a 
certain tree coverage infraestimation was detected comparing Landsat model to DMC results 
(MBE = 2,8). Figure 2 shows Quercus ilex coverage in Pedroches area. 
 
However, as historic DMC images were not available, temporal changes have been analyzed 
using Landsat imagery, comparing two linear mixture models from 1995 and 2007 images of the 
same area. In this period, tree coverage in Pedroches has shown to be stable in a 66,84% of the 
study area. Coverage variation has been lesser than 30% in all the cases; a coverage increase has 
been found in a 17,49% of the area, and a decrease in the 15,66%. These results fit with field 
data (defoliation, tree losses and establishment of new trees) periodically collected from 2000 to 
2007 in six dehesa exploitations. RMS errors for both models are compiled in Table 1. 
 

Table 1: RMS errors in linear mixture models 
 

Model RMS mean RMS max % of pixels with 
RMS max > 0,02 

Landsat 1995 0,0036 0,0430 0,44 % 
Landsat 2007 0,0064 0,2625 0,02 % 

 
Besides, LiDAR data were used to obtain a vertical characterization of the different layers 
present in this region. The main interest in dehesa ecosystems is to assess the existence of 
Quercus ilex regeneration around the tree trunks, as the lack of regeneration is one of the main 
problems in this region. For that purpose, some different LiDAR digital models, such as Digital 
surface models (DSM), digital terrain models (DTM) and normalized digital surface model 
(nDSM = DSM - DTM) were reckoned using LiDAR ENVI Tools. Vegetation models allowed 
high detailed height distribution maps, as stems are clearly recognizable in the sparse vegetation 
cover. Within this situation, it is easy to make a comparison between LiDAR results and field 
measurements as individual trees are easily recognized. However, low regeneration trees or 
seedlings (under 50 cm) were not detected by LiDAR. 
 

 
 

Figure 3:  Distribution of maximum heights of vegetation in a dehesa area obtained from LiDAR data. 
 
At a very high spatial resolution level, a portable NIR spectrophotometer was used on field for 
characterizing the spectral response from tree leaves, soil, shrubs and pasture. NIR sensors 
could be used either as a secondary measuring method, thus needing to be calibrated against a 
primary reference method, or it can be also used as a primary method using the spectral data 
alone to correlate with quality indicators (Williams, 2001; Shenk and Westerhaus 1995). The 
complexity of the spectroscopy signal and the great amount of generated data (most of it is 
redundant due to overlapping bands) are other factors affecting their use. However, the LINHE 
project dealt with the problem of generating both qualitative and quantitative chemometric 
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models. In a qualitative approach, PLS2 discriminant analysis of pre-treated spectra (Standard 
Normal Variate and De-trending methods were applied) showed that NIR spectroscopy was able 
to correctly classify leaves coming from trees of different defoliation levels in an 86,5% of 
samples; and sun lit pasture vs. shadowed pasture in a  99% of cases.  
 
On the other hand, quantitative models for estimating K and water content in Q. ilex leaves were 
calculated (n=100 leaves). This models are still preliminary and need to be improved using a 
higher quantity of samples. At the time these models become robust, they may be used to 
calibrate other sensors included in this project, or to describe dehesa ecosystems at a detailed 
level. For example, quantitative estimates of parameters from NIR datasets, using a manageable 
data volume for a complex project with lots of sensors, technologies and data from different 
sources. 
 
5.2 Rodenal Region (Guadalajara, North-Central Spain) 
 
One of the aims of the project in this area was to obtain a fire severity map based on satellite 
data that can be useful for post-fire forest management. The map was obtained by processing 
and classifying one post-fire Landsat-TM image, according to the following phases: i) first of all, 
a geometric correction was performed; ii) the Normalized Burnt Ratio (NBR): 
 

)()( SWIRNIRSWIRNIRNBR ++−=  
 
was obtained so as to evaluate fire severity levels, as it combines the two Landsat bands with a 
most significant response to fire effects, band 4 (NIR) and band 7 (SWIR) (Key and Benson 
1999); iii) the perimeter of the affected area was obtained, and a mask was processed containing 
only the burned area; iv) finally, a 3-class unsupervised classification was performed, which 
produced a map containing three levels of fire severity (high, moderate and low). More detailed 
information on this process can be found in Roldán et al. (2006). Field data on fire severity 
levels were used as “ground truth” for validation purposes. A global precision of 72,73% and a 
kappa index of 0,57 were obtained for the fire severity map. These results are considered 
acceptable, specially taking into account that only one post-fire image was used and that field 
data were only used for validation purposes, and not for training.  
 
The second goal in this study area was to monitor vegetation recovery after the fire: to know 
whether there is vegetation growing in the area, and what is its height. For this purpose, LiDAR 
digital models were obtained: DSMs, DTMs and nDSMs provide information about vegetation 
cover and height. The combination of nDSMs and DTMs allowed to identify the different 
situations that can be found in the field: bare soil, surviving Pinus stands and Quercus sprouts. 
Bare soil areas were easily detected by using the DTM, while the nDSM clearly showed the 
surviving Pinus stands. On the contrary, many patches of very dense and/or very low Quercus 
sprouts were misclassified or unclassified. On the one hand, very dense vegetation makes it 
impossible for the laser beam to reach the soil, and those vegetation patches are therefore 
classified as terrain, which also produces inaccuracies in the estimation of the average height. 
On the other hand, very low vegetation (under 30 cm) is not even detected. These problems did 
not allow a proper assessment of vegetation recovery by means of LIDAR data. Riaño et al. 
(2007) and Streutker and Glenn (2006) suggest to use spectral information from aerial digital 
images acquired simultaneously to the LiDAR survey to solve the former problems. 
Unfortunately, this information did not prove useful in the present case, as the flight took place 
in November, when Quercus sprouts showed very little activity, and the acquired spectral 
information was therefore not valuable. Some improvement in the classification of Quercus 
sprouts was obtained by reducing the grid size when obtaining the nDSMs, but further work is 
necessary on this topic, so as to improve the mapping of Quercus.   
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 5.3 Valsaín (Segovia, central Spain) 
 
The LINHE tool for forest management was provided with Landsat ETM+-derived imagery of 
the study area. The Landsat ETM+ scene was atmospheric, radiometric and relief corrected. A 
cover map of Valsaín forest was generated by supervised classification of surface reflectivity, 
obtaining 8 cover classes: urban or residential, herbaceous, bush, woody perennials, deciduous, 
bare soil and water covers. The overall accuracy of the classification was close to 70%. Also, the 
surface moisture index was generated with PCI Geomatica 10.0 KOS Manager using the short 
wave infra-red (SWIR) band 5 reflectivity. Finally, the Normalised Difference Vegetation Index 
(NDVI) map of Valsaín forest was obtained from the red and NIR bands (3 and 4, respectively). 
All these products were provided to the LINHE tool server. 
 
LiDAR height distribution derived from LIDAR digital models within wooded zones was 
related to distributions of heights, diameters, basal areas and volumes from field data obtained 
in the Valsaín pine wood. Therefore, a comparison was made between some parameters 
reckoned from in field measurements and those reckoned from LiDAR digital models. For this 
comparison, the next parameters were measured in field: diameter, tree height, height of the first 
living branch, stem width, tree position, basal area, trunk volume, stem height, area and volume, 
and vegetation density. A nDSM height average map was computed from LiDAR data. Figure 4 
shows the Valsaín pine forest orthophoto image, superimposed with the crown model obtained 
from LIDAR data. 
 

 
 

Figure 4: Orthophoto image of Valsaín pine forest, superimposed with vectorial LiDAR points 
 
The first results of the comparison suggest coherence between LiDAR and field measurements, 
showing different average height in different testing zones. Height values of about 0 and 10 
meters, which are expected in regeneration zones and zones with no homogeneous vegetation 
densities, have been observed. LiDAR height histograms have a great resemblance with 
distribution histogram variables from the forest inventory.  
 
5.4 LINHE viewer 
 
An important element of the LINHE tool is the LINHE prototype viewer, which allows a 
dynamic access to georeferenced data (raw and processed). The viewer is tailored with 
simultaneous access to the thematic results, querying properties, editing tools and printing of 
cartographic outputs.  
 
The viewer is a very useful tool for data managing and cataloguing, meant to support data forest 
management, as it allows simultaneously visualizing a great amount of data (vector and raster 
layers) from the different sensors involved, with different spatial resolution and different 
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formats. It is also a suitable tool for homogenization and standardization purposes, as the Inspire 
Directive (2007) has been applied. It can be considered as a useful complement to the more 
complex analysis tools used in remote sensing (commercial GIS programs). The viewer offers 
the possibility of i) performing some data analysis procedures such as vector layer queries, ii) 
visualizing the metadata of the information layers using ISO 19115 standard, iii) adding new 
vector layers, iv) measuring distances and areas, and v) generating maps in .pdf format for 
printing. The viewer’s architecture is Open Source based, on geographical servers and client 
elements, and it has been developed upon a free and open source software, hence licensing is not 
required. Usage is intuitive and no prior GIS knowledge is required. A web access is the sole 
software installation requirement prior to working with the LINHE viewer. The viewer can 
extract and show on screen all the information contained in each point.  
 
6. Discussion and future work  
 
The different data types, methodologies and processing techniques employed and developed 
within the LINHE Project, and the variety of ecosystems considered, provide a wide range of 
relevant information for the analysis and management of forest ecosystems.  
 
The LINHE tool fulfils the principal aim of the project, which is the generation and integration 
of different geospatial information layers for forest planning. LINHE Project was developed 
during two years, and unfortunately a large amount of time was employed in data acquisition. 
Although interesting results for data integration and forest management have been obtained, 
further analyses and deeper correlation studies are necessary in order to obtain more conclusive 
results. So far, ALS data have been use to reckon height digital models intended to estimate 
forest parameters such as mean height or position, but it is considered necessary to deepen into 
how LiDAR data can help to estimate other useful parameters for forest management and 
inventory. The analysis of LIDAR intensity responses is an interesting field which was not 
considered in the present project. Besides, further surveys with Terrestrial Laser Scanning (TLS) 
are planned as future work, from which very interesting results are expected.  
 
In addition, new implementations for upcoming versions of the LINHE viewer are already 
planned, which are expected to include: i) raw data and thematic data downloading capabilities; 
ii) .shp file format export capabilities of new data records; iii) restricted user’s access and iv) 
PDA data handling capabilities. 
 
Acknowledgements 
 
Authors want to thank the Spanish Ministerio de Industria, Turismo y Comercio (MITYC) for 
providing funding for the present study, within the research project “LINHE: Desarrollo de 
nuevos protocolos de integración de sensores LiDAR, cámara digital, IR cercano e 
hiperespectral” (project: FIT-330221-2006-10). The following Spanish organizations 
participated in this project: Stereocarto S.L., TRAGSA, GMV, Universidad de Córdoba and 
Universidad Politécnica de Madrid. 
 
References 
 
European Parliament and The Council of The European Union, 2007. Establishing an 

Infrastructure for Spatial Information in the European Community (INSPIRE). Official 
Journal of the European Union, L108. 
http://www.ec-gis.org/inspire/directive/l_10820070425en00010014.pdf (Last accessed: July-2008). 

Hyyppä, J., Hyyppä, H., Litkey, P., Yu, X., Haggrén, H., Rönnholm, P., Pyysal, U., Pitkänen, J., 
Maltamo, M., 2005. Algorithms and methods of airborne laser scanning for forest 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 3643

measurements. International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, VolXXXVi-8/W2. 

Key, C.H., and Benson, N.C., 1999. The Normalized Burn Ratio (NBR): a Landsat TM 
Radiometric Measure of Burn severity, United States Geological Survey (USGS). 

Kraus, K., and Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne 
laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 193–203. 

Lefsky, M. A., Cohen, W. B., Parker, G. G., and Harding, D. J., 2002. Lidar remote sensing for 
ecosystem studies. Bioscience, 52, 19 – 30. 

Lefsky, M. A., Harding, D., Cohen, W. B., Parker, G. G., and Shugart, H. H., 1999. Surface 
Lidar remote sensing on basal area and biomass in deciduous forests of eastern Maryland, 
USA. Remote Sensing of Environment, 67, 83 – 98. 

Næsset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyypä, J., Maltamo, M., Nilsson, M., 
Olsson, H., Persson, A., and Söderman, U., 2004. Laser scanning of forest resources: the 
Nordic experience. Scandinavian Journal of Forest Research, Volume 19, Number 6 / 
December 2004, pp 482 – 499. 

Parker R., and Evans D., 2004. An Application of LiDAR in a Double-Sample Forest Inventory. 
Western Journal of Applied Forestry, Volume 19, Number 2, April 2004, 95–101. 

Riaño, D. Chuvieco, E., Condés, S., González-Matesanz, J., Ustin, S.L., 2004. Generation of 
crown bulk density for Pinus Sylvestris from Lidar. Remote Sensing of Environment, 92, 
345 – 352. 

Riaño, D. Chuvieco, E., Ustin, S.L., Salas, J, Rodríguez-Pérez, J.R., Ribeiro, L.M., Viegas, 
D.X., Moreno, J.M. and Fernández, 2007. Estimation of shrub height for fuel-type 
mapping combining airborne LiDAR and simultaneous color infrared ortho imaging. 
International Journal of Wildland Fire 16, 341 – 348. 

Riano, D., Meier, E., Allgower, B. and Chuvieco, E., 2002. Gerenarion of vegetation height, 
vegetation cover and crown bulk density from airborne laser scanning data. In: Viegas 
(Ed.). Forest Fire Research & Wildland Fire Safety. Millpress, Rotterdam, ISBN: 
90-77017-72-0. 

Riano, D., Meier, E., Allgower, B., Chuvieco, E., and Ustin, S. L., 2003. Modeling airborne 
laser scanning data for the spatial generation of critical forest parameters in fire behavior 
modeling. Remote Sensing of Environment, 86(2), 177 – 186. 

Roldán-Zamarrón, A., Merino-de-Miguel, S., González-Alonso, F., García-Gigorro, S. and  
Cuevas, J.M., 2006. Minas de Riotinto (south Spain) forest fire: Burned area assessment 
and fire severity mapping using Landsat 5-TM, Envisat-MERIS, and Terra-MODIS 
postfire images, Journal of Geophys. Res., 111, G04S11, doi: 10.1029/2005JG000136.  

Roberts, S.D., Dean, T.J., Evans, D.L., McCombs, J.W., Harrington, R.L. and Glass, P.A., 2005. 
Estimating individual tree leaf area in loblolly pine plantations using LiDAR-derived 
measurements of height and crown dimensions. Forestry Ecology and Management, 213. 
54 – 70. 

Shenk, J. and Westerhaus, M.O., 1995. Analysis of agriculture and food products by Near 
Infrared Reflectance Spectroscopy. Monograph NIR Systems. p. 124. 

Sithole, G. and Vosselman, G., 2004. Experimental comparison of filter algorithms for bare-Earth 
extraction from airborne laser scanning point clouds. ISPRS Journal of Photogrammetry 
and Remote Sensing, 59 (1-2): 85 – 101. 

StOnde, B.A. and Achaichia, N., 2001. Measuring forest canopy height using a combination of 
lidar and aerial photography data. International Archives of Photgrammetry and Remote 
Sensing, Volume XXXIV-3, W4 Annapolis, MD, October 22-24. 

Streutker, D.R. and Glenn, N.F., 2006. LiDAR measurement of sagebrush steppe vegetation 
heights. Remote Sensing of Environment 102: 135 – 145. 

Williams, P.C. and Norris, K., 2001. Near-Infrared technology in the agricultural and food 
industries, 2nd edition. American Association of Cereal Chemists, Inc. St. Paul, 
Minnesota, USA. 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 365

A proposed approach incorporating lidar and aerial imagery for large 
area estimates of lodgepole pine (Pinus contorta) volume killed by 

mountain pine beetle (Dendroctonus ponderosae) 
 

Christopher W. Bater1, Nicholas C. Coops1, Michael A. Wulder2, & Joanne C. White2 

 
1Department of Forest Resources Management, University of British Columbia, 

cbater@interchange.ubc.ca, nicholas.coops@ubc.ca 
2Candadian Forest Service, Natural Resources Canada, mwulder@pfc.cfs.nrcan.gc.ca 

jowhite@pfc.cfs.nrcan.gc.ca 
    
 
Abstract 
 
The volume of pine killed by mountain pine beetle is a critical indicator of an infestation's 
impact on timber supply. Operationally, mountain pine beetle damage is typically mapped by 
broad-scale aerial surveys, and recorded damage is combined with existing forest inventory data 
to generate coarse estimates of volume losses. In this communication, we propose an alternative 
approach to improve the precision of volume estimates and to this end, present a sampling 
methodology that combines high spatial resolution digital aerial imagery and small footprint 
discrete return lidar data collected over 0.25 ha photo plots selected from representative 
sampling transects. Species composition, diameter, and mountain pine beetle attack stage are 
manually interpreted from the imagery, while lidar provides accurate measures of dominant 
stand height. Species-specific equations are then used to estimate the volume of pine mortality, 
which may then be extrapolated across a larger area of interest using forest inventory data.   
 
Keywords: forest inventory, timber supply, lidar, digital aerial imagery, volume, mountain pine 
beetle  
 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 366

Estimation of bivariate diameter and height distributions using ALS 
 

Johannes Breidenbach1, Christian Gläser2 & Matthias Schmidt3 
 

1Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg, Abteilung Biometrie 
und Informatik, Johannes.Breidenbach@forst.bwl.de 

2Georg-August-Universität Göttingen, Institut für Statistik und Ökonometrie, 
Christian_Glaeser@gmx.de 

3 Nordwestdeutsche Forstliche Versuchsanstalt, Abteilung Waldwachstum, 
Matthias.Schmidt@nw-fva.de 

 
 

Abstract 
 
In this paper, we present a method for estimating a bivariate height and diameter distribution 
based on airborne laser scanner data (ALS). ALS are analyzed with the area-based method. To 
construct a bivariate likelihood function, we assume that the diameters are Weibull distributed 
and the heights are normal distributed where the expectation value is modelled with the Näslund 
function. Comparison of predicted and observed mean diameter distributions result in an RMSE 
of 2.78 cm and a bias of 0.48 cm. Comparisons of observed and predicted height distributions 
are still to come. 
 

Keywords Weibull distribution, Näslund function, lidar, GLM 
 
1. Introduction 
 
High density (i.e., >1 return m-1, Magnusson et al. 2007) Airborne laser scanning data (ALS) can 
be used to estimate attributes of single trees (e.g., Persson et al. 2002, Popescu et al. 2003). Low 
density ALS data are usually analyzed using area-based methods (Næsset 2002) that result in 
plot-level estimates of, for example, timber volume or basal area. The lower flying height 
required to produce higher density ALS data causes longer flight times per area. Therefore, costs 
obviously increase with the density of the raw data. This may be one reason for why area-based 
methods are already used in operational forest inventories (Næsset 2004). Additionally, some 
studies show, that the density of the laser data may be reduced in a wide range without a 
significant lost of information (Magnusson et al. 2007, Gobakken and Næsset 2007). 
Consequently, further cost reductions may be possible with future generation of laser scanners 
that allow larger flying heights. 
 
While plot level estimates of, for example volume, is an important piece of information, for the 
actually wanted prediction of assortments, at least diameter, but also height distributions are 
needed. Magnussen & Boudewyn (1998) estimated height distributions using ALS. Methods for 
estimating diameter distributions were shown, for example by Gobakken & Næsset (2004). 
However, height and diameter distributions cannot be combined if they are estimated 
independently. While Schreuder & Hafley (1977) and Zucchini et al. (2001) proposed functions 
to fit bivariate distributions, only Mehtätalo et al. (2007) used a regression model to fit a 
bivariate height and diameter distribution conditional on ALS data. They first used the method 
of moments to fit regression models for the height distribution as a function of the diameter and 
the diameter distribution as a function of ALS data. They then applied the method of parameter 
recovery to obtain the parameters of the bivariate distribution. 
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In this study, we use the log-likelihood method to estimate the bivariate distribution of height 
and diameter. The diameters are assumed to follow the Weibull distribution given metrics from 
ALS data. Opposed to Mehtätalo et al. (2007), we need to deal with several tree species. 
Therefore, tree height is modelled using the Näslund function given diameter and metrics from 
ALS data. However, different tree species are not addressed separately. 
 
2. Material and Methods 
 
2.1 Study area 
 
The tree species composition of the 50 km² managed forest that served as study site is 
dominated by Norway spruce (Picea abies L. Karst.) with a 70% proportion by area, beech 
(Fagus sylvatica L.) with 11% and silver fir (Abies alba Mill.) with 10%. More details on the 
forest structure are given in Table 1. 
 

Table 1: Forest characteristics of the study site 
 

 Minimum Median Mean Maximum 
Stem number [ha-1] 22.1 397.8 497.3 2829 
Stem volume [m3 ha-1] 7.2 412.7 413.2 1193 
Basal area [m2 ha-1] 1.8 36.8 36.8 81.9 
Basal area mean diameter [cm] 7.5 35 35.8 68.8 
Mean height [m] 5.1 25 24.6 40.7 

 
 
2.1.1 Plot establishment 
 
In 2002, a permanent sample-plot inventory was carried out on a 100 m (easting) by 200 m 
(northing) grid. Trees with a diameter at breast height (dbh) of at least 7 cm were measured on 
concentric sample plots with a maximum diameter of 12 m. To increase the efficiency of the 
inventory, trees with a dbh <30 cm were sampled on plots with smaller radii. This results in four 
possible plot sizes of 2, 3, 6 and 12 m, where trees with a minimum dbh of 7, 10, 15 and 30 cm 
are measured. On each sample plot the height of the two largest trees per species were measured 
using angle measurement instruments. The height of the other trees was estimated based on 
local diameter-height curves calibrated with the measured trees. 
 
2.1.2 Laser data 
 
The laser scan data were collected with an Optech ALTM 1225 laser scanner in winter 
2003/2004, i.e. about one year after the inventory took place. A flight altitude of approx. 900 m 
above ground yielded an average distance of 1 m between scan points on the ground. The first 
as well as the last pulse data were automatically classified by the data provider into vegetation- 
and ground points (reflection from terrain surface). 
 
A digital terrain model (DTM) with one meter pixel spacing was computed from the ground 
returns using the average height of returns if several reflections were located within one pixel 
and bilinear interpolation if no return was within the pixel. The value of the respective DTM 
pixel was subtracted from the first pulse vegetation raw data to obtain vegetation heights. 
Vegetation height metrics (e.g., percentiles and mean) were derived for every sample plot 
(Næsset 2002). 
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2.2 Parameter estimation 
 
If a is the location, b the scale and c the shape parameter, the density of the Weibull distribution 
is denoted by 
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To estimate the diameter distribution, equation 1 was extended to ( )iii cbadf ,,|  where d is a 
diameter, to conditional the scale and shape parameters on predictor variables. The location 
parameter (a) was set to the calliper limit (7 cm) because estimation of this parameter frequently 
causes numerical problems (Gobakken and Næsset 2004). 
 
Due to the concentric sample plot design, we constructed four censored Weibull distributions for 
every possible plot radii by  
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where U and L are the upper and lower bounds of the diameters for the concentric sample plot 
with radius R, respectively. This resulted in the functions g2, g3, g6, g12. 
 
The parameters are bound to the predictor variables (laser metrics) with link functions 
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where x(P) are the predictor variables, β  are the coefficients and P is either b or c. The link 
function for both parameters is the natural logarithm. 
 
The height distribution given DBH and ALS data is assumed to follow a normal distribution: 
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where the expectation value μ  is an extended Näslund function that includes metrics from 
ALS and μP  are its parameters: 
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where )(0 Näsβ , )(1 Näsβ  and )(2 Näsβ are coefficients of the Näslund function and ix  is a 
predictor variable derived from ALS data. 
 
The bivariate height- and diameter distribution is given by  

( )iiiR cbadg ,,|  * )),,,,,(|( )(2)(1)(0 σβββμ NäsNäsNäsiiii xdhf  =   (5) 

),|,( βiii xhdf . 
 
The bivariate likelihood function can then be denoted as 
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where )(1 iU y  are size-class dependent indicator functions. If ℜ∈U  then 
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The likelihood function was maximized using the Nelder-Mead algorithm implemented in the 
function optim (Venables & Ripley 2002), within an R environment (R Development Core Team 
2007) 
 
On average, 12 trees were measured on a sample plot. The predicted distribution can therefore 
not be compared with observations from one sample plot. Therefore, the observations from plots 
similar with respect to the explanatory variables are aggregated to what we will call vegetation 
height quartile classes for the remainder of the text. Then, the predicted distributions can be 
compared with the histogram of the observations. 
 
3. Results 
 
The first and third quartile (Qu1 and Qu3) of the vegetation height and their interaction term 
(Qu1 * Qu3) were considered as predictor variables for the Weibull scale and shape parameters. 
The Qu3 was used as additional predictor variable for the height distributions besides the DBH. 
 
The parameters of the Weibull distribution can be predicted by  

ib  = 1.05 + 0.04 Qu1i + 0.11 Qu3i - 0.002 Qu1i Qu3i 

ic  = -0.19 + 0.09 Qu1i + 0.02 Qu3i - 0.002 Qu1i Qu3i    (7) 
 
Tree height can be predicted by 

iμ  = di / (4.03 - 0.10 Qu3i + 0.30 di) with standard deviation 2.23. 
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Figure 1: Probability density distribution of observed DBH (histogram) and predicted Weibull 

distributions (solid graph) for the 9 most densely populated laser-derived vegetation height quartile 
classes. The dashed curve marks the Weibull distribution which has been directly fitted to the 

observations. Qu1 denotes the class width of the first quartile (m) and Qu3 the class width of the third 
quartile (m). Plots and trees represent the number of sample plots and trees in the corresponding plot 

strata. 
 
The predicted diameter distribution fits well to the observed diameter distributions (Figure ). 
Results for height distributions are not yet available, however the comparison of the expectation 
value with observed heights is promising (Figure 2). For this graphic, Qu3 was estimated given 
DBH. (However, the regression model is weak with R²=0.3.) 
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Figure 2: Predicted and observed height given DBH. 

 
 
The means of the Weibull and the observed distribution was computed for the 20 most densely 
populated quartile classes (containing at least 3 Plots). As the good conformity of the predicted 
distribution with the observed distribution supposes, the difference between the mean of the 
Weibull distribution and the mean of the observations is rather small (Figure 3). The RMSE is 
2.78 cm with a bias of 0.48 cm. 
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Figure 3: Observed versus predicted mean DBH for the 20 most densely populated quartile classes 

(circles) and 1:1 line (solid line). 
 
 
4. Discussion 
 
The proposed bivariate distribution can be used to estimate diameter and height distributions. 
Since we did not use the parameter recovery method (Mehtätalo et al. 2007), we obtain density 
distributions. They need to be combined with an estimation of stem number or basal area to get 
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stem numbers per diameter class. For the prediction of assortments, information about tree 
species are also required. In this study, we assumed the observations to be independent of one 
another. One major drawback of the used data material is that not all tree heights were measured. 
This reduces the variance to be modelled. 
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Abstract 
 
Two areas of which one was populated by capercaillie were compared with respect to canopy 
cover. The canopy cover was computed for hexagons with an area of 452 m² as the proportion of 
canopy pixels in a digital surface model. The populated area reveals 3-8 times more open 
canopy structures. Since the capercaillie relies on the availability of open forest, this observation 
is accordant with the needs of the capercaillie. These first results indicate that ALS can be used 
to map potential and monitor existing habitat areas. It may support the planning and evaluation 
of measures implemented to stop the further degradation of the habitat quality, which is likely to 
be the cause for the decreasing population in the last decades. 
 

Keywords: habitat monitoring, endangered species, capercaillie, lidar 
 
1. Introduction 
 
Endangered species have an indicator function in evaluating the endeavour of integrating the 
needs of forest management, nature conservation, tourism and game hunting in a 
multifunctional forestry. The capercaillie (Tetrao urogallus) is such an indicator species for parts 
of the Black Forest, Germany. Capercaillie forests are characterized by a low canopy cover and 
a high degree of structural diversity. In addition, habitat suitability is mainly defined by the 
availability of blueberry (Vaccinium myrtillus) as its main summer-food and conifer, preferably 
pine (Pinus sylvestris) needles as the main source of food in winter. 
 
To ensure the continuance of the remaining sub-populations in the Black Forest, the forest 
management in the capercaillie habitat is being adapted to provide the forest structures that the 
capercaillie relies on. Suchant and Braunisch (2004) found that a suitable habitat consists of at 
least 10% unstocked area or open canopy and that at least 20% of the area should have an 
intermediate canopy cover between 50-70%. In addition, less than 30% of the area should be 
covered with dense forest (e.g., regeneration or thickets).  
 
In the recent years, many studies proofed that airborne laser scanning (ALS) can be used to 
estimate various forest parameters (e.g., Nilssen 1996, Næsset, 1997, Magnussen and 
Boudewyn 1998). In Scandinavia, it has become an operational tool in forest inventories 
(Naesset 2004). Due to its ability of describing the vertical distribution of the vegetation canopy 
in three dimensions, it is obvious that ALS could also be used for mapping habitat structures. 
The number of studies with this background are, however, still limited. Hinsley et al. (2002) 
found that the ALS-derived canopy height can be used as a surrogate for tree density index. 
They used this statistical relation for assessing the habitat quality of Great Tits (Parus major) 
and Blue Tits (Parus caeruleus). Dees et al. (2006) presented methods for describing general 
habitat structures in forests as they are defined in the Flora-Fauna-Habitat directive (FFH) based 
on ALS and other remote sensing data. In a shrubland environment, Leyva et al. (2002) used 
ALS-derived surface models to identify different shapes of shrub-formations that can be related 
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to potential habitat of black-capped vireo (Vireo atricapillus). Using large footprint ALS and 
other remote sensing techniques Hyde et al. (2005) estimated canopy heights and biomass. The 
estimations were then used to evaluate the quality of the forest structure for wildlife habitat. 
 
In this paper, a concept for monitoring the habitat structure of capercaillie based on ALS is 
presented. Two adjacent forest areas are compared with respect to the proportion of crown cover 
classes. Both areas are suitable habitat regarding climatic and topographic attributes and human 
land use (Braunisch & Suchant 2007). However, just one area is inhabited by capercaillie. Aim 
is to describe differences of forest structures that may be the cause for why capercallie is found 
in just one of the areas. First results for canopy cover are presented. 
 
 
2. Material and Methods 
 
2.1 Study areas 
 
Both study areas are located in the northern part of the distribution range of capercallie in the 
Black Forest, Germany. The distribution range of capercallie in Germany was determined by 
geographically explicit observations made by experts such as foresters and local hunters over 
several years (Braunisch and Suchant 2006). The distribution range was last updated in the year 
2003. The area where capercallie was observed, named CO in the remainder of the text, is 
approximately 64 km² in size. The area where capercallie was absent, named NC in the 
remainder of the text, is about 36 km² in size. The two areas are separated from each other by 
the valley of the Große Enz river. The smallest distance between the areas is about 2 km. 
 
Since the study areas contain both, public and private forests with many different land owners, 
no consistent inventory information is available. However, data from the second national forest 
inventory (2002) can be used to characterize the forest in the county in which the study areas are 
located (Kändler et al. 2006). The county level forest is dominated by Norway spruce (Picea 
abies L. Karst.) with a 39% proportion by area, silver fir (Abies alba Mill.) with 30%, pine 
(Pinus sylvestris) with 19% and beech (Fagus sylvatica L.) with 12%. The mean volume is 
360.6 m³ ha-1. It should be noted however, that these parameters may be different in the two 
study areas. 
 
2.1.2 Laser data 
 
The laser scan data were collected with an Optech ALTM 1225 laser scanner in winter 
2003/2004. A flight altitude of approx. 900 m above ground yielded an average distance of 1 m 
between returns on the ground. The first as well as the last pulse data were automatically 
classified by the data provider into vegetation- and ground points (reflection from terrain 
surface). 
 
The commercial software TreesVis (Weinacker et al. 2004) was used to derive two elevation 
models: A digital terrain model (DTM) with one meter pixel spacing was computed from the 
ground returns. A digital surface model (DSM) with the same pixel spacing as the DTM was 
derived from all first pulse data. With a threshold of 1 m, the normalized digital surface model 
(nDSM, DSM minus DTM) was classified into canopy and ground pixels. 
 
The study areas were tesselated into hexagons with an area of 452 m² each. The relative canopy 
cover was computed as the proportion of canopy pixels to all pixels. The hexagonal tiles were 
classified as light, intermediate and closed canopy cover. The intervals for the classification are 
given in Table 1. 
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Table 1: Intervals for canopy cover classes. 

 
Canopy cover class Canopy cover class # Interval of relative 

canopy cover (%) 
open  1 0 – 50% 
intermediate 2 50 – 70% 
dense 3 70 – 100% 

 
 
3. Results 
 
The two study areas can be well differentiated based on their canopy structure: In the CO area, 
more than 23% and 10% of the hexagon tiles possess open or intermediate canopy cover classes. 
This is 8 and 3 times more than in the NC area. It is also apparent, that the proportion of 
intermediate canopy density (50%-70% canopy cover) is below the minimum level of 20% even 
for the CO area. This however, seems to be levelled out to some extent by the 23% proportion of 
light canopy cover, which is 13% more than the minimum level for this class. 
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Figure 1: Distribution of the canopy cover classes in the CO and the NC areas. 

 
 
4. Discussion 
 
Information on stand density, derived from stand height was used by Hinsley et al. (2002) for 
quantifying the habitat quality of songbirds. We used the canopy cover, which is in fact the 
inverse of the gap fraction, to characterize the habitat quality of an area populated with 
capercallie and a non-populated area. The proportion of open canopy structures was between 3 
and 8 times higher in the populated area. This is in accordance with the ecological needs of the 
capercallie: i) Light on the forest ground due to canopy gaps results in a high abundance of 
blueberries which comprise the main source of food in summer time, ii) low canopy cover is 
frequently associated with a higher diversity of horizontal stand structure and iii) open areas 
may facilitate to take refuge from predators. 
 
These first results indicate, that ALS data can be used for monitoring structural aspects of 
habitat quality for capercaillie over large spatial scales. However, further research is needed to 
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in order to quantify other forest structure parameters relevant to the species. A monitoring 
concept is needed to guarantee that the habitat quality does not further degrade. Since ALS data 
are still quite expensive, it might make sense to also analyse other remote sensing data sets for 
this purpose. Nuske et al. (2007) describe a method to model the gap fraction with 
orthophotographs. However, the inconsistent quality of the available images and shading effects 
would make the analysis of orthophotographs cumbersome in our case. 
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Abstract 
 
Full waveform airborne laser scanning was assembled into voxels and combined with airborne 
hyperspectral data. This combined data set offers a detailed insight into the structure and the 
reflective properties of tree stands. A comparison of stand photographs and aggregated full 
waveforms shows the close relation between the stand structure and the waveforms so that the 
potential of the waveforms to act as a key variable for remote sensing characterization of stand 
structure is evident. 
 
Keywords: Full waveforms, hyperspectral data, hemispherical photos 
 
1. Introduction 
 
Full waveform airborne laser scanning (ALS) offers a maximum of information about the 
three-dimensional structure of forest stands. As the canopy elements of forest stands (leaves, 
needles, twigs, branches) are usually smaller than the diameter even of small-footprint laser 
scanners, the laser beam often is reflected several times inside a canopy so that a complex echo 
waveform results. In dense canopies this waveform contains information only about the tree 
crowns, in looser canopies there are also echoes from the ground. 
 
The maximum of spectral information, apart from laboratory spectroscopy, can be obtained by 
airborne hyperspectral imagery (Vane & Goetz 1988). Both, full waveform airborne laser 
scanner data and airborne hyperspectral data are available for the study area, the Idarwald forest 
in south-western Germany. In this study, these two very rich data sets are combined to get a very 
detailed insight into the stand structure. These structural analyses are validated using fish-eye 
lens photography of many of the stands. 
 
2. Material and Methods 
 
2.1 Study area  
 
The area of study (49°40’N, 7°10’E) is the Idarwald forest in south-western Germany on the 
north-western slope of the Hunsrück mountain ridge. The dominant tree species are Norway 
spruce (Picea abies), beech (Fagus sylvatica), oak (Quercus petraea) and Douglas fir 
(Pseudotsuga menziesii). Active forestry practices in this area include selective cutting, 
plantation establishment and thinning. 
 
2.2 Data used 
 
In July 2003 a Hymap image of the study area was acquired. The original data set contains 128 
reflective channels in the spectral range of 440 to 2480 nm with spectral resolutions between 10 
and 20 nm (Cocks et al. 1998). Due to noise six of the channels were eliminated. Data 
preparation steps included a cross-track illumination correction, a parametric atmospheric 
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correction and a parametric geocorrection to the local Gauss-Krüger system (Schlerf et al. 2004, 
Buddenbaum et al. 2005). 
 
In September 2005 laser scanner data was acquired using a Riegl LMS-Q560 (Hug et al. 2004) 
which records full waves. The data set is available as first echo, last echo and only echo single 
point files and as waveform data. The data provider filtered a ground point data set from the last 
and only echo files. Figure 1 shows all waves within a radius of 1 m around a point on the 
ground. A flight pattern with ten overlapping flight lines was chosen so that nearly all of the 
study area was seen from at least two angles. This is a commonplace flight pattern chosen in 
order to increase the probability of seeing ground pixels through dense crowns and to account 
for the asymmetry in canopy level data collected at varying scan angles (Hopkinson et al. 2008, 
Holmgren et al. 2003). Additionally, full coverage of the area could be guaranteed.  
 
In addition to the remote sensing data, field work was conducted in September 2005. 28 stands 
of Norway spruce and beech were sampled in plots of 30 m × 30 m size. Parameters measured 
included tree height, crown height, crown radius in four directions, stem diameter at breast 
height, LAI (measured by a Li-Cor LAI 2000 Plant Canopy Analyzer), number of trees and 
canopy closure. Nine hemispherical digital photos using a fish-eye lens have been taken of each 
stand in order to document the stand structure. 
 
 

 
Figure 1: Left: Full waveforms from two flight lines converging on a small ground area. The ground level 
is at about 756 m asl where the lowest peaks occur. Right: Frequency of laser hits in an area of 400 x 400 

Pixels; flight line overlapping and aircraft motions can be seen. 
 
 
2.3 Methods  
 
To reduce the amount of data and to align the full waveform ALS data to the hyperspectral data 
all waves within a ground area of 5 m x 5 m – the geometric resolution of the hyperspectral data 
– were combined. The data were to be expressed as voxels (volume elements, Figure) of 5 m x 5 
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m x 0.5 m volume. Each voxel contains the mean intensity with which laser pulses were 
reflected in the according volume element. As a basis for this combination a 5 m x 5 m DEM 
was created from the ground point data set. For every waveform the ground position was 
calculated. The intensity curve was interpolated to 0.5 m steps starting at the ground height 
taken from the corresponding ground pixel. All values within a voxel were added while a 
counter in another array was increased. At the end the accumulated intensities were divided by 
the number of hits per pixel, resulting in an average waveform for each pixel. The result was 
saved as a multiband file similar to the hyperspectral data set. This procedure took a processing 
time of about 5 days. As the maximum tree height in the study area is about 38 m, 76 bands 
were created. Only the highest stands contain data in the last bands; in clearings there are data 
only in the first band. All intensity echoes were assigned to the position of their ground pixel; in 
the creation of the voxel data set we did not consider the slanted view direction but treated all 
waves as if they had been recorded from nadir direction. This approach of creating a voxel data 
set is different from that of e.g. Popescu & Zhao (2008) as the voxels were filled with fullwave 
intensity data, not with single points. 
 
The multiband ALS image and the hyperspectral image were stacked. The layerstack of 
hyperspectral and laser data contains 198 bands.  
Figure  3 shows examples of Hymap-ALS "spectra". The left part of each graph is the 
reflection spectrum, the right part is the height profile of the pixel (or voxel). It is very difficult 
to recognize the age of a tree stand from the reflection spectrum alone; in combination with the 
ALS spectrum this becomes much easier. For example, the reflectance spectra in the upper right 
part and the lower left part of the figure are hardly distinguishable. In a classification they 
would very likely be put in the same class. Only the additional information offered by the ALS 
data shows the differences in stand structure clearly.  
Figure  shows more examples of the good accordance of ALS height profiles and the tree 
stands. The photos were produced using fish-eye hemispherical images. The images were 
"unrolled" so that the central pixel in the original image corresponds to the top line of the result, 
the circumference of the original image corresponds to the bottom line of the result (upper part 
of the figure). The upper parts of these photos look distorted but the unrolled images give a 
better visual impression of the stand than the original circular images.  
 
 

 
Figure 2: Voxels above ground 
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Figure 3: Combined hyperspectral and laserscanner data. Bands 1–122 contain the reflection from 440 to 
2480 nm wavelengths. Bands 123–198 contain the mean laser intensity in a pixel. The upper left graph 
shows an old coniferous stand with high trees and no laser echo from the ground. The upper right graph 
shows a younger stand that is also too dense to allow a ground echo. The lower left graph a much less 

dense stand with a very clear ground echo. The lower right graph shows a forest track where nearly all of 
the laser echo comes from the ground. 
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Figure 4: Unrolled hemispherical photos and corresponding ALS height profiles 
 
 
3. Results and discussion 
 
The results of this study are still preliminary. The combination of hyperspectral reflection data 
and airborne laser scanner full wave data is promising. The potential of characterizing the 
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optical and structural features of forest stands by remote sensing is large and not yet fully 
exploited. While the discrimination of deciduous and coniferous trees works best using the 
reflection spectra, the discrimination between younger and older stands as well as the 
discrimination between dense and thinned stands can be better accomplished with ALS data. 
This can clearly be seen by an analysis of the hemispherical photos and their waveform spectra 
which serves as a visual validation. 
 
Point clouds and tree height layers from first pulse or difference of first pulse and ground ALS 
data are a more compact means of characterizing stand age, but only the full wave data show the 
crown structure in a detailed way, especially if there are several layers of trees. Besides the 
stand age, which is mostly expressed in the tree heights, the ALS data shows the density of 
crowns. This might be used as a validation data set for a spectral mixture analysis of the 
hyperspectral data if vegetation and soil are unmixed. 
 
A classification of the combined data set was tried but did not succeed due to numerical 
instability caused by the many zeros in the data set. When a SAM classification was carried out 
on a subset of the data, the overall accuracy was significantly raised when adding the ALS voxel 
data to the Hymap data. Instead of using the full dataset, a single channel containing the tree 
heights was combined with an MNF rotated version of the Hymap data (Green et al. 1988). With 
these data norway spruce and douglas fir stands were classified into four and two age classes, 
respectively, similar to the approach in Buddenbaum et al. (2004). The accuracy of a maximum 
likelihood classification was raised from 71.6 % using the Hymap data alone to 77.3 % (Kappa 
coefficient rose from 0.639 to 0.713). These promising results show further potential of the 
combination of classic remote sensing data with ALS data. 
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Abstract 
 
Mapping archaeological features is a key activity for understanding and maintaining national 
heritage records by government and for historic landscape reconstruction by scientists and 
academia. Such mapping has hitherto relied on collection and interpretation of aerial 
photography. Archaeological features reveal themselves in photography as crop marks or field 
patterns caused by shadowing and highlighting of small variations in terrain morphology. 
However, this approach to mapping has some clear limitations, as features beneath forest 
canopies cannot be detected at all. In the UK forestry covers some twelve percent of the 
landscape and thus represents a significant area in which the archaeological record is incomplete 
or entirely missing. Areas affected by this problem in other parts of the world may be 
significantly higher. For organisations charged with recording and managing heritage this is a 
serious problem because the only viable approach – ground survey – is both difficult and 
expensive. 
 
The emergence of small footprint, airborne LiDAR is now rapidly opening up new approaches 
to mapping heritage features. Previous work by the present authors has demonstrated that with 
appropriate visualisation techniques, hillshading of LiDAR DEM’s can offer a much more 
effective approach to feature detection than photography. Furthermore, they have also 
demonstrated that the ability of LiDAR to penetrate forest canopies opens up the potential for 
airborne mapping of sub-canopy archaeological features.  
 
The application of this technology to some British forests has already led to the discovery of 
many, previously unknown sites of potential archaeological significance. As such, the 
dissemination of the findings is receiving considerable interest within the heritage sector, media 
and wider public. There are limitations to the survey method and caveats with the data and 
informing project partners and stakeholders of the pros and cons of a LiDAR survey over a 
wooded landscape is essential. However, this very process of knowledge transfer has 
highlighted the many other potential benefits of the survey and this paper will examine some of 
them. Examples include opportunities to engage with volunteers in the on-site identification of 
features identified in hillshaded images.  
 
The very 3-dimensional nature of these heritage surveys allows interactive visualisation of 
historic landscapes, cross-sectional analysis of individual monuments and provides a powerful 
mechanism for dissemination and engagement. The data is also of use to other non-heritage 
professionals such as forest and landscape managers and planners, providing information about 
the forest structure and a landscape both with and without woodland cover. In the longer-term, 
findings from these surveys can be used to create heritage trails within forests, thereby 
increasing their cultural value through increased education and recreation. 
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Experience from these heritage surveys has already shown the significant diversity of 
applications of the surveys and data. This in turn can be used to build partnerships in advance of 
undertaking new surveys. 
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Abstract 
 
The last decade has seen the rapid emergence of LiDAR technology as a tool for terrain and 
vegetation analysis. Large footprint LiDAR systems developed by NASA have been used to 
examine the three dimensional structure of forest stands with a view to measurement of key 
forest parameters including biomass, LAI, above ground carbon content and carbon flux. They 
have also provided a basis for satellite deployment of LiDAR technology (e.g. ICESAT) which 
will enable global monitoring of these variables. In parallel, there has been a dramatic growth in 
small footprint, discrete return systems that have found extensive application in terrain 
modelling, measurement of tree heights and statistical estimation of other key forest variables. 
 
To date, it is undoubtedly the case that small footprint systems have been limited to 
measurement of discrete returns – first, last and sometimes one or two intermediate pulses – by 
data volume and bandwidth issues which have prevented the capture and storage of small 
footprint, full waveform returns. A consequence of this is that their potential for measuring the 
full vertical structure of forest canopies has been restricted.   
 
This paper will describe the design, construction and implementation of a small footprint, full 
waveform LiDAR tailored for forestry applications. The system measures and records the full 
waveform return for sub-meter footprints at a frequency of up to 70 Khz. It has a vertical height 
resolution of 15cm over a maximum height range of approximately 65 m. The system is a fully 
integrated extension to an Optech ALTM 3033 device with Applanix GPS and IMU positioning. 
 
The performance of the system will be evaluated by presenting results from full waveform 
LiDAR surveys of Woodwalton Fen Site SSSI in Eastern England and the Alice Holt research 
forest in Hampshire. Waveform properties for both deciduous and coniferous forest types will 
be described and their potential for measuring canopy height, openness, density, vertical 
structure and gaps will be evaluated. A methodology for assessing the accuracy of the results 
will be presented based on gap fraction analysis from hemispherical photography and 
ground-based laser scanning techniques.  
 
The results will highlight biases which occur when discrete return observations are used to 
model 3d structure. They will also demonstrate that such bias can be overcome with full 
waveform data and effective calibration/integration and modelling techniques. The results carry 
important implications for measurement of above ground biomass, carbon content and LAI. 
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Abstract 
 
Estimation of forest biomass for inventorying carbon stocks has gained importance as a result of 
the Climate Convention and the Kyoto Protocol. Estimation of forest biomass on the regional 
and global scale is therefore of great importance. Many studies have demonstrated that lidar is 
an accurate tool for estimating forest biomass. However, results vary with forest types, terrain 
conditions and the quality of the lidar data. In Italy many regional governments are acquiring 
low density lidar data for topographic and bathimetric mapping. We examine whether this type 
of data are useful for measuring forest attributes, such as biomass.  
 
In this study, we investigated the utility of low density lidar data (< 2 points m2) for estimating 
forest biomass in the mountainous forests of northern Italy.  
 
As a first study site we selected a 2x2 km area in the Valsassina mountains in Lombardia. The 
region is characterized by mixed and broad-leaved forests with variable stand densities and tree 
species compositions. The site is representative for the entire Pre-Alps region in terms of type of 
forest and geomorphology. The main forest types are coppice management with plantations of 
chestnut (Castanea sativa), beech (Fagus sylvatica), birch (Betulla pendula), linden (Tilia 
cordata), ash (Fraxinus excelsior), poplar (Populus tremula) and natural stands of oak (Quercus 
spp). 
 
We collected field data for 27 randomly located circular plots (radius=10m) in May 2008. In 
each plot we measured and determined tree height, DBH and tree species for trees with a DBH 
greater than 5cm. We used allometric equations to calculate total aboveground tree biomass and 
subsequently plot-level biomass (Mg ha-1). Lidar data was collected in June 2004. The 
objectives of this work were: (i) to develop models of forest biomass from plot-level lidar height 
metrics and (ii) to understand if low density lidar is accurate enough in high slopes to produce a 
map of forest biomass for the region. 
 
Our results indicate that low density lidar can be used to estimate forest biomass in our study 
region with acceptable accuracies. The best height results show a R2 from final model 0.87 and 
the RMSE 1.02 m (8,3% of the mean). The best biomass model explained 59% (R2) of the 
variance in the field biomass. Leave-one-out cross validation yielded an RMSE of 30,6 Mg ha-1 
(20,9% of the mean). 
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Abstract 
 
Various imputation methods are used to generate forest biomass estimates in the United States.  
The Gradient Nearest Neighbor (GNN) and Most Similar Neighbor (MSN) are two such 
imputation methods that combine satellite imagery, ground data, and environmental data to 
generate biomass estimates at a regional scale. However, there is little confidence on how 
accurate these estimates are at a local scale. This case study will estimate the amount of 
agreement between the GNN and MSN imputation methods in a forested landscape. Light 
Detection and Ranging (LiDAR) data will be used to increase the confidence of these 
imputation methods to estimate forest biomass at the local scale, in forests of Western Oregon. 
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Abstract 
 
LIDAR data acquisition is becoming an indispensable task for terrain characterization in large 
surfaces. In Mediterranean woods this job results hard due to the great variety of heights and 
forms, as well as sparse vegetation that they present. A new data mining-based approach is 
proposed with the aim of classifying LIDAR data clouds as a first step in DTM generation. The 
developed methodology consists in a multi-step iterative process that splits the data into 
different classes (ground and low/med/high vegetation) by means of a clustering algorithm. This 
method has been tested on three different areas of the southern Spain with successful results, 
verging on 80% hits.    
 
Keywords: LIDAR, DTM, clustering.  
 
1. Introduction 
 
The Regional Ministry for the Environment of Andalusia, the regional government in the South 
of Spain, owns two LIDAR sensors. Recently, this public entity has decided to develop a 
software system to improve the cartographic and environmental services using this 
technological advance because of the LIDAR’s well-known capacity to create 3D models with 
high quality. In this context it is necessary to be able to obtain a DTM from LIDAR data point 
clouds and to distinguish ground and non-ground (vegetation) impact. Nowadays, most of the 
software used to perform this kind of work is based on proprietary systems like Terrascan 
(Terrasolid Limited 2002). Our goal has been to develop free software in the near future to 
classify LIDAR data. As an initial step our study has been centered on applying data mining 
techniques (k-means clustering) to a LIDAR point cloud in order to obtain a digital elevation 
model (DEM). 
 
Others authors have worked in how to build DTM from LIDAR data previously. A method for 
filtering laser data (Vosselman 2000) is proposed closely related to the erosion operator used for 
mathematical grey scale morphology. This method is based on height differences in a 
representative training dataset, then filter functions are derived that either preserve important 
terrain characteristics or minimize the number of classification errors. The work (Haugeraud 
and Harding 2001) propose a method for deforestation to identify ground and non-ground points 
based on the geometry of surface in the neighborhood of each return. Zhang (Zhang et al. 2003) 
uses a progressive method to erase non-ground points based on a threshold to study height 
differences among points.  
 
In more recent times, the paper (Sithole and Vosselman 2005) makes classifications, by using a 
segmentation process in the LIDAR data point cloud. Then, every segment is classified on the 
basis of the geometric relations to the rest of segments. Bartels (Bartels et al 2006) presents a 
new filter based on statistical moments from data cloud to distinguish ground and non-ground 
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points in an efficient way. In addition, in (Evans and Hudak 2007), an iterative multiscale 
algorithm for classifying LIDAR returns that exceed positive surface curvature thresholds have 
been developed. The authors maintain that the results show very few commission errors and 
high quality models. 
 
Most of the approaches to develop DTM are based on grid techniques or on some kind of 
preliminary process like rasterization. This kind of techniques usually introduces distortion in 
the system that is studied and it can be an error source. In this situation, data mining techniques 
can be applied for optimal results because: 

• It does not need any preprocess that could produce errors in the results.  
• It can be easily applied to big datasets as, for example, the LIDAR data clouds. 
 

Data mining is defined by Piatetski-Shapiro (Piatetski-Shapiro et al. 1991) as: “the set of 
techniques that are concerned with finding patterns in data which are interesting (according to 
some user-defined measure of interestingness, e.g., with coverage above the requested 
threshold) and valid (according to some user defined measure of validity, e.g., classification 
accuracy)”. These kinds of techniques can be applied to any data source in general and it can 
particularly be applied on LIDAR data without loss of precision. 
 
Clustering is one a widely used data mining techniques. There are lots of clustering strategies, 
but perhaps the most extended method is k-means. It has been applied on bioinformatics, pattern 
recognition and even in remote sensing and LIDAR data, too. In this way, we can find 
approaches like Filin’s (Filin 2004) which makes DSM by studying the angles among 
neighbors. k-means classical algorithm is used by Filin’s approach applied to the attribute set 
obtained from a data cloud. In this way, every point has a set of angles with its neighbors as a 
result of Delaunay’s triangularization. From this data and the position of every point, the author 
builds clusters to identify each surface. Other approaches use k-means as help to segment data 
and get the individual trees. Thus, Morsdorf (Morsdorf et al. 2004) chooses local maxima inside 
the cloud as the initial point of every cluster. Then the algorithm builds clusters surrounding 
each maximum and with this, it gets the vegetation structure, an important parameter in fire risk 
assessment and fire behaviour modelling. Others techniques from data mining like neural 
networks are used with a similar purpose. Thus, Fernandes (Fernandes et al. 2005) developed a 
one-layer perceptron to classify signals from terrestrial LIDAR automatically in order to 
discover forest fire in early phases. The authors maintain their approach has detection 
efficiency of 93% and a false alarm percentage of 0.041%. 
  
This paper is concerned with the separation of ground and vegetation points in Mediterranean 
woods from LIDAR data. The main novelty of this approach is the applying of clustering 
techniques to the build of DTM and concretely the build of a digital elevation model (DEM) 
from a previous deep classification. 
 
The paper is organised as follows: In Section 2, the zone under study is presented and our 
approach is detailed. Section 3 presents results on high, medium and low resolution LIDAR 
data. The paper discusses results, proposes future avenues and concludes in Section 4. 
 
2. Method  
 
Our method is based on a multi-step k-means clustering applied to a LIDAR data cloud. Each 
step divides the original data cloud in two sets. Each set identifies the points for a possible 
classification: ground, low vegetation, med vegetation and high vegetation. We lean on the 
silhouette function to decide if it is possible to keep on dividing data. In the next paragraphs we 
describe the k-means algorithm, the silhoutte function and a deeper description of our approach 
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is shown. 
 
The k-means algorithm was originally presented by MacQueen (1968). For each cluster, its 
centroid is used as the most representative point, where the centroid μj of a group of elements xj 
is defined as the centre of gravity of all the elements comprising the cluster. 
 
The aim is to minimize intra-cluster variance, or the squared error function: 

2

1
∑ ∑

= ∈

−=
k

i Cx
ij

ij

xV μ                                  (1) 

 
k-means is the most popular method to perform clustering. It is an efficient and scalable method 
especially useful to deal with large datasets. It presents a computational complexity O(nkt), 
where n is the number of objects, k the number of clusters and t, the number of iterations. A 
local optimum is reached when k<<n and t<< n, which is a very common situation. 
 
The selection of an optimum number of clusters is still an open task. Recently, several 
approaches have been developed in order to determine this number (Hamerly and Elkan, 2003; 
Yan and Ye, 2007) but its application has been demonstrated to be useful only in individual 
areas. In this sense, the silhouette function (Kaufmann and Rouseeuw, 1990) provides a measure 
of the cluster’s separation and can be used as a general-purpose method. 
 
Let’s consider an item i (already clustered) that belongs to the cluster A. We evaluate the 
average dissimilarity of i to all the other objects of A is evaluated and denoted by a(i). 
Analogously, the average dissimilarity of i to all the objects of B is called dis(i, B). The next step 
consists of computing dis(i, B) for every B ≠ A and, subsequently, the smallest dissimilarity is 
chosen and noted by b(i)=min{dis(i, B)}, B ≠ A. Thus, b(i) represents the dissimilarity of i to its 
neighbour cluster. Finally, to determine how well a point is clustered, the silhouette function, 
shown in equation (3), is applied: 
 

)}(),(max{
)()()(
ibia

iaibisilh −
=             (2) 

 
Its value varies between –1 and +1, where +1 denotes clear cluster separation and –1 marks 
points with questionable cluster assignment. If cluster A is a set containing a single member, 
then silh(i) is not defined and the most neutral choice is to set silh(i) = 0. The objective function 
is the average of silh(i) over the N objects to be classified, and the best clustering is reached 
when the above mentioned function is maximized. 
 
2. 1. Algorithm 
 
The classification method is based on three iterations to classify all data. The first iteration 
classifies high vegetation. If the resulted clustering has a good silhouette value, it continues with 
medium vegetation and finally low vegetation. The unclassified data at last iteration is the 
ground data. In Figure 1, the process description can be seen for i-th iteration. Thus, iteration is 
divided into four steps. The first step takes the raw LIDAR data as input and builds a matrix as 
output with the minimum height of the terrain in every cell. To obtain good results it is 
necessary to set the cell size as a parameter for the algorithm. This parameter will determinate 
the size of the terrain contained in a cell of the matrix. This will be very important in the next 
step. 
 
Once the matrix has been built, we go into step 2. For each point from the raw LIDAR cloud, a 
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new measure is added, the biggest height difference that is calculated between the point height 
and the neighbour cells in the matrix, where the cell that could contain the point is included as a 
neighbour too. This new measure needs to know which cells are neighbours. A new parameter ε 
has to be given. This parameter can be defined as the biggest distance between the cell that 
includes the point and a possible neighbour cell. This parameter is related closely to the 
resolution of the data cloud and it will define the portion of terrain that is processed, together 
with the parameter in the paragraph before, to calculate the maximum height difference among 
points. It is important to realize parameter ε will be bigger for LIDAR data with low resolution 
and vice versa. 
 
The next step is the application of the k-means algorithm to the cloud trying to divide it into two 
clusters. It leans on the data with the added measure to build the classification. At the end of the 
execution, a new classification is obtained as output. The cluster with a higher mean height is 
the new group of classified points. Iteration provides a new class from high vegetation to low 
vegetation. At last, the algorithm tries to validate the results in the last step.   
 
In step 4, the algorithm takes the results of k-means and uses Silhouette function to decide if it 
is a good clustering or not. Silhouette provides a measure for every point weighting the 
inter-clustering distance. The measure may be between -1 and 1 where value 1 is the best and -1 
is the worst. In this step, a mean for all the points is calculated and if the clusters have a 
silhouette mean over 0.6 the clustering is considered good. Otherwise, it is considered a bad 
clustering and the algorithm rollbacks, changes the points classification to ground points and 
ends. 

 

 
 

Figure 1: i-th iteration of the extracting information process. 
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2.2 Study area 
 
We have chosen three study areas with different morphological (topographical) signature, with 
the aim of obtaining a comprehensive assessment of our algorithm, covering a forest burned and 
not burned area mountain range in Cerro Muriano (Córdoba) and two marshland areas, one 
within a Natural Setting in Isla Cristina (Huelva) and the other in Marismas del Odiel (Huelva). 
The task of classification is especially arduous since the terrains under study are not regular 
enough. 
 
The following information was available for the study area: (i) sets of aerial photographs taken 
in the period from 2005 to 2007 at 1-meter resolution; (ii) medium scale lithological and land 
use maps in digital format; and (iii) a high-resolution (HR) digital elevation model (DEM) 
obtained by spatial correlation of images, including breaklines and manual edition in troubled 
areas. The HR DEM was used to obtain digital representations of the topographic surface of the 
study area, including elevation, shaded relief, and slope maps. The digital maps were exploited 
for visual testing, based on their morphological (topographical) appearance. 
 
3. Results 
 
Mediterranean woods are some of the most variable environments we can find in 
Europe. They usually have very little vegetation and it has a great variety of heights, 
forms… So the samples we have used are deemed to be difficult to filter. We have 
centred on vegetation because it is the most important feature for the Regional Ministry. 
Further studies are planning to extend the results to zones with buildings, bridges…  
 

 
 

Figure 2: Part of the classification for Cerro Muriano in an early step. 
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The data has been processed for three zones representing the variability of the vegetation in the 
South of Spain. After numerous tests and estimating the ε value as a function of the inverse of 
the resolution of each dataset, we determined the optimum value of ε is 2 for Cerro Muriano 
dataset and 1 for the other two ones. The results have been compared against manually 
classified points. Table 1 presents the total error in every zone. The total error presents the 
number of misclassified points as a percentage of all studied points in the sample. 
 

Table 2: Total error. 
 

Zone Number of points Number of hits Extractive rate (%) Error (%) 

Cerro Muriano (Córdoba) 140 112 80 20 
Odiel (Huelva) 140 121 86.4 14.6 
Isla Cristina (Huelva) 140 100 71.4 18.6 
Total  420 333 79.28 20.72 
 
The great error in the Cerro Muriano zone appears because it has a very low resolution. This 
flight was orthographic and a LIDAR sensor was mounted to make testing on the area. The low 
resolution affects the results even if parameter ε is got increased. In addition, the zone of Isla 
Cristina is an extremely difficult zone because it’s a marshland. The mean height is very low 
and the differences between the short vegetation and the ground are hard to find. A solution to 
this problem is still being investigated. 
 

 
 

Figure 3: Example of area misclassified in Isla Cristina. 
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Figure 4: Part of the classification for marshland of Huelva. 
 

 
  

 Figure 5: Example of area classified in Odiel. 
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One of the outstanding conclusions that can be deduced from the experiments is that our 
approach performs in very similar way in all landscapes. Very few algorithms are been tested on 
Mediterranean lands and a deep comparative study among the set of algorithms that can be 
found nowadays is needed to determinate if our approach can compete with them when software 
based on our approach is available. 
 
3.1. Outliers 
 
Laser scanner data sometimes contain isolated points that have large systematic error. In the 
developed algorithm clusters with a very small size (typically one or two points) are classified 
as outliers and can be deleted. If this situation appears, iteration is done again without the 
removed points. 
 
4. Discussion 
 
LIDAR data from Mediterranean woods has been analyzed in this work. To be precise, a new 
clustering-based approach has been proposed in order to distinguish vegetation from ground. 
Thus, it has been demonstrated that different kinds of profiles can be differentiated by applying 
a well-known data mining technique, such as k-means, integrated in a multi-step cascade 
process of feature extraction. A parameter is calculated in every step and subsequently used as 
an input of the following step. The accuracy shown is certainly promising since no extra 
computation, apart from the k-means, is added to the approach, achieving a low computational 
cost. 
 
Concerning to future work, it can be stated that this initial division into two main classes could 
be very useful in order to classify miscellaneous grounds or vegetation. Moreover, this data split 
allows the classes to be considered and further analyzed in a different way since ground and 
vegetation do not show the same behaviour to laser pulses. 
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Abstract 
 
LiDAR (Light Detection and Ranging) data have shown a great potential for 3D modelling 
applications. This potential lies on the ability of LiDAR systems to generate highly dense 3D 
point clouds for describing the terrain surface. Several error sources affect the position accuracy 
of the 3D points, which are represented as offsets between the overlapping areas. Several 
methods have been developed to correct these displacements using height or intensity data. This 
paper proposes a three steps procedure to correct the offset observed between a multitemporal 
dataset. Firstly intensity images were generated. Secondly, an area based image correlation 
technique was applied to extract evenly distributed control points. Finally the control points 
were used to determine the parameters of a global transformation by least squares. The 
technique showed good performance for the study area reducing significantly the planimetric 
discrepancies observed. 
 
Keywords: LiDAR, planimetric adjustment, image matching, least squares 
 
1. Introduction 
 
LiDAR (Light Detection and Ranging) data have shown a great potential for several 
applications such as generation of Digital Terrain and Surface Models (DTM and DSM), 
generation of 3D object models, forest inventory, etcetera (Maas and Vosselman, 1999; Næsset 
et al., 2004). This potential lies on the ability of LiDAR systems to generate highly dense 3D 
point clouds which describe the terrain surface. Therefore, 3D modelling will be influenced by 
the accuracy with which the coordinates (X, Y, Z) of the point cloud are determined.  
 
In the case of digital terrain model applications the height accuracy is the most important factor 
to take into account; however, in other 3D modelling applications discrepancies in the Z 
coordinate as well as in X and Y coordinates have to be determined (Maas, 2001). A wide 
variety of error sources affect the position accuracy of the 3D points, which in general terms can 
be grouped into: alignment errors, precision of range determination, errors of the scanning 
mirror, and GPS/INS system (Huising and Gomes Pereira, 1998; Maas, 2001). The latter 
commonly accounts for the largest errors, with errors up to 10 to 20 centimetres in the height 
and 50 centimetres in planimetry (Maas, 2001). These errors are represented as offsets or 
discrepancies between the overlapping areas of adjacent or crossing strips in relative terms or as 
offset at ground control points in absolute terms. Special attention has been paid to the relative 
adjustment of overlapping strips. As a result, several procedures have been suggested to 
overcome those displacements (Crombaghs et al. 2000; Maas, 2001; Vosselman, 2002a; Pfeifer 
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et al., 2005). 
 
Pfeifer et al. (2005) grouped the methods into those that only consider the observed 
discrepancies between the points from two adjacent strips, and those methods that are based on 
a model of the sensor system relating each point to its original observation. Sensor-based 
models have the main advantage that allow to assessing the true problem and not merely cope 
with the phenomena (Kager, 2004). Kager (2004) proposed a method for simultaneous 3-D 
fitting of laser data applying correction polynimials to the registered orientation elements as a 
function of time. Tie-features were used for the block adjustment. The main limitation for the 
application of sensor-based methods is that require data that are not usually available to 
end-users. Thus, several methods which consider the discrepancies between points from 
adjacent strips have been proposed. Pfeifer et al. (2005) proposed a method that used tie 
surfaces through segmentation of the LiDAR data into planar patches. Subsequently the 
segments were judged according to quality and distance criteria. Finally, Comparison of the 
height of one segment to a plane formed by the points in the adjacent strip(s) allowed 
determination of height offset. 
 
Other researchers propose to use linear features, which simplify the processing and increase the 
accuracy, such as gable roofs or ditches to measure the strip shifts (Vosselman, 2002a; Lee et al. 
2007). Lee et al. (2007) proposed a 5-steps algorithm where planimetric offset are determined 
first and subsequently the height is corrected. The algorithm implies generation of a data 
structure (Triangular Irregular Network, TIN), segmentation of points into planar patches (e.g. 
roofs), determination of the intersection line between planar patches, distance measurement 
between lines, and application of a global transformation to correct the data. 
 
Maas (2000) presented a procedure to precisely determine strip discrepancies in all three 
coordinate directions, based on least squares matching applied to LiDAR data in a TIN structure. 
In this method, several patches were selected. The height of a given point in one of the strips 
was compared to the height of points of the other strip interpolated in the TIN mesh at the same 
location. This difference gave an observation equation that was used to determine the shift 
parameters. The TIN structure has the advantage that non-interpolated raw data are used, 
avoiding the bias introduced by grid interpolation in occlusion areas. However, despite the 
advantages of a TIN structure over an interpolated grid, the method required patches containing 
significant height contrast in orthogonal coordinate directions. In regions where this requirement 
is impossible or difficult to fulfil, intensity images can be used for planimetric shift 
determination using matching techniques (Maas, 2001; Maas 2002; Vosselman, 2002b). Image 
matching is commonly applied in photogrammetry and airborne remote sensing for the 
establishment of correspondence between images. The methods used in image matching can be 
grouped into: Intensity or area based methods, feature based methods and relational methods 
(Lerma, 2002). 
 
Though the methods afore mentioned have been applied to the adjustment between adjacent and 
crossing strips, they could be applied to a multitemporal LiDAR dataset of a given area in the 
same manner. Also, the methods have been developed for areas where linear or surface elements 
such as gable roofs, roads or ditches are easier to extract. This paper shows the utility of 
area-based matching applied to intensity images to estimate and correct the planimetric offset 
between two dataset acquired over a complex forested area in Spain, where the application of 
feature-based techniques is difficult. A three steps procedure was applied to extract evenly 
distributed control points by an area based image correlation technique, which are then used to 
determine the parameters of a global transformation by least squares. 
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2. Methods 
 
2.1. Study area and data set 
 
This study was carried out over a forested area located in the Natural Park of “Alto Tajo” in 
Guadalajara, Central Spain (UL: 40º 56’ 49’’ N; 2º 14’ 49’’ W; LR: 40º 48’ 25’’ N; 2º 13’ 21’’ W). 
The area is characterized by a high diversity of species, mainly pines (Pinus sylvestris L., Pinus 
nigra Arn.,Pinus pinaster Ait.) and oaks (Quercus faginea Lam., Quercus ilex L and Quercus 
pyrenaica Willd.). The mean height of the study area is 1200 m, with a maximum height of 1403 
m and a minimum height of 895 m. 
 
The study area was flown twice at the end of the spring of 2006, in May 16th and June 3rd. with 
an Optech 3033 LiDAR system. The flying height was 2050 m above mean sea level with a 
maximum scan angle of ±12º, a point density of approximately 2.3 points/m2. The dataset 
consists of 3 strips flown in north-south direction with no overlap, and a crossing strip for 
calibration purposes, covering an area of approximately 382 Km2. The data available included X, 
Y and Z coordinates in UTM-zone 30 (WGS84), both first and last returns, and the intensity of 
each return. 
 
Inspection of the relative adjustment between the two LiDAR flights showed a good relative 
fitting in the Z direction but revealed a systematic offset in the XY direction. Therefore, in order 
to determine the magnitude of this displacement and to correct it, an image matching technique 
was applied to the intensity images generated from the laser data and subsequently a global 
transformation was used.  
  
2.2. Planimetric offset determination 
 
In the previous section several methods proposed to correct the offset between LiDAR datasets 
have been described. Most of the methods were developed for urban areas, using linear features 
or surface elements to determine shift in the three coordinates. Our study area, with very few 
gable roofs (only in one strip out of three) or linear elements, hampered the application of 
feature-based methods. In addition the main objective of this study was to correct the 
planimetric offset of the datasets. Thus, an area based correlation technique was applied to the 
intensity images. The method presented in this paper was carried out in three steps. Firstly, 
intensity images were created from the point cloud data. Second, an area-based method was 
applied over each strip to extract sufficient number of control points. Subsequently, the 
extracted control points were used to derive the parameters of a global transformation by least 
squares.  
 
2.2.1. Generation of intensity images 
 
Application of an area based matching requires the generation of a raster from the irregularly 
distributed point cloud, so the grey-level or digital number (DN) distribution of the two images 
can be compared. Therefore, the original point data were interpolated into a grid with a spatial 
resolution of 0.5m, using a normal core interpolation method. This method uses the intensity 
values for a given number of points within a defined radius that defines the interpolation area. A 
2 m radius was used for the interpolation area. The interpolated values are calculated based on a 
distance weighted average. The weighting function decreases as an exponential function of the 
distance (Wyseman, PCI Geomatics, personal communication). Since intensity images presented 
a clear speckle noise, a median filter was applied to reduce its effect over the matching process 
(figure 1).  
 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 

 401

 
 

 

 
 

Figure 1: Intensity image generated using normal core interpolation (left) and intensity image filtered 
using a median filter (right) 

 
2.2.2. Planmimetric offset determination 
  
The basic assumption of area based methods for image matching is that homologous pixels have 
similar radiometric (or intensity in LiDAR data) values. Area based control points extraction 
methods search to optimize a predefined objective function, defined by a similarity measure 
such as correlation coefficient, normalized cross correlation, or mutual information, based on 
template matching (Liu et al. 2006). The template can be the whole of the image or a subset. 
 
Determination of the planimetric offset was carried out using a routine developed by Prado 
(2007). This routine computes the correlation coefficient between two M x N matrices. One of 
these matrices is established as the reference window (master), while the other matrix (slave) is 
moved vertically and horizontally over the master. The size of these windows was set to 
100x100 pixels. Thus, the images were divided in subsets of 100x100 pixels. For each subset 
the slave window was moved over the master (up to ±3 pixels) and the correlation coefficient (r) 
was computed. As a result the routine provides an image where the DN value represents the 
maximum correlation coefficient (r) found, and two images where each pixel represents the shift 
in X and Y that made maximum the correlation coefficient. These images allow detecting the 
existence of a given pattern in the distribution of the X and Y offsets. Also, since the images are 
divided in subsets of 100x100 pixels, the error can be evaluated locally, mapping the offset 
along the whole of the strips. 
 
Usually, since it is very difficult to obtain a maximum value in the correlation process (r=1) a 
minimum threshold is established to accept a point, for example r=0.5 (Lerma, 2002). In this 
study, a threshold of r= 0.8 was applied to the correlation values obtained, in order to extract the 
definite control points to be later used in the determination of the parameters of the global 
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model by least squares. Also a regular grid was created and overlaid to the correlation images. 
Thus, only those points of the grid that laid over pixels with a correlation value equal or greater 
than 0.8 were used as ground control points. This made it possible to extract evenly distributed 
control points over the overlapping area along the strips. 
 
2.2.3. Transformation model determination 
 
The control points previously extracted were used to calculate the coefficients of the global 
function to be applied. Approximately 85% of the extracted points were used as control points; 
the remaining 15% was used as validation points. Since the displacements observed over the 
overlapping area did not show local deformations (figure 2), a 2D affine transformation was 
applied to correct the planimetric offset between the intensity images. This geometric 
transformation, was applied to the LiDAR June 3rd data to match with May 16th data. 
 

   
 

Figure 2: Subsets of the vector plots that show the pattern of the planimetric offset observed for the three 
strips. From left to right 1f-1s; 2f-2s; 3f-3s (1f, 2f, 3f: refers to the first day flight; 1s, 2s, 3s: refers to the 

second day flight) 
 
The mathematical model of the affine transformation can be represented as: 
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Where a, b, c, d, e, and f represent the geometric parameters of the transformation, (X’, Y’) are 
the transformed coordinates and (X Y) are the observed coordinates, both in the UTM 30- 
WGS84 system. 
 
3. Results 
 
The routine applied to determine the planimetric offset, produced three new images, namely the 
correlation coefficient, the X-shift (�X) and the Y-shift (�Y) where the correlation found 
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reached a maximum. Table 1 presents the mean correlation coefficients computed for each strip 
(the mean value was computed for all pixels of the correlation images, not only for those having 
a correlation value higher than the threshold applied). It also presents the maximum 
displacements (�Xmax, �Ymax) found at the control and validation points, and the number of 
control points and validation points used in each case. As can be seen from this table, the offset 
was higher for the Y coordinate than the X coordinate. Also, the sign of the error changed 
according to the direction of the flight, i.e. the first and the third strip were flown in the same 
direction N-S while the second was flown in an S-N direction. A slightly lower correlation 
coefficient was found for the first strip, since the characteristics of the area covered by this strip 
made more difficult to perform the matching. The number of control points found in the first 
strip was nearly half of the number of points extracted in the other two strips. 
 
Table 1: Correlation coefficients and control points extraction (*1f, 2f, 3f: refers to the first day flight; 1s, 

2s, 3s: refers to the second day flight) 
 

Strip * Mean Correlation 
Coefficient 

Control Points Check Points �Xmax (m) �Ymax (m) 

1f-1s 0.48 40 7 -1 1.5 
2f-2s 0.55 82 12 1 -1.5 
3f-3s 0.54 94 14 -1 1.5 

 
Table 2 shows the geometric parameters of the 2D affine transformation obtained from least 
squares, which were subsequently applied to the original data sets. 
 

Table 2: Geometric parameters of the 2D affine transformation 
 

Strip * a b c d e f 
1f-1s 0.999404 6.603 e-6 0.0054 -0.0001175 0.999986 -0.0223 
2f-2s 0.999930 -8.749 e-6 -0.0028 -0.001187 1.0000107 0.0146 
3f-3s 0.998103 -2.1434 e-5 0.0003 0.0002042 0.9999997 -0.0166 

 
When applying these parameters to the check points the offsets were reduced considerably. Thus 
for the first strip the root mean square error (rmse) in X and Y before correcting the shifts were 
0.46 m and 1.41 m respectively, whereas after applying the 2D affine transformation the rmse 
were 0.24 m in X and 0.33 m in Y. For the second strip similar results were obtained, with an 
rmse for the X coordinate of 0.56 m and 1.45 m for the Y coordinate before the correction, and 
after the affine transformation the rmse in X was 0.24 m and 0.27 m in Y. Finally for the third 
strip the results were, rmse-X= 0.55 m and rmse-Y=1.29 m before correction, and after applying 
the transformation model the rmse-X and the rmse-Y were reduced to 0.23 m and 0.30 m 
respectively. 
 
Figure 3 shows a subset of one of the strips before and after correcting the planimetric offset 
observed. It can be seen that the datasets show a systematic shift in the horizontal plane, and 
that this displacement is corrected after applying the 2D affine transformation. 
 
After correcting the X,Y offset, it was verified the relative fitting of the data in the Z direction. 
Thus, a flat area with sparse vegetation was selected from each strip, and a DTM was generated 
for those areas. Subsequently, the DTMs generated for the second flight (before and after the 
correction) were compared to the DTMs generated for the first flight. Table 3 shows the mean 
and the standard deviation of the absolute differences between the DTMs generated. 
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Table 3: Verification of the Z adjustment before and after the planimetric correction 
 

��Z| Before ��Z| After Strip * Mean Standard deviation Mean Standard deviation 
1f-1s 0.058 0.043 0.073 0.044 
2f-2s 0.056 0.050 0.066 0.050 
3f-3s 0.140 0.100 0.070 0.060 

 
 
Similar values were obtained for the first and second strips. The highest difference was observed 
for the third strip, where the mean difference after the affine transformation was reduced from 
14 cm to 7 cm. This could be explained because the area used in this strip presented a certain 
slope and, therefore the planimetric offset influenced the vertical component. 
 
 
4. Conclusions 
 
Throughout this paper it was demonstrated that application of image matching techniques to 
intensity images interpolated from the 3D point cloud, can be useful to determine the 
planimetric offset observed between two LiDAR flights carried out over a forested area, 
especially when feature-based techniques are difficult to implement due to the lack of linear 
features. Correction of this displacement it is important when performing a multitemporal study 
or even to increase the point density by merging the data from the two flights when they are 
carried out close in time. Point density has shown to be more important than other variables as 
the footprintsize, in determing certain forest variables as crown area and volume area (Goodwin 
et al., 2006) 
 
Though in the case of a global deformation, as it was the one observed for our data, an optimal 
matching leads to the final transformation model without explicitly generating the control points 
(Liu et al. 2006), the two step approach used here (extraction of control points and 
determination of transformation parameters by least squares) would allow to detect more 
complex local deformations. In such a case, local transformation as for example piecewise 
linear models or local weighted mean model could be applied. These methods usually need a 
large number of evenly distributed control points since the parameters of the transformation 
vary across different regions over the image. 
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Figure3: Adjustment of the strips before (top) and after (bottom) application of the affine 

transformation. Dots represent data from the first flight. Crosses represent data from the second flight 
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Abstract  
 
In continuous cover forest systems, canopy gaps are created by management activities with an 
aim of encouraging natural regeneration and of increasing structural heterogeneity. Canopy gaps 
are difficult to map from the ground and LiDAR may provide a means to accurately assess gap 
distribution, allowing more effective monitoring. This paper presents a new approach to gap 
delineation, based on identifying gaps directly from the point cloud and avoiding the need for 
interpolation of returns to a canopy height model (with associated errors). Areas of canopy are 
identified through local maxima identification, filtering and clustering of the point cloud, and 
gaps are then identified and delineated in a GIS environment.  
 
When compared to field mapped gap outlines, the algorithm has an overall accuracy of 88% for 
data with a high LiDAR point density and accuracy up to 77% for lower density data. The 
method provides an increase in producer’s accuracy, of on average 8%, over a method based on 
the use of a canopy height model. Results indicate that LiDAR data can be used to accurately 
delineate gaps in managed forests, potentially allowing more accurate and spatially explicit 
modelling of understorey light conditions. 
 
Keywords: spatial structure, airborne laser scanning, gap delineation, clustering, forestry. 
 
1. Introduction  
 
The distribution, shape and extent of gaps in forest canopies can influence a range of ecological 
factors including the understorey light regime and vegetation, microclimate and soil moisture 
(Page and Cameron 2006) as well as influencing other considerations such as the aesthetic appeal 
of the stand. Continuous cover forestry (CCF) is a management approach that maintains a forest 
cover over time, by the selective felling of single or small patches of trees, and aims to produce a 
more diverse forest structure (Mason and Kerr 2004). Canopy gaps within CCF forests result from 
both management activities and natural disturbances such as windthrow and allow the occurrence 
of natural regeneration in the understorey, reducing the need for re-planting.  Monitoring such 
stands presents new challenges, as detailed and spatially explicit information is needed on a more 
frequent time-scale than for traditional clear-cut systems. 
Airborne laser scanning provides high resolution information on vertical and horizontal aspects of 
forest structure and may allow the study and monitoring of fine-scale spatial structural 
heterogeneity of stands in the process of conversion to CCF, through the identification and 
delineation of canopy gaps. By examining the spatial distribution and characteristics of canopy 
gaps, indices of spatial structure can be developed with direct relevance to important ecological 
parameters, whilst the gap distribution itself is useful in predicting understorey conditions. 
This paper examines the use of discrete return, small footprint LiDAR data for the delineation of 
canopy gaps (mainly resulting from management) in Sitka spruce (Picea sitchensis) plantations. 
A new approach, delineating gaps directly from the LiDAR point cloud, is developed and 
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compared to previous approaches based on the use of a canopy height model (CHM). The 
accuracy of delineations is assessed against independent field measurements.  
 

2. Background 
 
A canopy gap can be viewed as a lowering of the surrounding forest canopy below a certain 
height threshold. Information on the height of the canopy surface can therefore aid the 
identification of gaps. A number of studies have examined the potential of surface models 
derived from digital photogrammetric techniques for identifying canopy openings (Nuske et al. 
2007; Betts et al. 2005; Nakashizuka et al. 1995). Small-footprint discrete return LiDAR 
sensors have been widely used to derive locations, heights and crown sizes of individual trees 
(Falkowski et al. 2006; Koukoulas and Blackburn 2005; Suárez et al. 2005). However, very 
little explicit consideration has been given to delineation of canopy gaps from LiDAR data.   
 
The assumption that mapping canopy gaps using LiDAR is straightforward (Nuske et al. 2007) 
has not been tested. Koukoulas and Blackburn (2004) mapped canopy gaps from LiDAR data of 
deciduous woodland, with the aim of describing gap spatial structure and within-gap vegetation 
types. A CHM was generated from the raw data and a fixed height threshold (four metres) was 
used to define a gap. Morphological shrinking functions were then applied to isolate individual 
gaps. However, by applying a 'hard' height threshold to delineate gaps, the algorithms used do 
not lend themselves to applications in uneven-aged stands likely to result from CCF. A recent 
study by Zhang (2007) examined the use of LiDAR for delineating gaps in mangrove forests. 
The fixed height threshold method of Koukoulas and Blackburn (2004) was compared to a 
mathematical morphology based method, using opening and closing operations, in which the 
threshold height was determined as a ratio of whole gap height.  However, neither study 
undertook a formal accuracy assessment of the gap delineations or any comparison to field data. 
In Koukoulas and Blackburn (2004) field measurements were not felt to be comparable and 
delineations from aerial photographs too inaccurate. Zhang (2007) compared LiDAR 
delineations to a slope grid generated from the canopy model but not to field data. Further work 
is therefore needed to assess the potential of LiDAR data for accurate gap delineation, including 
comparison to appropriate field data.  
 
Acquisition parameters such as scanning angle and point density could have considerable 
impact on the accuracy of gap delineations. A number of studies have considered the influence 
of flight altitude (Morsdorf et al. 2008; Goodwin et al. 2006; Næsset 2004) and scan angle 
(Morsdorf et al. 2008; Ahokas et al. 2005) on the retrieval of biophysical properties, including 
individual tree height and crown width.  Maximum scan angle (from nadir) is likely to 
influence the range of angles at which LiDAR pulses interact with the canopy and ground, the 
spacing of pulses (across track) and the distance that laser pulses travel through the forest 
canopy. As large scan angles can result in areas of shadow where the pulses do not penetrate 
adjacent tree crowns, this seems likely to have a significant influence on the delineation of 
canopy gaps. Point density is also likely to influence accuracy, as at low point density the 
canopy drip-line of trees (defined below) may be frequently missed. Although the influence of 
point density and scanning angle on the accuracy of gap delineations is not explicitly 
investigated in this paper, at lower densities or in areas of shadow, the averaging involved in 
interpolation of point data to CHMs is likely to compound these problems and reduce the 
precision of delineations. The process of producing a CHM also leads to the loss of data from 
different levels in the canopy, preserving just lidar returns from the surface, leading to a further 
reduction in the information available for gap delineation. This paper therefore develops an 
alternative approach, avoiding the use of a CHM and instead delineating gaps directly from the 
point cloud.  
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3. Data collection and pre-processing 
 
3.1 Study sites 
 
The three study sites are located in Sitka spruce (Picea sitchensis) plantations in the UK. 
Aberfoyle, Scotland is the site of a CCF trial area. Two one hectare plots were used for field 
measurements, one in a stand in the early stages of transformation (AbP1) and the other in a 
traditionally managed plantation that had been lightly thinned (AbP2). Clocaenog Forest in 
North Wales is also a CCF trial area, managed by the University of Wales, Bangor. One plot 
(CLG1) is a thinned control plot, whilst the other (CLG4) has been managed as a uniform 
shelterwood since 2004. The final study site is Glasfynydd Forest in South Wales. This is the 
site of a Forest Research thinning experiment. Plots were established in 50 year old stands and 
thinned (in 2002 and 2005) to 69% (plot GLT) and 60% (plot GHT) of their original basal area. 
The plots exhibit a range of canopy gap sizes and distributions due to their management history.  
 
3.2 LiDAR and field data 
 
Airborne campaigns were carried out over all three sites in summer 2006. Discrete return LiDAR 
data (first and last returns) for Glasfynydd and Clocaenog were collected by the NERC Airborne 
Research and Survey Facility at an average point density of 1.2 returns per m2 with a maximum 
scan half-angle of 20 degrees. Data for Aberfoyle was acquired by the Environment Agency at a 
much higher point density (11.4 returns per m2) and a maximum scan half-angle of 10 degrees.  
A gap can be viewed as a ‘hole’ in the forest canopy caused by the loss or removal of one or 
multiple trees, thereby excluding small gaps within tree crowns or between neighbouring trees.  
To allow the comparison of field and LiDAR data, a more complete definition is needed. For the 
purposes of this study, a gap boundary is defined by a line at ground level (the drip-line) located 
vertically beneath the inner most point reached by the foliage of a tree crown at any level, at that 
point on the gap perimeter, as suggested by Brokaw (1982). A gap must have a minimum area of 
5m2  and must extend down to at least ten metres from ground level (closure occurs when 
regeneration reaches an average height of ten metres). 
A detailed ground survey of all plots was carried out in September 2005 for Aberfoyle and 
summer 2006 for the Welsh sites. Full data sets including tree positions and dimensions were 
available for Clocaenog and Glasfynydd and these were up-dated by re-measuring a subset of 
trees. A 50m by 50m subplot was established in each plot and the boundaries of all canopy gaps 
(fitting the study definition) were surveyed. As it was not possible to survey every point along 
the canopy drip-line of gap boundaries, the resulting field-mapped boundaries were to some 
degree generalised. A Total Station survey, from a GPS baseline, was used to record points 
located directly below the drip-line wherever significant changes in the orientation of the gap 
boundary occurred. Several points were recorded per tree crown. Gap boundaries were mapped 
for all plots except CLG1. 
 
3.3 LiDAR pre-processing 
 
Pre-processing of LiDAR data was carried out using FUSION (McGaughey 2007). A digital 
terrain model was generated from the last return data by filtering to leave bare earth points, 
using an iterative process adapted from Kraus and Pfeifer (1998). A gridded DTM was 
generated from these points with a cell size of 2m. The accuracy of the DTM was assessed 
against height measurements obtained during the GPS and total station survey, resulting in an 
average RMSE of 1.1m. This error falls within the vertical accuracy levels of the GPS positions 
so the absolute accuracy of the DTM could not be assessed further. To determine the degree to 
which the DTM represented variation in the ground surface (a factor perhaps more important to 
this study than absolute height), the relationships between total station surveyed points and the 
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heights extracted for the same locations from the DTMs were examined, giving a strong linear 
relationship (R2 of 0.93-0.99, P<0.001) and suggesting that the DTM accurately represented 
variation in the ground surface within the plots. The corresponding value of the DTM was then 
subtracted from the first return point data to convert from elevation to height above ground. 
 
A canopy height model (cell size of one metre for the Welsh sites and 0.5 metres for Aberfoyle) 
was generated from the first returns, also within FUSION. The highest first return (from the 
point cloud, converted to height above ground) was assigned to each grid cell, with missing 
values interpolated by averaging of neighbouring values. The use of a TIN to generate the CHM 
was also investigated but produced poorer results in this study. Heights derived from the final 
CHM were compared against field measured tree heights (from 2007) for plot CLG1, resulting 
in a correlation co-efficient of 0.95 (P<0.001) and a mean error of -1.55m.  
 
4. Methodology 
 
Two methods were used to delineate gaps from the first return LiDAR data. In the first, a 
relative height threshold of 66% of local tree height was applied to the CHM. This threshold 
was found to correspond to the canopy drip-line through manual measurements of the point 
clouds of 45 individual trees located in open areas or on gap edges. A surface representing the 
top of the canopy was first generated by applying a moving window (with a radius of 5.5 
metres) and taking the maximum value in the window to represent the maximum local tree 
height for the centre pixel. This filter size was selected as large enough not to cause the resulting 
canopy top raster to fall into small gaps between trees whilst preserving the spatial variation in 
tree heights within the stand. Pixels in the original CHM were then classified as gaps if they had 
heights lower than 66% of the local height of the canopy top raster. All pixels in the CHM with 
a height of less than 10 m were also included in the gap class to account for those in the centre 
of large gaps. 
 
The alternative method delineates gaps directly from the LiDAR point cloud without 
interpolation to a CHM. As many gaps contain large areas of shadow with few LiDAR returns, 
the algorithm focuses on the identification and delineation of areas of canopy, with gaps being 
found subsequently by default. The algorithm is composed of a number of stages including the 
identification of local maxima (as points higher than their neighbours), filtering to remove 
returns from below the canopy drip-line (less than 66% of local tree height), clustering of lower 
canopy returns into separate clusters around each identified maxima (limited by a radius 
corresponding to the maximum tree crown size) and merger and delineation of clustered points 
to retrieve gap delineations. The initial stages (identifying local maxima and clustering of 
returns) are similar to the approach taken by Tiede et al. (2005) to assign point data to individual 
tree crowns, but the clustering method differs by first filtering the point cloud to leave only 
returns from above the canopy drip-line. Figure 1 shows the full point-based processing scheme.                
 
Following filtering and clustering, the locations and cluster memberships of the points are 
processed in a GIS environment to produce vector gap outlines. Any points that have not been 
assigned to a cluster are removed at this stage. First, a buffer (of fixed radius) is applied to the 
points, and those points with the corresponding cluster memberships (associated with the same 
maxima) are merged into a single polygon. Any ‘holes’ fully enclosed within a cluster polygon 
are removed leaving polygons representing tree crowns. The areas of test plots representing 
gaps (i.e. all areas not included in the canopy polygons) are then retrieved. The gap polygons are 
then dilated to reconstruct full gap extent. The point density of the data determines the optimum 
distances for buffers to merge points, with the radius of buffers approximately equal to the 
distance between adjacent scan lines in the along-track direction (the direction in which the 
largest point spacing was present). A small buffer remains surrounding the clustered canopy 
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points (i.e. the gaps are not dilated by the full buffer distance), as such points are unlikely to be 
located precisely on the canopy edge. All specified parameters for each plot are presented in 
Table 1 and vary according to the LiDAR point density. The clustering radius (R) can be 
estimated as approximately double the average along-track spacing of LiDAR returns. The 
search radius, S, used for maxima location can be estimated from field data (or in the absence of 
such data, from optical or lidar intensity images) so as to be slightly larger than the average 
crown diameter. 
 

 
 

Figure 1: Point-based processing scheme for delineation of gaps from LiDAR data.  
 
 

Table 1: Final parameters selected for point-based processing of each plot. 
 

Plot Number of 
neighbours (X) 

Search radius 
(S) 

Cluster radius 
(R) 

Buffer distance  Distance gaps 
dilated  

AbP1 
AbP2 
GLT 
GHT 
CLG1 
CLG4 

100 
100 
20 
20 
20 
20 

3 m 
3 m 
3 m 
3 m 
3 m 
3 m 

1 m 
1 m 
2 m 
2 m 
2 m 
3 m 

0.5 m 
0.5 m 
1 m 
1 m 
1 m 

1.5 m 

0.25 m 
0.25 m 
0.5 m 
0.5 m 
0.5 m 
1 m 
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Before assessing accuracy against field data, any gaps identified as having an area of less than 5 
m2 were removed. In the case of the CHM-based method of gap delineation, accuracy was 
assessed by a pixel based comparison (confusion matrix) of the classified raster with a raster of 
the field mapped gap distributions for sub-plots of AberP1, CLG4, GHT and GLT. AberP2 was 
excluded from the assessment due to difficulties in accurately co-registering the field and 
LiDAR data. For the point based method, a confusion matrix was calculated directly from the 
vector delineations. The total area of canopy gap identified in each sub-plot using both methods 
was also compared with the overall area delineated in the field. A separate assessment of the 
accuracy of the maxima identification stage for the point-based method was also carried out for 
plots where tree positions were available (either field mapped or obtained visually from the 
CHM). A maxima was considered to correspond to a field mapped tree if it lay within a 2m 
radius of the field position (the average crown radius for the stands).  
 
5. Results 
 
Table 2 shows the correspondence between identified maxima (from the point-based method) 
and field mapped tree positions. Good levels of accuracy were achieved for all plots, with the 
majority of trees identified. Some commission errors occurred, but this is unlikely to have a 
significant effect on the performance of the algorithm as a whole. 
 
Table 2: Accuracy of maxima identified from LiDAR first return point data compared to field measured 

tree positions (except for AbP1, where ‘field’ positions were manually identified from the CHM). 
 

Plot Producer’s accuracy (%) User’s accuracy (%) 
CLG1 85.7 75.2 
CLG4 88.0 79.0 
GLT 73.2 68.0 
GHT 86.2 69.7 
AbP1 94.8 83.8 
Mean 85.6 75.1 

 
Figure 2 shows an example of the results of the clustering stage of the algorithm for two plots, 
one with a high point density (AbP1) and the other with much lower point density (CLG4). In 
general the points form compact clusters around field mapped tree positions, although there are 
some instances in which clusters also include parts of neighbouring crowns.  
 
The final gap delineations using this method for the same two plots are shown in Figure 3. The 
majority of gap areas are correctly identified in both cases but greater errors can be seen for the 
plot with lower density LiDAR data. This was confirmed by the results of the formal accuracy 
assessment, as presented in Table 3. The corresponding results for the CHM-based method are 
also included. Overall accuracy was slightly higher for all plots using the point-based method (an 
increase of 3.7% on average), whilst the producer’s accuracy of the gap class was considerably 
improved in most cases (average increase of 8.3%). Table 4 compares the total derived gap area in 
each sub-plot to that mapped in the field. It can be seen that both the CHM and point-based 
methods generally under-estimate gap area. The point-based approach usually retrieves a greater 
gap area than the CHM-based method and the results are also more consistent between plots. 
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Figure 2: Examples of the results of the clustering stage of the point-based algorithm for plots CLG4 and 

AbP1. Locations of local maxima used as seeds and the locations of trees (field mapped for CLG4, 
visually identified for AbP1) are also shown. Colours are randomly assigned to clusters. 
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Figure 3: Results of the point-based gap delineation algorithm for plots AbP1 (a.) and CLG4 (b.). 
 
 

Table 3: Confusion matrix results for a comparison of field mapped canopy gaps to point and CHM 
–based LiDAR delineations. The producer’s and user’s accuracies are those of the ‘gap’ class. 

 
Plot Method Overall 

accuracy (%) 
Producer’s 

accuracy (%) 
User’s accuracy 

(%) 
Kappa 

co-efficient 
AbP1 Point-based 87.8 74.9 82.7 0.70 

 CHM-based 85.2 79.7 73.1 0.66 
CLG4 Point-based 77.2 69.3 72.5 0.52 

 CHM-based 70.7 62.6 62.8 0.39 
GHT Point-based 72.8 61.4 70.9 0.43 

 CHM-based 71.6 47.6 76.8 0.39 
GLT Point-based 74.8 46.7 81.0 0.43 

 CHM-based 70.6 29.3 89.2 0.31 
Mean Point-based 78.2 63.1 76.8 0.52 

 CHM-based 74.5 54.8 75.5 0.44 
 

Table 4: Comparison of the total gap area identified within sub-plots by field mapping and LiDAR 
delineation using the point and CHM –based methods. 

 
Plot Method Field mapped 

gap area (m2) 
LiDAR derived 
gap area (m2) 

Error (%) 

AbP1 Point-based 750 679 -9.5 
 CHM-based  817 9.0 

CLG4 Point-based 1016 972 -4.3 
 CHM-based  997 -1.9 

GHT Point-based 1080 935 -13.5 
 CHM-based  671 -37.9 

GLT Point-based 957 552 -42.3 
 CHM-based  316 -66.9 

RMSE Point-based   22.8 
 CHM-based   38.7  

a. b. 
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6. Discussion and Conclusions 
 
Both methods provide accurate gap delineations when applied to LiDAR data collected with a 
high point density. However, when lower point density data is used, the method based on an 
interpolated CHM can result in significant errors, probably due to the low number of returns 
located in canopy gaps and resulting interpolation errors. In these circumstances, the accuracy 
of gap retrieval can be improved by the use of methods based on the LiDAR point cloud, 
although the point-based method does require the careful selection of appropriate parameters for 
each data set. These can be estimated from basic field data (or the examination of optical 
imagery) and from the along-track point spacing of the LiDAR data, as described in the 
methodology.  
 
It is not possible to compare the accuracy of the developed algorithm to those used in other 
studies of LiDAR gap delineation (Zhang 2007; Koukoulas and Blackburn 2004) as these 
studies did not attempt to assess the accuracy of resulting delineations. However, the results 
compare reasonably with those of Nuske et al. (2007) who used colour, texture and height 
information from aerial photographs to delineate gaps in Beech stands with a recall of 57-79% 
and a precision of 68-77% when compared to manual delineations. Whilst field and LiDAR 
delineations were felt to be generally comparable in this study, allowing the assessment of 
accuracy, the approach did have limitations. Errors in the GPS baselines used for the field 
survey led to error in registration of the field and LiDAR data for some plots. As only a limited 
number of points on the gap boundaries could be surveyed, the field boundaries are unavoidably 
generalised and some smaller gaps may have been missed altogether. These factors could 
account for a significant proportion of the remaining error in the delineations, suggesting ‘true’ 
accuracy may be higher than that reported.  
 
LiDAR data can allow the accurate delineation of canopy gaps in stands in the process of 
transformation to CCF systems, although the influence of scan angle on results is yet to be 
determined. The resulting gap distributions may be used to develop indices of spatial structure 
that allow the monitoring of such stands but further work is needed to assess the usefulness of 
such indices and to integrate the spatially explicit gap information into models of understorey 
light levels.  
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Abstract 
 
Accurate digital terrain models (DTM) are crucial for many applications in coastal management, 
such as simulation of flood risk scenarios. Airborne LIDAR sensors generate dense height 
information of large areas for the derivation of suitable DTM in an efficient manner. However, the 
accuracy and reliability of the LIDAR DTM points suffer if the laser beam interacts with vegetation. 
Several filter algorithms were developed, which usually apply geometric criteria to eliminate the 
vegetation points. However, in areas of very dense vegetation and rough terrain, where only few 
laser pulses are able to penetrate the canopy, such processing often fails resulting in an upward 
height shift of the derived DTM. In this paper additional features are proposed, which correspond to 
the reflectance characteristics of the backscattering objects, to support the filtering proccess. The 
introduced new algorithm uses intensity information and the distribution of multiple echoes for 
adaptive weight update in an iterative surface fitting procedure. The benefit of the integration of 
these new features in the filtering method is shown for several areas covered by different types of 
coastal shrubberies.  
 
Key words: LIDAR, vegetation, intensity, multiple echoes, filtering 
 
1. Introduction 

1.1 Motivation 

In the last few years airborne LIDAR arises to one of the most important techniques for the 
derivation of area-wide digital terrain models. The advantages of this contact free measurement 
method are especially noticeable in the coastal region of the German North Sea, where access for 
terrestrial surveying is limited due to dense vegetation on the islands and frequently flooded terrain 
in the Wadden Sea. The LIDAR DTM quality depends basically on the sensor and flight parameters 
(e.g., scanner device and flying altitude), the applied post-processing methods (e.g., strip adjustment 
and georeferencing), and the scene topography. In case of moderate surface roughness in 
non-vegetated areas LIDAR DTM usually provide a standard deviation in height of less than 15cm. 
However, if the laser beam interacts with vegetation, the accuracy and reliability of the LIDAR 
DTM points suffer depending on the type of plants and season. Especially, the plant height and 
density influence the penetration rate of the laser pulses. Low vegetation often can not be separated 
from the ground beneath, resulting in reflection composed of mixed signals, whose center of gravity 
is located above the terrain surface. Consequently, the measured time of flight and the resulting 
distance to the sensor are too short, leading to a bias (height shift). Tall vegetation may cause 
multiple echoes at various height levels, which can be resolved if the provided range resolution of 
the scanner system is high enough. Many filtering techniques developed for DTM generation rely on 
the assumption that the last echo represents the ground. However, even these echoes are frequently 
caused entirely by backscatter from low vegetation layers resulting again in a shorter distance 
measurement. Several filter algorithms were developed, which use geometric criteria to eliminate the 
vegetation points from the data set (see section 1.2 for more details). The most important 
requirement of these filters is the existence of a suitable number of ground points. However, the 
study area located at the coast of the German part of the North Sea is covered by various dense 
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vegetation types, which prevent the penetration of the laser pulses in large areas. Another problem 
arises from the aspect that the vegetation often occurs in small valleys. Therefore, vegetation points 
are sometimes lower than the surrounding ground on the ridges. These facts lead to unsatisfactory 
results of common filter algorithms. In this paper a new method is introduced, which integrates the 
reflectance characteristics of the backscattering objects, in order to support the filtering process. 
 
1.2 State of Research 

Various filter algorithms for eliminating non-ground points in LIDAR data sets were developed 
considering different landscape types. Sithole (2005) provides a comprehensive overview about the 
existing methods, their classification depending on diverse criteria, a description of the ISPRS filter 
test (see also Sithole and Vosselman (2004)), and an approach of a new filter technique. Sithole 
distinguished the filter algorithms regarding data structure, neighbourhood, measure of discontinuity, 
single step vs. iterative, basic filter concepts, and external information. Four main groups were 
defined according to the following basic filter concepts: 
 

• Slope based (e.g., Vosselmann, 2000) 
• Block minimum (e.g., Wack and Wimmer, 2002) 
• Surface based (e.g., Kraus and Pfeifer, 1998) 
• Clustering/Segmentation (e.g., Brovelli, 2002) 

 

The use of multiple echoes and reflectance information was another criterion. However, among all 
contributors of the ISPRS test only the algorithm of Brovelli (2002) considered the difference 
between the first and last echoes in the labelling process. The stored intensity values given for every 
LIDAR point were not yet integrated in any of the analysed filtering methods. However, several 
approaches for classification of objects from the LIDAR point clouds exploited this feature. For 
example, Moffiet et al. (2005) investigated the capabilities of the different returns (ground and 
vegetation, first, last, and single pulse) as well as the related intensity to classify diverse tree types. 
Tóvári and Vögtle (2004) used the intensity values among other features, in order to discriminate 
buildings, vegetation, and terrain.  
 
A sound physical model of the complex interaction between the laser beam and distributed scatterers 
located inside the beam cone is a prerequisite for interpretation and analysis of full-waveform 
LIDAR data provided by some advanced sensor devices. Based on the radar equation Jelalian (1992) 
described the fundamental relations between the emitter, the reflecting object and the receiver 
applied to the lidar technique. Sensor and target dependent parameters are separated and an object 
dependent cross section is defined. Additionally, Wagner et al. (2006) pointed out the dependencies 
between the spatial variations of the cross section and the amplitude as well as the width of the 
reflected echoes. In the next step these theoretical considerations should result in practical 
applications of the intensity and echo width in classification and filtering algorithms. 
 
The approach described in this paper is mainly based on robust filtering proposed by Kraus and 
Pfeifer (1998). This iterative algorithm uses linear prediction as interpolation method for the initial 
surface modelling. The residuals of the LIDAR points with respect to the surface of the previous 
iteration determine the weights for the next adjustment iteration using a special transfer function 
(Equation 1). Low weights are assigned to points lying above the fitted surface (probably vegetation), 
while points located beneath the surface (probably ground) are given a high weight. The algorithm 
stops, if the changes of the unknowns are below a predefined threshold or the maximum number of 
iterations is reached. Finally, a threshold with regard to the residuals is defined, in order to classify 
the LIDAR points. 
 
 
          
 (1) 
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where p(ri) = weight of point i   ri = residual of point i 
 a,b = definition of steepness  g = shift in the direction of ri 
 
 

2. The new filtering algorithm 

2.1 Initial Considerations 

This part of our research project was focused on the analysis of the influence of different coastal 
vegetation types on the accuracy and reliability of airborne LIDAR data. Initially, the height shift 
caused by the vegetation was investigated based on several control areas. Additionally, the 
relationship between different object as well as data driven features (vegetation height and density or 
standard deviation in height) and the accuracy of the LIDAR data in vegetated areas was analysed 
(Göpfert and Heipke, 2006). Subsequently, the most meaningful features (e.g., intensity values) were 
used, in order to perform a supervised classification of the LIDAR data into predefined accuracy 
intervals. However, the features have the drawback that the accuracy intervals do not correspond to 
distinct and easily separable clusters in feature space, which is required for classification methods 
that partition the feature space into crisp regions assigned to the different classes. Considering a 
single vegetation type the height shift exhibits a rather continuous characteristic. Thus, in a new 
approach (Goepfert and Soergel, 2007) this issue was tackled by modelling the height shift with 
respect to the features using continuous functions. This function fitting process is realised in areas, 
where control measurements are available. Subsequently, the adjusted functions of the different 
features were used to estimate the height shift for LIDAR points within other regions of similar 
vegetation. Figure 1 visualises two examples of the modelled dependencies between the intensity 
values and the height shift for training areas of different size in the leaf-off period. 
 

(a)      (b) 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Dependency between intensity values and height shifts for multiple and single echoes of two areas 

with different size in leaf-off period: a) 297 single echoes, b) 1183 single echoes 
(Riegl-Scanner LMS-Q560) 

 
However, the second method still has several drawbacks. On the one side multiple extensive control 
measurements are required as training areas in order to fit robust functions and guarantee the 
transferability to other regions. On the other side the larger (and thus more inhomogeneous) the 
training areas, the larger are the residuals of function fitting (see Figure 1). Due to the rise in the 
inhomogeneity of the vegetation height and density distribution, the significance of the intensity 
values suffers. Figure 2 illustrates this relationship: if the vegetation heights differ significantly in 
the area of interest, similar cross sections (and thus intensity values) can result for echoes in various 
heights above the ground. Therefore, the applicability of the intensity values depends on the size of 
the considered neighbourhood. Thus, the training areas of the second approach have to be small 
enough with respect to the homogeneity of the vegetation and large enough regarding robust 
function fitting. Furthermore, the fact that higher vegetation often occurs in valleys and therefore 
similar cross sections, which are related to different height shifts, are located in the same absolute 
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height makes the situation even more complicated in larger training areas of considerable ground and 
vegetation variations (Figure 2). 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: The correlation between the intensity values (corresponding to the reflecting cross section) and 
height shifts strongly depends on the homogeneity of the vegetation height and density distribution in the 

area of interest. 
 
Additionally, other statements about the intensity distribution can be made by analysing Figure 1, 
which are important in designing a new filtering algorithm: 

1. The higher the single echo is located in the vegetation, the smaller is its intensity value. 
2. Single echoes exist with intensity values as well as height shifts similar to first reflections. 
3. Due to a loss of energy caused by preceding reflections, which are above the detection 

threshold, the mean intensity of true last echoes is smaller than the same value of single 
undisturbed ground echoes. 

4. The intensity of last echoes varies strongly depending on the object cross sections and the 
amount of pulse energy of the previous echoes. Because these influencing variables are 
difficult to separate, the intensity values of last echoes are less useful. 

 
Besides the results of the data analysis theoretical considerations support the use of intensity in the 
filtering process. The intensity values given with the data might be derived from the measurements 
in different manners by the providers. However, in any case they represent a function of the signal 
amplitude, which depends on the spatial variation of the cross section (see Wagner et al., 2006). 
Reflectivity, directionality of the scattering, and the effective area of the reflecting surface of an 
object are combined in the concept of the cross section. This cross section is defined to model 
properties of individual point targets. In order to address distributed targets, a so-called differential 
cross section is more appropriate. Therefore, the amplitude of the echoes as well as the intensity 
values of the LIDAR points are related to the characteristics of parts of a complex object, such as 
plant structure, and consequently to the vegetation density. In the basic case of normal incidence 
with uniform intensity, flat bare ground yields a homogeneous cross section (coinciding with the 
circular footprint) as well as a narrow pulse width and high amplitude, whereas for a signal 
consisting of terrain and low vegetation contributions the pulse width is expanded and the amplitude 
is attenuated. Considering coastal shrubberies in the leaf-off period, the higher the echo in the 
vegetation, the thinner are the branches, which contribute to the cross section. Therefore, the 
amplitude as well as the intensity values also decrease theoretically for elevated LIDAR points. 
 
2.2 The New Approach 

While in the previous methods the intensity directly participates in the calculation of the height shift 
as one of the features, in the new algorithm it is used for the determination of the weights during an 
iterative robust surface fitting§§. Several considerations support this indirect integration of the 
intensity in the process. For instance, if the estimation of the height shift is dominated by the feature 
intensity in the second approach, the resulting surface can strongly diverge from the related LIDAR 
heights. In order to avoid this effect, the LIDAR heights are the only direct feature (observations) in 
                                                  
§§ The basic concept of robust filtering can be found in Kraus and Pfeifer (1998). 
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the new algorithm, while the intensity values take part in the determination of the weights. Another 
reason is related to the theory of the adjustment process. Originally, the weights are calculated using 
the a priori standard deviation of the associated observations, i.e., the heights of the LIDAR points. 
The broader the echo width and the lower the separability of the amplitude as well as the intensity 
from noise, the more uncertain is the determination of the exact position of the echo. Therefore, a 
lower intensity value indicates a larger standard deviation and subsequently a smaller weight. 
The new algorithm performs an iterative surface fitting in a local neighbourhood centred in the 
currently considered single or last echo. The method starts with an initial estimate of a local first or 
second order surface (observation equations in Equation 2) using equally weighted single and last 
echoes of one flight strip in a moving window (yellow circle in Figure 4a). 
 
 iiii zyxafr −= ),,ˆ(       (2) 
 
where  ri = residual of point i   xi,yi = coordinates of point i 
 â = vector of the unknowns   zi = observation of point i 
 (parameters of the surface) 
  
The resulting residuals are analysed in order to update the weights of the observations iteratively. 
The weights consist of two parts. Equation 1 directly transfers the residuals into the first component 
of the weight p(ri), assuming that points below the surface belong to ground and points above the 
surface to vegetation. The second part p(Ii) is calculated by analysing the intensity for single echoes 
and the echo distribution for last echoes. For this purpose two linear transfer functions are 
determined: 
1. If at least three first echoes are available in the neighbourhood, a weight of 0.2 is assigned to 

their mean intensity defining one point of the intensity transfer function (referring to statement 
2 in section 2.1). Otherwise, a weight of 0.4 is given to the mean intensity of those single echoes 
with the largest negative residuals (probably vegetation – statement 1). These empirical values 
take into account that with a higher probability the first echoes belong to vegetation. The other 
point of the transfer function is determined by the mean intensity of the single echoes with the 
largest positive residuals (probably ground – statement 1). These points receive a weight of 1. 
Following statement 3 only the intensity values of the single echoes are considered in this part of 
the algorithm. The linear intensity transfer function (Figure 3), which is bound to weights 
between 0 and 1, is updated iteratively depending on the residuals. 

2. As pointed out in statement 4 of section 2.1 the intensity of last echoes is less useful. Therefore, 
their second weight component in the adjustment process is defined by the height difference to 
their related first echoes. This concept is based on the assumption that the probability for a last 
echo to stem from terrain increases with this difference. The echo distribution transfer 
function is determined by the echoes with the largest difference (weight 1) in the considered 
window and a notional difference of 0m (weight 0.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Determination of partial weights by using the intensity information in combination with the 

residuals of the previous surface fitting 
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)()( iii Iprpp ⋅=
 
         (3) 
 
where pi = total weight of point i 
 p(ri) = weight component of point i based on the residual 
 p(Ii) = weight component of point i based on the intensity or echo distribution 
 
In order to calculate the overall weights of the LIDAR echoes, the values defined directly by the 
residuals and the weights resulting from the analysis of the intensity and echo distribution are 
multiplied (Equation 3). The weights are updated according to the mentioned rules and the process 
stops after a predefined maximum number of iterations. Finally, the residual of the central LIDAR 
point is stored and the mask continues to the next last or single echo in the file. After processing all 
LIDAR points in the file the filtering is performed by comparing the residuals with a defined 
threshold. 
 
Due to the dependence of the intensity values on features of the laser scanning devices, such as 
temporal pulse stability and the applied intensity measurement method, their applicability is checked 
for every iteration and window position according to the statement 1 in chapter 2.1. If the single 
echoes below the fitted surface have smaller intensity values than the points above, this constraint of 
the model is met and the intensity is used in the filtering process. Otherwise, only the first part of the 
weight, which is directly derived from the residuals, is used. The information “Intensity used” in the 
experiments (see below) refers to this test. 
 
3. Results 
The experiments are based on three flight missions and several training areas, which were surveyed 
by using tachymetry and GPS techniques. The data for the first mission were collected in March 
2004 during a measurement campaign of the company TopScan with an ALTM 2050 scanner from 
Optech covering the East Frisian island Juist. The flying altitude was 1000m and the system 
provided an average point density of 2 points/m2. Most of the investigations were carried out using 
data collected by the company Milan-Flug GmbH covering the region of the East Frisian Island 
“Langeoog” in leaf-off periods (April 2005 and 2006). During these campaigns a LMS-Q560 sensor 
(Riegl company) was used. From 600 m altitude the system provided an average point density of 2.9 
points/m2. The training areas consist of several populations of coastal shrubberies, such as Japanese 
rose, common sea buckthorn, and creeping willow. A detailed description of the reference data can 
be found in Göpfert and Heipke (2006). 
 
 
The experiments in this section focus on the verification of the benefit, which is obtained by 
integrating intensity and multiple echo information in the filtering process. Two initial tests quantify 
the influence of the neighbourhood size (Table 1) and the number of iterations (Table 2) on the 
surface modelling accuracy with respect to the control measurements based on the training area 
“Willow 2” in strip 1 of the flight mission “Langeoog 2005”. Additionally, they determine suitable 
values of these two parameters for the subsequent investigations. The parameters a and b of the 
function for robust filtering (Equation 1) are set to 1.5 and 2, while 0 is assigned to g for all the 
following tests. 
 
In the first experiment the surface fitting is performed in 3 iterations (according to the findings in 
Table 2) using a plane concerning neighbourhoods of different area (Table 1). If the size of the 
moving window is enlarged, the mean value and the standard deviation of the differences between 
the true (control measurements) and the fitted surface increase. With larger windows the adjusted 
plane is not able to model the variations of the real surface with adequate accuracy. The radius is 
limited to 2.5m in the further analysis as a suitable compromise based on the following 
considerations. On one side the relatively large value is chosen, in order to preserve a minimum 
number of points for surface fitting as well as for the discrimination of vegetation and ground echoes 
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based on the residuals. This successful distinction is required for robust filtering as well as for the 
determination of the intensity transfer function. With respect to this separability of the echoes a 
suitable radius depends on the penetration rate of the laser beam in the current vegetation. Enough 
points, which conform to statement 1 in section 2.1 (test for the use of intensity), should exist in the 
mask for the applicability of intensity in the algorithm. The higher percentage of the “used intensity” 
in larger neighbourhoods (last column of Table 1) supports these considerations. On the other side a 
larger radius decreases the accuracy of the fitted surface and the quality of the intensity transfer 
function in areas with inhomogeneous vegetation (see also Figure 1 and 2). 
 

Table 1: Influence of the size of the defined neighbourhood on the mean and standard deviation of the 
differences between the true (control measurements) and the fitted surface, number of considered points, 
and the percentage of window positions with used intensity (control area “Willow 2” in strip1 of flight 

“Langeoog 2005”) 
 

Radius (m) Mean (cm) Std. Dev. (cm) Number of Points Intensity used (%) 
1,5 5,12 7,70 24 73,7 
2,0 5,33 7,98 42 77,7 
2,5 5,41 9,08 63 81,2 
3,0 5,68 10,85 92 84,5 
5,0 7,83 19,20 250 95,1 

 
Table 2 illustrates the influence of the number of iterations on the accuracy of the method. Obviously, 
the mean and the standard deviation of the differences between the true and the estimated residuals 
decrease continuously and a stable solution is achieved after a few iterations, which is an indicator 
for the applicability of the method. In the further analysis three iterations are used. 

 
Table 2: Influence of the number of iterations on the mean and standard deviation of the difference between 

the true (control measurements) and the estimated surface, (control area “Willow 2” in strip1 of flight 
“Langeoog 2005”) 

 
Iterations 

  
1 2 3 5 10 

Mean (cm) 7,021 5,479 5,413 5,408 5,408 
Std. Dev. (cm) 10,375 9,146 9,078 9,073 9,073 

 
The percentage of the LIDAR points, in whose vicinity the intensity values correspond to the 
residuals (see statement 1 in section 2.1), is above 90 % for most of the training areas, located in 
populations of different coastal shrubberies (Table 3). A lower percentage is observed for most of the 
areas of smaller point density. This result confirms the initial experiments related to moving 
windows of different size (Table 1). A potential explanation of this phenomenon takes the location of 
the training areas into account. The two test regions “Willow 2” and “Rose 2” are situated at the 
border of strip 2 of the campaign 2005. Due to the larger inclination of the laser beam compared to 
the nadir view the penetration rate and the variations of the cross sections are smaller. Therefore, the 
significance of the intensity may decrease at the border of the flight strip. The increasing standard 
deviations for the two test sites support this assumption. 
 
 
The applicability of the reflectance information is also limited to coastal shrubberies (Figure 4). 
While the points with the used intensity are sparsely and randomly distributed in the meadow and 
heath, this information is almost always integrated during the surface fitting procedure of points in 
the test side “Sea Buckthorn 2” (green dots in Figure 4a) and the region of shrubbery on the left 
border of the image (see the biotope mapping in Figure 4b). Due to the low vegetation heights and 
different backscattering cross sections of meadow and heath the significance of the intensity feature 
is poor. However, this underlines the usefulness of intensity values as one feature among others for 
classification purposes. 
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 (a)       (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: If the distribution of intensity values and the related residuals correspond to the theory in the area 
of interest (yellow circle in (a) – diameter: 5m), intensity is used for filtering (small white points), otherwise 
not (black points). The green points in (a) belong to control measurements for an entire population of Sea 

Buckthorn. Background: (a) orthophoto, (b) biotope mapping. 
 
Table 3 summarises the mean and the standard deviations of the differences between the true (control 
measurements) and the fitted surface for all test sites and flight campaigns using different methods. 
In comparison to the initial fitting, the robust filtering forces the surface to the lower LIDAR echoes 
with respect to the control measurements in every test region. The integration of the reflectance 
information always enhances this effect. Additionally, the standard deviation decreases for 67% of 
the test sites by using the intensity based weights. 
The discrepancies of the mean differences between the various test sites seem to a large extent to 
depend on their location in the flight strip. Due to suboptimal post processing by third parties the 
strips are somewhat tilted. This results in systematic offsets depending on the location within the 
flight strip. However, because of the small size of the test sites (average: 20m x 20m) this issue does 
not significantly influence the comparison of the methods discussed here. If the variation of the 
ground increases, the use of the second order surface slightly improves the results. However, the 
trend is similar to the application of the plane. 
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Table 3: Information of the different control areas: overall number of LIDAR points, percentage of window 
positions with used intensity, number of points in the neighbourhood (r=2.5m), mean and standard 

deviation of the difference between the true (control measurements) and the fitted surface for the initial 
fitting, robust filtering, and robust filtering with intensity information 

 
Plane (cm) 

Initial Robust Robust + Int. Test Side 

Number 
of 

LIDAR 
Points 

Intensity 
used 
(%) 

Number 
of Points 

in Vicinity 
(r=2.5m) Mean Dev. Mean Dev. Mean Dev. 

Juist 2004 (Scanner: ALTM 2050; Altitude: 1000m) 
Rose/Willow 4046 89,7 48 53,9 58,2 50,8 56,6 43,7 52,4 

Langeoog 2005 (LMS-Q560; 600m) 
Rose/Sea Buckthorn (Strip1) 3015 99,8 63 15,0 17,4 12,7 16,6 11,0 16,4 
Rose/Willow (Strip1) 497 99,4 57 20,6 7,4 19,6 7,2 18,1 7,1 
Sea Buckthorn 1 (Strip1) 820 99,1 67 15,0 12,5 14,3 12,3 12,7 11,9 
Sea Buckthorn 2 (Strip1) 574 91,6 60 16,5 11,1 15,7 10,5 13,9 9,3 
Rose 1 (Strip1) 736 96,5 57 7,8 8,3 7,3 8,2 6,4 8,2 
Rose 2 (Strip1) 450 91,8 62 6,5 4,2 6,3 4,1 5,5 4,2 
Rose 2 (Strip2) 265 89,8 37 -2,4 5,4 -2,5 5,4 -3,7 5,6 
Willow 1 (Strip1) 419 93,1 68 12,6 6,0 12,3 6,0 10,8 5,9 
Willow 2 (Strip1) 453 81,2 63 7,0 10,4 6,4 9,8 5,4 9,1 
Willow 2 (Strip2) 260 77,3 37 4,8 12,2 4,1 11,9 3,2 12,6 
Beach Grass (Strip1) 705 87,2 59 13,8 20,6 13,7 20,6 12,8 20,7 

Langeoog 2006 (LMS-Q560; 600m) 
Sea Buckthorn 1 (Strip11) 522 94,8 42 2,1 11,1 0,9 11,0 -1,3 10,7 
Sea Buckthorn 2 (Strip11) 302 74,2 31 -1,9 10,5 -2,9 9,7 -5,5 8,0 
Sea Buckthorn 2 (Strip12) 199 80,9 21 -1,4 10,2 -2,3 9,5 -4,8 9,0 
 
 

4. Conclusions 

A new filtering algorithm was introduced, which transfers the intensity and echo distribution of 
LIDAR points into weights for a locally adaptive iterative surface fitting approach. The method was 
investigated using different test sites covered by coastal shrubberies during leaf-off periods. The 
results show that the integration of the reflectance information slightly forces the fitted surface to the 
lowest LIDAR echoes regarding the control measurements in every test region. Furthermore, the 
new algorithm decreases the standard deviation of the differences between the true and estimated 
residuals with respect to robust filtering in many test areas. 
 
However, the points for the intensity transfer function are determined only empirically. In future 
research the separability of the intensity values of the lowest and the highest echoes with regard to 
the previous fitted surface should be analysed using statistical tests. The significance of this feature 
can be further used, in order to decide about the integration of the reflectance information and 
subsequently to define the transfer function. 
 
In future work additional features provided by modern full waveform sensors, shall be exploited. For 
instance, the pulse width can be a quality criterion by itself. It describes the uncertainty of the target 
surface and the range measurement for the related echo and can therefore be easily integrated in the 
determination of the weights of the filtering process. 
 
The promising findings in this paper encourage us to investigate the transferability of the method to 
other vegetation types. For instance, the assumption that the higher the LIDAR echoes in the 
vegetation the smaller the cross sections and the intensity values, could also be true for deciduous 
trees during the leaf-off period, because, among others, the cross section is also influenced by the 
diameter of the reflecting branches. 
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Abstract 
 
In fire risk, correct description of topographic and fuel properties is critical to improve fire 
danger assessment and fire behaviour modelling. Many rural areas are now scanned using 
LIDAR sensors. In some of these areas the information registered by the sensor includes not 
only the geometric characteristics of the Earth’s surface, given by the coordinates (x,y,z) of the 
LiDAR point cloud, but also the reflectance of the objects located on this surface, which is 
given by the backscattered intensity of echo reflection. The main objectives of this paper are to 
assess the performance of three land cover supervised classification methods of LiDAR data: 
Maximum Likelihood (ML), simple pixel hierarchical and object-oriented classification. In this 
way, three “bands” were computed from LiDAR data: the normalized height (nH), the height 
difference between the first and last echo (Hdiff) and the LiDAR intensity (I), which is the only 
spectral band of the feature space. Using data from training sites and the transformed divergence 
index, the separability of roads, buildings, high vegetation and low vegetation classes was 
evaluated. The comparison among these three classification methods was done using 
orthoimagery as reference data. The obtained results indicate that an evident superiority doesn't 
exist among the three methods.  
 
Keywords: LiDAR, Intensity, Fire risk, Land cover, Supervised classification, Rural areas 
 
1. Introduction  
 
1.1 Motivation 
 
Forest fires are one of the major challenges for natural resources management in many places in 
the world. Spain and Galicia are not an exception, being this autonomous community one of the 
most punished regions in Europe. Forest risk variables could be grouped into tree levels: 
topographic variables, fuel variables and variables related to human activity. Correct description 
of topographic and fuel properties is critical to improve fire danger assessment and fire 
behaviour modelling, since they guide both fire ignition and fire propagation, and fuel is the 
only vertex of “fire triangle” (fuel, oxygen and heat) that human action can modify directly. 
Moreover, in the proximity of buildings and infrastructures, there are more chances that fire was 
caused by higher human presence. The fact that most fires are caused by humans suggests that 
increased accessibility to forests will increase the possibilities of fire. Implicitly, actions around 
elements of special concern for humans are given priority, mainly because fire in the proximity 
of those places represents a risk to life. Because the safety of people and houses is a priority 
during fire extinction, prevention models should also consider this factor as a priority. 
 
In this sense, correct classification of roads, buildings, high vegetation and low vegetation is 
very important in the later extraction of those variables. Airborne Laser Scanning (ALS), also 
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known as LiDAR (Light Detection And Ranging) has shown a great potential in fast and 
accurate geographic data acquisition below canopy closure. This active remote sensing 
technique records not only the geometric characteristics of the Earth’s surface, but also the 
reflectance of the objects located on this surface. The backscattered intensity of reflection (also 
referred as intensity) is basically a function of the laser wavelength, which is typically in the 
near infrared (NIR) spectra region (0.7 - 1.5 µm for topographic applications), the range from 
sensor to the object and the composition and orientation of the object or surface. Because 
different materials have different reflectances, the intensity can be used for classifying land 
cover.  
 
Nowadays, because many rural areas are scanned using Lidar sensors is indispensable to know 
if it is possible to use this data alone to extract the forest risk variables. Thus, the main 
objectives of this paper are to assess the performance of three supervised classification methods 
of LiDAR intensity data: maximum likelihood classification, simple hierarchical pixel 
classification and object-oriented classification. In this context, three bands were computed 
from LiDAR data: the normalized height (nH) which contain the information about the height of 
the objects; the height difference between the first and last echo (Hdiff); and the LiDAR 
intensity which is a spectral band in the NIR region. Then, using data from training sites and the 
transformed divergence index, the separability of the input feature space was evaluated. Finally, 
the object identification was made using the three classification methods. The comparison 
among these three classification methods was done using orthoimagery as reference data. 
 
1.2 Related work 
 
In spite of the great majority of the LiDAR systems have the capacity to record the received 
signal intensity, the great part of the published work has been done in the filtering, classification 
and segmentation of the 3D point cloud (x,y,z) – the primary result of LiDAR system – based on 
the geometric characteristics of this cloud. What is of our knowledge, a few works have been 
using the variable intensity in the processing of the point cloud.  
 
Song et al. (2002) evaluated the possibility of using LiDAR intensity data for land-cover 
classification. The LiDAR point intensity has converted to a grid by using three different 
interpolation techniques. Using a transformed divergence method the separability of intensity 
data for four classes (asphalt roads, grass, house roofs and trees) has assessed. They conclude 
that LiDAR intensity can be used for land-cover classification and state if more features, such as 
DSM, and more processing, such as intensity normalization, are added better results could be 
reached and more classes identified. 
 
In Matikainen et al. (2003) the feasibility of using LiDAR data (intensity and geometry of 
LiDAR point cloud) for automatic building detection in the context of map updating is 
investigated. Using an object-oriented classification method the feature space formed by an 
nDSM and by an intensity image is classified in two classes: buildings and not-buildings. A 
similar approach has conducted by Brennan et al. (2006), but considering a larger number of 
information classes and segmentation levels. 
 
Charaniya et al. (2004) used a supervised parametric classification technique to classify roads, 
roofs, trees and grass. The feature space was formed by using LiDAR derived data (nDSM, 
intensity, height variation, difference of first and last echo) and the luminance of a grey scale 
aerial photo. Data fusion was made by using a classification algorithm based on the Gaussian 
mixture model and Expectation Maximisation. The obtained results allowed them to conclude 
that: i) the normalized height and height variation are important geometric features for the 
classification procedure; ii) the intensity and luminance (i.e. non-geometric features) are useful 
for separating the grass (low vegetation) from roads; iii) using the intensity as the only 
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non-geometric feature the overall classification was slightly worse, but the tree classification 
was improved. A similar work was conducted by Bartels et al. (2006) but adding also an 8-bit 
NIR aerial photo to the feature space and incorporating additional knowledge and considering 
contextual relationships among classes. 
 
Finally, in Höfle et al. (2007) the return amplitude of each eco (that is the intensity) is corrected 
in order to obtain a value that is proportional or equal to the surface reflectance. The intensity 
variations and systematic errors due to spherical loss, topographic and atmospheric effects are 
corrected by two independent methods: data and model-driven approaches. They conclude that 
both methods can achieve a significant reduction of local intensity variation within a regular 
neighbour to a 1/3.5 of the original variation and offsets between flight strips to 1/10. They 
pointed out that the need for normalized intensity values area justified for large data sets 
containing strong elevation differences. As the height variations in this study are very small we 
used the original uncorrected intensity values. 
 
2. Methodology  
 
2.1 Data and study area 
 
The study area (Figure 1) is located in the north of Galiza (Spain) and it is composed basically 
by a small residential zone and a forest zone, whose dominant species is Eucalyptus Globulus. 
In geomorphologic terms, in spite of the altitudes varying between 230 and 370m, the relief of 
the zone is quite accentuated.  
 

 
 

Figure 1: The location and shaded relief of the test area 
 
The LiDAR data were acquired in November 2004 with Optech’s ALTM 2033 (www.optech.ca) 
from a flight altitude of 1500m (ASL).The LiDAR sensor works with a laser wavelength of 
1064 nm and the beam divergence was set to 0.3 mrad. The pulsing frequency was 33 kHz, the 
scan frequency 50 Hz, and the scan angle ±10 degrees. The first and last return pulses were 
registered. The complete study area was flown in 18 strips and each strip was flown three times, 
which gave an average measuring density of about 4 points per square meter. 
 
2.2 Features, classes and separability 
 
In order to run image classification methods in the LiDAR data, these (intensity and the original 
and the filtered point cloud) have to be converted to a grid format. Take into account the pulse 
density (4pts/m2) the cell size chosen was 0.5m. In this way each one of the features used in the 
classification procedure was derived from the original and filtered LiDAR data by using the 
kriging interpolation method with linear variogram. The parameters chosen for the interpolation 
of each grid are given in table 1. However as it was indicated in (Gonçalves, 2006) for these 
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sampling densities and for this cell size the influence of the interpolation method is not 
important for the subsequent classification procedure. The kriging interpolator was chosen by 
the fact that it can produce a smooth topographic surface and in the case of intensity values it 
can remove some of its noise more effectively. 
 
2.2.1 Features 
 
For image classification purposes we identify three features to be used (see figure 2): 

• Normalized height (nH). This feature is obtained by subtracting the morphological 
filtered DTM from the original DSM. The DSM was interpolated from the first LiDAR 
return. The morphological adaptive filter used to obtain bare earth points from the 
LiDAR point cloud is described in (Gonçalves-Seco et al. 2007). The DTM was 
interpolated from these bare earth points corresponding to the last return LIDAR. This 
feature is created to exclude the influence of topography from the classification process 
and is useful to differentiate the high objects (high vegetation and buildings) from the 
low objects (low vegetation and roads). 

• Height difference between the first and last return (Hdiff). Depending on the laser and 
object characteristics the LIDAR shot can penetrate through the objects and 
backscattered to the sensor at different height levels of the objects. In the case of first 
and last pulse acquisition, some of the shot energy can be returned to the sensor from the 
top of the penetrable objects while another part of its energy continues her path until 
reaching the terrain where is backscattered to the sensor. In this study this feature is used 
to identify the high vegetation areas, and it acts as a measure of height texture. 

• Intensity (I): Since the laser unit of the LiDAR system uses light from the near infrared 
portion of the spectrum we use this feature to introduce spectral knowledge in the 
classification procedure. This is the only non-geometric information provided by the 
sensor and the intensity image is interpolated from the first LiDAR return. 

 
Table 1: Kriging interpolation parameters:  

 

Interpolated Grid Error 
variance 

Scale, Length, Anisotropy 
ratio, Anisotropy angle  

DSM (first and last echo) 8.76 2,1,2,125.7 
DIM 1.5 1,0,2,125.7 
DTM 8.76 2,1,2,125.7 

 
2.2.2 Classes 
 
In the context of fires in rural areas we can devise four information classes that they play a 
central role in the fire risk management: roads, buildings, high vegetation and low vegetation. In 
fact, beyond topographic variables estimated from DTM (for example the slope, the altitude and 
aspect which affects, respectively, the fire spread, the occurrence and fire behaviour and 
regulates temperature levels and relative humidity), in the proximity of roads and buildings, 
there are more chances that fire was caused by higher human presence. The fact that most fires 
are caused by humans suggests that increased accessibility to forests will increase the 
possibilities of fire. Implicitly, actions around elements of special concern for humans are given 
priority, mainly because fire in the proximity of those places represents a risk to life. Because 
the safety of people and houses is a priority during fire extinction, prevention models should 
also consider this factor as a priority (Gonçalves-Seco et al., 2007b). High and low vegetation 
can help to represent fuel properties at surface and crown level, such as dead and live fuel load, 
canopy cover and height, vertical and horizontal structure of the canopy, the quantity of biomass 
and fuel moisture content (Pyne et al., 1996). 
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2.2.3 Separability assessment 
 
In order to assess the signature separability in the feature space the transformed divergence 
method (TDI) was used. The TDI index between two classes i and j is derived from the 
likelihood ratio of any pair of classes and varies within in the interval [0,2] (Richards et al., 
2006):  
 
 8TDI 2 (1 )ijd

ij e−= × −       (1)  
where 

• { } { }1 1 1 1
r r

1 1T ( )( ) T ( )( )( )
2 2

t
ij i j j i i j i j i jd − − − −= − − + + − −C C C C C C m m m m  

• Ci , Cj, mi, and mj are the covariances and means for the classes i and j, respectively, 
• Tr is the trace function. 

 
The greater the value of TDI the greater is the signature separability based on this feature space 
and training data. In general a TDI value of 2.0 is considered to be indicator of perfect 
separability while a value of 0 indicates complete overlap between the signatures of the two 
classes. Values greater than 1.9 are considered good separability and values less than 1.7 are 
considered poor separability. 
 
2.3 Classification methods 
 
In general, image classification procedures can be categorized into supervised and unsupervised, 
depending on the presence of previous knowledge about the land cover types, and into 
parametric and nonparametric depending on the assumptions made about the multivariate 
normal distribution of the N-dimensional feature space. In the case of high resolution (HR) 
imagery data some authors (Brennan et al., 2006; Li et al., 2007) argue that is not practical to 
classify the image using traditional pixel-based classification methods, such as supervised 
parametric (e.g. maximum likelihood), because they have considerable difficulties to deal with 
the rich information content present in the HR 2-D data and they produce a characteristic and 
inconsistent salt-and-pepper classification. They purpose more advanced approaches such as 
object-oriented segmentation and classification techniques to overcome these problems. 
 
In the context of land cover classification of small footprint LiDAR data (i.e high resolution 
2½-D data) the maximum likelihood and object oriented methods are the more used. Because of 
this high spatial resolution of LiDAR data set we are interested to study also the performance of 
simple hierarchical classification when compared to the maximum likelihood and the more 
advanced object-oriented classifier. 
 
2.3.1 Maximum Likelihood 
 
The Maximum Likelihood Classifier (ML) is perhaps the most commonly used supervised 
parametric classifier because of its robustness and its easy availability in almost any image 
classification software package (Lu et al., 2007). Under the assumption of multivariate normal 
distribution of the classes examined a pixel x is classified by this method to belonging to the 
class wi if it minimizes the discriminate function gi(x) (that is, it has the maximum likelihood of 
correct assignment)  
 1( ) ( ) ( ) lnT

i i i i ig −= − − +x x m C x m C     (2) 
where mi and Ci are the mean vector and covariance matrix of the class under examination (wi) 
computed from the training data. 
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2.3.2 Simple hierarchical classification 
 
In this classification method we used binaries queries (or decisions) to place pixels into classes. 
Each query divides the pixels in a set of images into two classes based in an expression. Each 
new class can be divided into two more classes based on another expression. The algorithm used 
to build this classifier is given in figure 2 and has been implemented using MatLabTM language. 
Only three (par3,par4,par5) of the six classification parameters are computed from the intensity 
values of the training areas. The other three parameters are height thresholds and can be 
computed from the characteristic of LiDAR flight: par1 defines the minimum height of the high 
objects (buildings and trees); par2 defines the minimum height of penetrable objects; par6 
depends on LiDAR system and defines minimum height echo separation. 
 

 
Figure 2: Simple hierarchical classification algorithm.  

 
2.3.3 Object-oriented classification 
 
In object-oriented classification approaches image analysis is done in object space rather than 
pixel space and objects are used as the information carriers for further classification. Image 
segmentation is the main step that is used to convert an image into multiple objects. In 
eCognitionTM software object-oriented image analysis is performed into three steps: 
multiresolution segmentation, creation of general classes and classification rules. In the first step, 
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images segments are defined and calculated using a bottom-up region-merging segmentation. In 
his patented algorithm (version 4.02) the parameters that control image segmentation are: scale, 
color, smoothness and compactness. The scale parameter (Sc) is an abstract value to determine 
the maximum possible change of heterogeneity caused by fusing several objects. Color (C) is 
the most important criteria for creating meaningful objects and defines the contribution of 
spectral values to define homogeneity of each object. Smoothness describes the similarity 
between the image object borders and a perfect square. Compactness (Cl) describes the 
"closeness" of pixels clustered in an object by comparing it to a circle (Baatz et all, 2004). These 
image segments have to be calculated on several hierarchical levels in a “trial and error” process 
to result in final image segments to represent single objects of interest (Navulur, K., 2006). In 
the second step Class Hierarchy are build by creating and defining classes. In our case, we have 
used only one level for the multiresolution segmentation and the parameters used for this 
segmentation are given in table 2. The rules used for the class definition are the same that we 
have used for the decision tree of the simple hierarchical pixel classification method. 
 

Table 2: Image segmentation parameters.  
 

Layer weights nH = 10; I = 1; Hdiff = 1 
Scale and homogeneity criterion Sc=10; C=0.1; Cl=0.3; S = 0.7 

 
2.4 Classification accuracy assessment 
 
In order to assess the accuracy of the results obtained by the three classification methods a 
random sample of 770 points are generated and manually classified using an orthoimage of the 
test area. This sample is used to generate an error matrix for each classification method. From 
these error matrixes several measures are computed to describe the accuracy of land cover 
classification. As global measures we will use the overall accuracy (Pc) which gives the overall 
percentage of area correctly classified and the overall kappa statistic (k) which takes into 
account the whole confusion matrix including its off-diagonal elements. As local measures (i.e 
class accuracy) we will use the producer’s accuracy (PA) which gives the percentage of 
correctly classified pixels from the collected class samples, and the user’s accuracy (UA) which 
gives the percentage of pixels which were correctly assigned to one particular class.  
 
3. Results  
 
3.1 Separability of class signatures 
 
Table 3 shows the results obtained for the separability analysis of class signatures. The average 
separability is 1.96 which means that the four classes forming the feature space can, in principle, 
be correctly separated using the signatures computed from the training data. The minimum 
separability is between buildings and high vegetation. This means that the feature space is not 
enough to achieve a good separability between these two classes.  
 

Table 3: Separability measures using TDI. Class-1 = roads; Class-2 = buildings; Class-3 = high 
vegetation; Class-4 = low vegetation 

 
Name Class-1 Class-2 Class-3 
Class-2 2.000   
Class-3 2.000 1.764  
Class-4 2.000 2.000 2.000 
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3.2 Classification methods 
 
Figure 4 shows the training areas and the results of the three classification methods. Figure 4a 
(left) shows the training areas (in red) superimposed over the orthoimage that was used to 
classify manually the random sample. Note that the date of this orthoimage is previous to the 
date of LiDAR flight. Figure 4b, 4c and 4d shows, respectively the results obtained for the ML, 
simple hierarchical and object-oriented classifiers. For the simple hierarchical classifier the 
following values were used for the six parameters: 1.5,0.5,34,0,20,0. Although the three 
classifiers they produce correct and similar qualitative results, the object-oriented classifier 
gives visually better results in the labelling of the building and roads classes. 
 

 

 
 
Figure 4: Training areas and results of the classification methods. First row: training data (left) and results 

of ML classifier (right). Second row: results of the simple hierarchical (left) and object-oriented 
classifiers (right) 

 
3.3 Accuracy assessment 
 
The error matrix and some accuracy measures for the two classification methods are given in 
table 4. In this table the PA and UA accuracies also given for each class. The global measures 
such as Pc and k are also given. The global measures indicate that the object-oriented classifier 
is slightly better than the ML and simple hierarchical classifiers (better Pc and K values). 
However the PA for the building class is higher in ML classifier than in simple hierarchical and 
object-oriented classifiers. In any way, for the three classifiers, the user accuracy of the roads 
and building classes are not good as the user accuracy of high vegetation and low vegetation. 
 

Table 4. Error matrix and accuracy measures for the three classification methods. Legend: UA - user 
accuracy (%); PA - producer accuracy (%); Pc - overall accuracy; k – overall kappa statistic.  

 
 Maximum likelihood Simple hierarchical Object-oriented 
 1 2 3 4 UA 1 2 3 4 UA 1 2 3 4 UA 
1 20 1 00 55 26 22 6 5 50 27 18 2 0 15 51 
2 1 31 22 10 48 0 28 13 4 62 0 28 11 5 64 
3 0 0 414 9 98 0 0 421 10 98 0 0 424 11 97 
4 4 2 7 194 94 3 0 4 204 97 7 4 8 237 93 
PA 80 91 93 72  88 82 95 76  72 82 96 88  
 Pc = 85.6; K = 0.75 Pc = 87.7; K = 0.79 Pc = 91.8; K = 0.85 
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4. Conclusions and future work 
 
The obtained results indicate that it is possible to add to the traditional LiDAR point cloud 
classification (terrain and off-terrain points) a larger number of typical classes of these areas. 
The normalized height allowed the separation of the high objects from low. The LiDAR 
intensity allowed to unbundled the roads from the low object class and the height difference 
between the first and last echo allowed to isolate the objects that can be penetrated by the 
LiDAR shots (vegetation). 
 
The error matrix obtained for the classification methods shows that, in the context of the forest 
risk of rural areas, an evident superiority doesn't exist between the three methods. In these 
conditions, the method of simple hierarchical pixel classification can be used in bulky LiDAR 
point clouds for the extraction of the four classes pertinent for the subsequent generation of the 
fire risk variables. However some difficulties subsist in the separation of the high vegetation and 
building classes. The low user accuracy verified for the roads can be due to the fact that we have 
put in the same class the asphalted roads and non-asphalted roads. We could think that the 
consideration of one more class (non-asphalted roads or forest roads) will improve the results. 
However, the consideration of this class would also bring the additional problem of the 
separation between non-asphalted roads and low-vegetation class. 
 
The limitations of the three classifiers relates to misclassification of high vegetation and 
buildings, which are consistent with those of Brennan et al. (2006). Some others 
limitations/difficulties were found in the classification accuracy assessment. In fact, due to the 
high resolution of LiDAR data it is important that the resolution of the reference data will be 
much better than the LiDAR computed “images”. In case we use ortoimages as the reference 
data these images have to be true ortoimages, what are very difficult to achieve in forested 
environments. However, the use of stereoscopic images can be a solution to achieve a correct 
manual 3D-classification of the reference data.  
 
Finally, as future work, we can incorporate contextual knowledge into the classifiers to 
distinguish between buildings and high vegetation. In fact, we intended to use the shape and 
area parameters to identify isolated trees in a post classification step of the simple hierarchical 
pixel classifier.  
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Abstract  
 
Managing forest resources can be highly time and resource demanding and requires significant 
amount of data collection in the field plus the indispensable filtering necessary to provide the 
information. High performance LiDAR remote sensing technology has become an effective tool 
for use in applications on forest harvest planning .In the field of forestry, the LiDAR 
measurements of the forested areas can provide high quality data on three dimensional 
characterizations of digital terrain model (DTM). This study presents the accuracy evaluation of 
the LiDAR DTM data over forest planted field in order to use in forest harvest machinery 
assignment procedure, to finally delineate harvest units for spatial forest planning. 
 
 
1. Introduction  
 
Airborne light detection and ranging is emerging as a prominent tool to provide accurate digital 
terrain models (DTMs) of forest areas, since it can penetrate beneath the forest canopy. This 
technology is providing a new conception in the forest harvest planning for forest companies 
transform it in a robust source for the extraction of DTMs. 
 
High resolution of topographic data has the potential to differentiate one of the main 
morphological features of the landscape its elevation properties. For this study,1 m spatial 
resolution of DTM was derived from the last pulse LiDAR data obtained by filtering the 
vegetation points (Leaves, branches, stems, bark), (Slatton et al, 2007). The study was 
conducted in a property of a forest company located in the center valley in the BioBio region, 
Chile. The results suggest a suitable capability of LIDAR in the recognition and description of 
the surface ground elevation, giving the potential to generate digital terrain models. 
 
In previous studies, LiDAR data was used to evaluate the surface roughness as a useful 
approach to detect landslide areas (McKean and Roering, 2004), and to characterize and 
differentiate the landslide morphology and activity (Glenn et al, 2006), being a useful 
technology to be apply on the ground morphology description (James et al, 2006; Storesund and 
Minear, 2006). The present study analyses the capability of airborne LiDAR-derived data in the 
recognition of ground morphology to assign with accuracy the forest harvest machinery and 
allow delineate harvest units for spatial forest planning. 
 
2. Study area  
 
The study area is located in the Eastern of the coast mountain of BioBio region, Chile. This 
region concentrates most of the forest plantation in the country (52 %) (Figure 1, 2 and 3). 
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Figure 1: Location of study area. 
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Figure 2: Aerial photo and the three transect location. 
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Figure 3: LiDAR imagery and the three transect location. 

 
The LiDAR data was processed by using ArcGis v9.1 software package.  
 
LiDAR data specifications: The LiDAR and photographic data were acquired from a airplane 
using an ALTM 3100 OPTECH, and Digital camera, flying above ground level during dense 
forest adult plantations conditions in Summer 2005.  
 
GPS data specifications: The Geodesic GPS double frequency, code P, 18 channels, brand 
TRIMBLE, model 4000SSi, Everest technology, was utilized to generate the four vertices of the 
three elevation transects (See Fig. 2, Fig. 3 and table 1) to generate the three elevation profiles 
showed in following figures 5, 6 and 7. The topographic station that was used to take z variable 
(elevation axis) within each transect corresponds to LEICA model TC-303. 
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Morphology data acquisition: The elevation profile for each transect was generated by a 
topographic station along each of the three transects line, assembly them with GPS in the 
extreme transects points to link local data from topographic station, and world wide coordinate 
system (UTM). Thus, were generated a data sets that describe the elevation profile of each one 
of the three transect under analysis. The criteria used to take z variable using topographic station 
along the transect was every two meters, at least that the point has bad access, always measuring 
the forward movement distance along the line.  
 
3. Methods 
 
The three elevation profiles were generated by the use of topographic station along each 
transects line, assemble with GPS located in the extreme of the transect points. Thus, were 
generated a data sets that describe in suitable accuracy, the elevation profile of each one of the 
three transect under the study area using Geodesic cartographic base. 
 
The LiDAR onboard instrument over flu the study area before the forest was clear up. The 
LiDAR corresponding elevation profile from those three transects were generated assisted by 
ArgGis software using LiDAR image file using Geodesic cartographic base. 
 
The GPS - topographic station combination work to collect data after the forest was harvested 
(to reduce the ground measurements error) generate the reference ground data from the three 
transects. This elevation profile built from the three transects were taken from the field touching 
the mineral soil, scratching the trash and the branches when it was necessary (Fig. 2, Fig. 3 and 
Fig. 4). 
 

 
Figure 4: Scheme of data acquisition period from the study site. 
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4. Results 
 
The Figures 5, 6 and 7 show the elevation profiles of the three transects, from two sources, the 
reference one that come from geodesic GPS, and other come from LiDAR source. We 
appreciate the small difference between both sources which is quantified in tables 2, 3 and 4 
were it is showed the error distribution in the elevation z exe of the 3D system, where the 
maximum error distribution of z exe over the three transects is mostly concentrate between 0 to 
1 meter. The resume table 5 shows that the 92 % of the data for all distance of the three transects 
(Table 4) shows an error concentrate between 0 and 1 meter. The 6 % of error is concentrate 
between 1 and 2 meters and 2 % between 2 and 3 meters. 
 
The source of the error comes mostly from the upper and lowest topographic position, but we do 
not know the exactly reason of this error distribution.  
 
Were taking 280 sampling points from whole three transect, which are distributed as shows 
following table 1.  
 

Table 1: Sampling point distribution by transect. 
 

Transect number Sampling points 
1 80 
2 120 
3 80 

 
 
 

 
 

Figure 5: Elevation profile for the transect 1. 
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Table 2: Error distribution for transect 1. 
 

Error range (m) Error distribution  (%) 
0-1 93 
1-2 7 
2-3 0 

 
 

 
 

Figure 6: Elevation profile for the transect 2. 
 

 
 

Table 3: Error distribution for transect 2. 
Error range (m) Error distribution  (%) 

0-1 93 
1-2 5 
2-3 2 
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Figure 7: Elevation profile for the transect 3. 
 

 
Table 4: Error distribution for transect 3. 

 
Error range (m) Error distribution  (%) 

0-1 91 
1-2 6 
2-3 3 

 
 

Table 5: Total error distribution for the three transects. 
 

Error range (m) Error distribution  (%) 
0-1 92 
1-2 6 
2-3 2 

 
5. Discussion 
 
The results of simple statistical analyses indicate that the results were consistent and well taking. 
The GPS and topographic data sources are improved its quality because no forest was there at 
the ground measurement time. In this way we reduce the source of the errors from the ground 
measurements.   
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Others researchers work find that the effect of vegetation canopy covers which has different 
structure and several forest canopy levels are presented in the forest. In this case of our research, 
there was just one forest canopy cover planted at the same season, which has similar 
management and same plantation density without under canopy cover vegetation presented in 
there. 
 
6. Conclusions 
 
DTM LiDAR-derived data allow the recognition of ground morphology to assign with accuracy 
the forest harvest machinery allowing delineate harvest units for spatial forest planning. 
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Abstract 
 
The goal of this study was to use airborne LIDAR (Light Detection and Ranging) to evaluate 
percent canopy cover (PCC) and leaf area index (LAI) in loblolly pine forests of the 
southeastern United States, in order to address forest management and ecological concerns. 
More specific objectives were to: (1) Develop scanning LIDAR methods to estimate PCC and 
LAI over primarily coniferous forests; and (2) investigate whether a LIDAR and normalized 
difference vegetation index (NDVI) data fusion through linear regression improve estimates of 
these forest canopy characteristics. Scanning LIDAR data was used to derive local scale PCC 
estimates through use of the height bin method; then TreeVaW, a LIDAR software application, 
was used to locate individual trees to derive an estimate of plot-level PCC. A canopy height 
model (CHM) was used to determine tree heights per plot. QuickBird multispectral imagery was 
used to calculate NDVI. LIDAR- and NDVI-derived estimates of plot-level PCC and LAI were 
compared to field observations for 43 plots over 47 km2. Linear regression analysis resulted in 
LIDAR-only models explaining 84% and 78% of the variability associated with PCC and LAI, 
respectively; it is concluded that LIDAR alone can be used to estimate these canopy parameters.  
 
Keywords: LIDAR, leaf area index, percent canopy cover, forest inventory 
 
1. Introduction 
 
Leaf area index (LAI) and percent canopy cover (PCC) are important biophysical and 
ecophysical factors in addressing forest management issues such as fuel models and forest 
inventory, and ecological concerns including carbon sequestration and climate change. LAI is 
defined as one-sided leaf area per unit ground surface area (Chapin et al. 2002), while PCC is 
defined as the percent of a forest area occupied by the vertical projections of tree leaves (Avery 
and Burkhart 1994). LAI is especially important to ecological processes such as photosynthesis 
and net primary production (Coops et al. 2004), while PCC, also called canopy cover, is 
important in assessing canopy structure. PCC has grown in importance as a result of the needs 
to quantify the global woody biomass, quantify global carbon stocks and globally assess the 
condition of ecosystems (Hansen et al. 2002). Determining this information through remote 
sensing methods is an efficient and effective way to model such processes.  
 
Field, or in situ, measurements of LAI and canopy cover are necessary to validate remotely 
sensed values. Direct methods of estimating LAI include destructive sampling of the forest 
canopy, leaf litterfall collection and vertical point-quadrant sampling (Duranton et al. 2001). 
Indirect methods, less time-consuming than direct methods, range from employing a spherical 
densiometer, which is dependent on human intuition and level of experience (Englund et al. 
2000), to plant canopy analyzers such as the Li-COR LAI-2000, to hemispherical photography 
(Riaño et al. 2004). This study employs hemispherical photography analysis because it is a 
precise and less time-consuming data collection process; however, it has been shown to 
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underestimate field values of LAI (Mussche et al. 2001; Merilo et al. 2004; Jonckheere et al. 
2005). 
 
Previous studies have related multispectral imagery to forest canopy characteristics. Landsat 
ETM+ satellite data can be used to accurately predict LAI for coniferous forests by direct 
plot-level correlation and geostatistical analysis (Berterretche et al. 2005). Another study 
(Schlerf and Atzberger 2006) examined the use of hyperspectral remote sensing data to predict 
LAI, with an R2 value of 0.73 relative to ground measurements. The normalized difference 
vegetation index (NDVI) calculated from Landsat TM data has been used, either singly or in 
combination with other indices, to estimate LAI (Curran et al. 1992; Pocewicz et al. 2004) as 
can other vegetation indices (Baret and Guyot 1991). 
 
LIDAR remote sensing has become more widely used and accepted in ecological and forest 
inventory studies in recent years (Nelson et al. 1984; Means et al. 2000; Lefsky et al. 2002; 
Reutebuch et al. 2005). Small-footprint laser scanners have been successfully used to predict 
mean tree height, with one regression explaining 83% of the variability in ground-truth mean 
tree height (Naesset and Bjerknes 2001; Naesset 2004). Waveform LIDAR has been shown to 
predict 75% of the variability in LAI in Douglas-fir and western hemlock forests (Lefsky et al. 
1999). Airborne scanning LIDAR has also been shown to be accurate in estimating biophysical 
parameters of forest stands (Popescu et al. 2004), and to be an excellent predictor of 
hemispherical photography-estimated LAI and PCC (Riaño et al. 2004). Scanning LIDAR was 
also found to have a strong correlation with hemispherical photo-estimated LAI (Lovell et al. 
2003). Most recently, Morsdorf et al. (2006) used small-footprint airborne laser scanning data to 
predict fractional canopy cover and LAI, with R2 values of 0.73 and 0.69, respectively. 
 
Percent canopy cover can be found at the plot or stand level by examining tree locations and 
crown dimensions. Crown radius models have been used to accurately estimate non-overlapping 
canopy cover. Gill et al. (2000) used ordinary least-squares linear regression equations to 
calibrate canopy cover values derived from forest inventory data; their model had an R2 value of 
0.67. Roberts et al. (2005) estimated individual tree leaf area through linear regression between 
ground data and LIDAR-derived estimates of tree height and crown dimensions, finding that 
leaf area was consistently underestimated. A LIDAR-derived canopy height model (CHM) can 
be processed to accurately identify individual trees and their heights in forest or rangeland, as 
shown in studies, some using the local maximum focal filtering software program TreeVaW 
(Popescu et al. 2002; Popescu and Wynne 2004; Koch et al. 2006). 
 
This study attempts to relate scanning LIDAR data to in situ LAI and PCC values through 
simple linear regression with NDVI. LIDAR height bins, the products of a LIDAR processing 
technique that breaks the vertical forest structure into viewable “slices,” are utilized as an 
innovative method of calculating PCC and LAI (Popescu and Zhao 2008). Theoretically, the 
combination of LIDAR-estimated canopy characteristics such as height and PCC with 
vegetation indices will result in an accurate predictor of LAI and PCC. 
 
The goal of this study was to develop a use of LIDAR in evaluating percent canopy cover and 
leaf area index of primarily pine and mixed pine-hardwood forests typical of the southeastern 
United States. Specific objectives were to:  

(1) Develop scanning LIDAR methods to estimate PCC and LAI over primarily  
      pine forests in East Texas; and 
(2) use multiple linear regressions to predict PCC and LAI using LIDAR and NDVI. 
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2. Study Site and Data Collection 
 
2.1 Study Area 
 
The study area is located in the southern United States (30°42’N, 95°23’W), in East Texas. It 
includes a portion of the Sam Houston National Forest, characterized by deciduous and pine 
stands with an urban interface and an area of 47.45km2. The study area is composed of 
28.08km2 (59.17%) of pine forest (primarily loblolly pine, Pinus taeda), 10.84km2 (22.84%) of 
deciduous forest, and 8.54km2 (17.99%) of non-forested areas including urban areas, 
agricultural fields, etc. The average diameter at breast height (DBH) is 31cm, average tree 
height is 20m, average crown diameter is 5.9m and the average height to crown base is 11.8m. A 
mean elevation of 85m, with a minimum of 62m and a maximum of 105m, and gentle slopes 
characterize the topography of the study area. 
 
The ground reference data were collected between May 2004 to July 2004 by photographing 
canopy characteristics on 53 evenly distributed circular plots of which 35 covered 404.7m2 (0.1 
acre) and 18 covered 40.5m2 (0.01 acre). The 18 smaller plots were in areas of young pine 
plantations, with little variation of tree height or crown width. A hemispherical photograph of 
the forest canopy was taken from the center of each plot and each plot was mapped by recording 
GPS coordinates for the plot center. 
 
2.2 Hemispherical Photographs for Ground Reference Data 
 
A hemispherical photograph of the forest canopy was taken from the center of each plot at 1.5m 
above ground level (resolution of 3264×2448 pixels) using a horizontally-leveled Nikon 
CoolPix 8700 digital camera and a FC-E9 fisheye lens. Ten plot photographs contained sun 
glare and other non-uniformities due to various light conditions at the photograph cell and 
proximity of clearings to the plots, and were removed from the analysis. Of the remaining 43 
plots, 35 plots were in loblolly pine forest, 5 plots were in hardwood stands, and 4 plots were in 
mixed forest. Thus the results of this study will be most applicable to loblolly pine forest. The 
photographs were analyzed for plot-level PCC and LAI using HemiView Canopy Analysis 
Software (©Delta-T Devices Ltd., UK).  
 
LAI was estimated by HemiView algorithms to be half of the total leaf area per unit ground 
surface area, based on the ellipsoidal leaf angle distribution. The HemiView calculation of LAI 
(LAIobs) is based on Beer’s Law: 

 

( ) ( )( )obsLAIKeG ×−= θθ              (1) 
 
where G is gap fraction and K(θ) is the extinction coefficient at zenith angle θ (range computed 
for the canopy during processing). HemiView measures gap fraction values directly from the 
hemispherical photo, then finds the values for the extinction coefficient and LAI that best fit for 
an ellipsoidally distributed theoretical canopy, then applies those values in subsequent 
calculations. HemiView-calculated LAI is termed “effective LAI” as it does not account for 
non-random distribution of foliage, possibly underestimating actual LAI. 
 
In HemiView, PCC is defined as the vertically projected canopy area per unit ground area. It is 
calculated as follows assuming the canopy has an ellipsoidal leaf angle distribution: 

 
( )( )[ ] 1001 0, ×−= ×− obsLAIxK

obs ePCC                         (2) 
 
where K(x,0) is the extinction coefficient for a zenith angle of zero and x is the ellipsoidal leaf 
angle distribution parameter, defined as the ratio between the semihorizontal and semivertical 
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axes of an ideal ellipsoid. 
 
2.3 LIDAR Data 
 
LIDAR data for the study area was collected in March 2004, during the leaf-off season, from an 
average of 1000m above ground level by M7 Visual Intelligence of Houston, Texas. The LIDAR 
system (Leica ALS40 Airborne Laser Scanner. Atlanta, GA, USA) records first and last returns 
per laser pulse and has horizontal and vertical accuracies of 20-30cm and 15cm, respectively. 
The LIDAR system provided a 10° swath from nadir for a total scan angle of 20°, resulting in a 
point density of 2.6 points/m2 (distance between laser points is thus 0.62m). The average swath 
width was 350m, with 19 north-south flight lines and 28 east-west flight lines. LIDAR point 
elevations were interpolated to form a digital surface model with a spatial resolution of 0.5m, 
with only the highest laser hits per 0.5m x 0.5m cells being used in the interpolation to better 
characterize the top canopy surface using techniques described by Popescu and Wynne (2004). 
The CHM, a three-dimensional model of vegetation height with a resolution of 0.5m, was 
created by subtracting ground elevation from the digital surface model. The CHM was 
interpolated to a cell size of 2.5m prior to any calculations. 
 
Though the LIDAR data was collected during the leaf-off season, this was not expected to 
adversely impact the PCC and LAI estimates. The majority of the study area plots (34) were 
pine stands, thus retaining foliage during the leaf-off season. However, scanning LIDAR pulses 
would still be returned from large and small branches on hardwood and mixed stands during the 
leaf-off season; the pulses “lost” due to the lack of leaves would be negligible (Nelson 2006). 

 
2.4 NDVI Values from a QuickBird Image 
 
Multispectral, orthorectified QuickBird imagery (leaf-off, 2004; DigitalGlobe. Longmont, CO, 
USA) was available for the study area as well with a resolution of 2.5m. These data were used 
to calculate NDVI as defined by Baret and Guyot (1991): 

 

( )
( )RNIR

RNIRNDVI
+
−

=              (3) 

 
where NIR is the near-infrared reflectance value and R the red reflectance value for a given 
pixel. 
 
 
3. Methods 
 
3.1 Percent Canopy Cover Estimates from LIDAR Data 
 
Three distinct methods were employed to derive PCC from LIDAR data: two involving the use 
of height bins and one that determines tree locations from the CHM. Height bins are the 
products of an original LIDAR processing technique that breaks the vertical forest structure into 
viewable “slices;” this technique is an emerging method of using LIDAR data in forest 
inventory (Popescu and Zhao 2008). Height bins are created by subdividing normalized laser 
point returns into intervals defined by a range of heights. Laser points in each height interval are 
normalized to percentages by the total number of points above the projected ground area of each 
pixel. Percentages of laser canopy hits are considered to be especially appropriate for LIDAR 
estimation of canopy properties (Riaño et al. 2004). For this study, eleven height bins were 
generated through software developments described by Popescu and Zhao (2008), with height 
ranges of 0-0.5m, 0.5-1.0m, 1.0-1.5m, 1.5-2.0m, 2.0-5.0m, 5.0-10m, 10-15m, 15-20m, 20-25m, 
25-30m, and >30m. These height bins were generated as a multiband image of the predefined 
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height intervals and 2.5m × 2.5m pixel dimensions. 
 
Two estimates of PCC were derived from the bins. The first method assumes that the crowns of 
interest belong to trees with a height of over 2.0m; a sum of the seven uppermost height bins 
(HB5 through HB11) is used to model PCC: 

 

∑=−

11

5
115, nlidar HBPCC              (4) 

 
where HBn is a height bin image band of number n. 
 
The second method assumes that any laser point that is returned from on or near the ground, i.e. 
HB1, was from a pulse that did not encounter a canopy obstruction. Therefore, the equation used 
to derive PCC is as follows: 

 

11, 0.1 HBPCClidar −=              (5) 
 
where notation is the same as in Equation 4. 
 
The third method of deriving PCC from LIDAR data was performed at the plot level only. 
Individual trees were located and their crowns measured on the LIDAR-derived CHM through 
automated processing with TreeVaW software. TreeVaW is an IDL-executable program 
(Interactive Data Language, ©2006, ITT Industries Inc., USA) that uses a continuously varying 
filter window to detect tree locations, tree heights and crown radii, with algorithms described in 
Popescu and Wynne (2004) and Popescu et al. (2004). In summary, TreeVaW software identifies 
single trees using an adaptive technique for local maximum focal filtering, operating on the 
assumption that laser values of high elevation in a spatial neighborhood represent the highest 
part of a tree crown. 
 
TreeVaW was used to identify individual tree locations and crown size for each field plot. The 
total projected crown area for each plot is (Acrown) calculated; TreeVaW-derived PCC is: 

 

plot

crown
trvw A

A
PCC =              (6) 

 
where Aplot is the total plot area.  
 
3.2 Statistical Analysis of Predictions 
 
SAS software (SAS Institute, Inc., Cary, NC, USA) was used to relate various LIDAR-derived 
variables and NDVI variables to plot-level observed values of PCC and LAI. Least-squares 
estimates of PCC and LAI were fitted to linear regression models for eight different datasets, 
including varying combinations of the independent variables. Stepwise selection was employed 
in each regression to determine the variables remaining in each model. Variables retained in 
each regression were significant at the 0.05 level. 
 
Finally, two simple linear regressions were performed to directly compare observed PCC and 
LAI (PCCobs and LAIobs) with LIDAR-derived PCC using Height Bins 5-11 (xPCClidar,5-11). These 
regressions were performed using Microsoft Excel software (Microsoft Corporation, Redmond, 
WA, USA), in order to determine how well a single LIDAR-derived parameter could predict 
both PCC and LAI. 
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4. Results and Discussion 
 
4.1 Results 
 
LIDAR-estimated PCC variables using Height Bins 5-11 are present in the models with the 
greater coefficients of determination, while the models incorporating TreeVaW-derived PCC 
values have the lowest coefficients of determination. The model with the highest R2 value for 
PCC used LIDAR-estimated PCC (Height Bins 5-11), NDVI variables and CHM variables; this 
model had an R2 value of 0.86 as well as a low RMSE value (9%). However, a PCC model 
using only LIDAR-derived variables had an R2 value of 0.84 and an identical RMSE value. It 
can be concluded that the NDVI variables are relatively unimportant in predicting PCC when 
compared to LIDAR-derived variables. The model selected to predict PCC is thus: 

 

chmchmPCClidarpred xXxPCC 01.001.093.001.0 115, −++= − .         (7) 
 
 
Where PCCpred is the predicted value of PCC, xPCClidar,5-11 is the mean of LIDAR-derived PCC 
using Height Bins 5-11, Xchm is the maximum value of the CHM and xchm is the mean value of 
the CHM.  
 
The strongest LAI model was found using the first regression method with LIDAR-derived 
(Height Bins 5-11) variables only; this model has an R2 value of 0.78 and a comparatively low 
RMSE value. The prediction models incorporating both LIDAR and NDVI variables in general 
have higher coefficients of determination than those using only LIDAR-derived values, but by 
such as small range as to be negligible. Thus, LIDAR variables can be used without NDVI 
information to predict PCC and LAI. The model selected to predict LAI is: 

 

115,47.305.0 −+= PCClidarpred xLAI             (8) 
 
Where LAIpred is the predicted value of LAI and xPCClidar,5-11 is the mean of LIDAR-derived PCC 
using Height Bins 5-11. 
 
When plotting LAIpred against observed values of LAI (LAIobs), a square root transformation was 
applied to LAIobs to compensate for a slightly curvilinear relationship (Figure 1a); the 
transformation found a linear relationship with a high coefficient of determination (R2 = 0.85). 
The coefficient of determination for the untransformed variable (LAIobs) was calculated as well 
and found to be 0.75. The regression results for PCCpred and LAIpred compare well to other 
studies. Riaño et al. (2004) attained coefficients of determination of approximately 0.75 for 
PCC and approximately 0.90 for LAI and concluded that LIDAR was an excellent measure of 
both. Scanning LIDAR was found to have a strong correlation with hemispherical 
photo-estimated LAI in the study of Lovell et al. (2003), returning R2 values between 0.77 and 
0.98. 
 
When comparing observed field values to the selected model-predicted values (Figure 1a), it is 
seen that LIDAR-derived estimates slightly overestimate both PCC and LAI. This is consistent 
with the aforementioned studies and is possibly influenced by the small number of plots with 
low LAI values. Another possible source of error is that LIDAR data was collected during the 
leaf-off season while ground-reference data was collected during the leaf-on season. The 
majority of ground plots, 34 plots out of the total 43, were in pine plantations or pine stands and 
thus the majority of trees would have retained their needles for both the LIDAR and field data 
collections.  
 
The simple linear regression results between observed PCC and LAI (PCCobs and LAIobs) and 
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LIDAR-derived PCC using Height Bins 5-11 (xPCClidar,5-11) are promising, with r2 values of 0.80 
and 0.85 and RMSE values of 9.29% and 7.86% for PCCobs and SQRT(LAIobs), respectively. A 
square root transformation was again used to correct a curvilinear LAIobs relationship to a linear 
relationship with LIDAR-derived PCC values (Figure 1b). The equations describing these 
LIDAR-predicted canopy characteristics (PCCpred_lidar and LAI pred_lidar) are: 

 

42.195.0 115,_ += −PCClidarlidarpred xPCC            (9) 
 

[ ]2
115,_ 45.002.0 += −PCClidarlidarpred xLAI               (10) 

 
4.2 Discussion 
 
LIDAR-predicted PCC and LAI are comparable in accuracy to the selected regression models. 
These models are even preferable in the long term because of their simplicity. It is interesting to 
note that the TreeVaW-derived PCC was removed through stepwise selection and thus not 
present in the final regression model, though TreeVaW software has performed well in related 
studies (Popescu and Wynne 2004; Popescu and Zhao 2008). One possible explanation for 
TreeVaW’s lack of performance in the current study is that its continuously varying filter 
window identifies only dominant and co-dominant trees, while hemispherical photography 
captures understory vegetation in addition to the taller tree crowns. TreeVaW processing of a 
LIDAR-derived CHM, while an effective way to locate individual trees and determine tree 
crown dimensions, was not an accurate method of determining plot-level PCC.  
 
Estimation of forest structural attributes is one of the more thoroughly pursued applications of 
LIDAR remote sensing (Lefsky et al. 2002; Riaño et al., 2004). One goal of this study was to 
develop a linear regression relating LIDAR data and multispectral imagery to ground-reference 
values of PCC and LAI for hardwood and pine forests. Linear regression analysis of LIDAR 
variables explains 84% of the variance associated with plot-level PCC and 78% of the variance 
for plot-level LAI. A second objective was to evaluate whether LIDAR and NDVI data fusion 
would improve estimates of PCC and LAI. While data fusion did improve PCC model 
coefficients of determination by 2%, this was not a great enough improvement to justify 
retaining NDVI variables in the final PCC prediction model. LAI regression models were 
unaffected by the inclusion of NDVI variables; LIDAR-derived parameters alone were a good 
predictor of plot-level LAI. In the process of investigating linear regression analysis, it was 
found that LIDAR-derived PCC had an excellent relationship to field values of PCC and LAI. 
Simple linear regressions related LIDAR-derived PCC to field values of PCC and LAI, an 
exciting development for future ecological studies in primarily loblolly pine forests. Using 
LIDAR to directly determine these canopy properties would make the process accurate and 
efficient. Finally, the overall objective of this study was to develop a use of LIDAR in 
evaluating forest canopy parameters such as PCC and LAI. Results clearly show that scanning 
LIDAR data can be used to accurately estimate PCC and LAI. 
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(a)      (b) 
 

Figure 1: (a) Observed percent canopy cover (PCC) and leaf area index (LAI) compared to predicted PCC and 
LAI.  

        (b) Observed percent canopy cover (PCC) and leaf area index (LAI) compared to LIDAR-derived 
PCC. 

 
LIDAR data processing by the height bin method, as used in this study, has the potential to 
become a standardized method of large-scale LIDAR forestry data processing. This approach 
was shown to be effective and accurate in predicting PCC and LAI in this study and has also 
been used in a study concerning mapping surface forest fuels (Mutlu et al. 2008). The height bin 
method has also been used in conjunction with TreeVaW processing to estimate biophysical 
parameters of individual trees, such as total tree height, crown width, and height to crown base 
(Popescu and Zhao 2008). 
 
Determining ground reference values of LAI using hemispherical photography immediately 
introduced the possibility of underestimating these values (Merilo et al. 2004), although other 
indirect methods of measuring LAI tend to underestimate it as well (Mussche et al. 2001; Bréda 
2003). In the future it may be helpful to determine a scale for LAI values, to calibrate them with 
direct measurements and compensate for clumping factors (Bréda 2003; Coops et al. 2004). 
Doing so may increase the agreement between the estimated LAI and ground reference values. 

 
5 Conclusions 
 
Our approach is unique in that it combines LIDAR estimates of PCC derived from height bins 
with a LIDAR-based CHM to estimate forest canopy characteristics through regression analysis. 
This method proved to be an accurate estimate of plot-level PCC and LAI, allowing us to 
predict these values at a local scale. PCC and LAI are important biophysical parameters in 
carbon sequestration and climate studies. Since LIDAR data can be acquired fairly quickly 
compared to ground-level forest inventory, our method could allow for fast, accurate, more 
effective ecological research as well as forest management. 
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Abstract 
 
Aboveground biomass information of the northern boreal forests of Canada is required to report 
on the state of Canada’s forests. This information need is being partly met through the recent 
completion of a satellite land cover map over the forested areas of Canada, an initiative of the 
Earth Observation for Sustainable Development of Forests (EOSD) project supported by the 
Canadian Space Agency. Within the EOSD framework, a biomass mapping strategy based on 
the integration of field and multi-sensor / multi-resolution satellite data has been developed. It 
includes a biomass mapping method that has been tested successfully for coniferous forests over 
three northern pilot regions. This method estimates biomass using optical high spatial resolution 
imagery (HSRI), such as QuickBird, providing surrogate sampling plots (SSP) to compensate 
for the lack of forest inventories. HSRI-derived SSP are subsequently scaled across a Landsat 
mosaic using the kNN algorithm for regional mapping purposes. However, HSRI shows 
significant spectral limitations to estimate biomass for all northern boreal cover types as well as 
sampling design issues for large-scale implementation.  
 
In this paper, we consider profiling airborne lidar data as a newer and viable alternative to HSRI 
data due to the strong potential to estimate biomass operationally for a wide variety of cover 
types over long stretches of northern boreal forests. We describe a lidar-based biomass mapping 
method and present preliminary results obtained over a northern pilot region in Quebec. This 
region is covered by a normalized mosaic of 11 Landsat scenes and includes hundreds of ground 
sampling plots (GSP). We used the portion of the NASA PALS (Portable Airborne Lidar 
System) data set crossing the pilot region, made of four long transects containing over 4 million 
PALS lidar pulses acquired at a nominal post spacing of 0.25 m. The PALS data set was 
acquired in 2005 within the NASA Québec Carbon Lidar Project (QCLP). 
 
First, biomass is derived from PALS transect data to provide SSP. Quadratic mean height 
(QMH) is extracted from PALS data within contiguous 30m cells along the PALS transects. 
Biomass is estimated across these cells using QMH as a predictor of biomass through regression 
equations developed using GSP within the QCLP project. Few hundreds of these 30m biomass 
cells are used in a sampling process to generate SSP. Second, lidar-derived SSP are scaled 
across the normalized mosaic of Landsat TM/ETM data using the kNN algorithm used 
operationally for inventory applications in Sweden and Finland. Finally error estimates (bias 
and RMSE) are obtained through cross-validation using SSP or directly from GSP.  
 
We present preliminary results mainly for the dominating coniferous black spruce forests. At 
local level, good estimates of biomass were achieved using PALS data with R2 up to 60 % and 
RMSE down to 14.2 t/ha depending on the QMH-biomass equation used. At regional level, R2 
better than 50% and RMSE around 25-30 t/ha were obtained using kNN algorithm driven by 
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lidar-derived SSP. Errors were slightly higher than using the HRSI-based method but were still 
satisfactory towards implementation. We also present the potential of the lidar-based method in 
deciduous and mixed stands. Finally we discuss the overall merits and drawbacks of the 
lidar-based vs the HRSI-based methods, as well as perspectives for large-scale implementation.  
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Abstract 
 
The objective here was to investigate the theoretical benefit of using tree species stratum forest 
inventory data instead of stand-level mean data in forest-planning simulations. This comparison 
was based on timing differences in thinning and clear-cuttings during a 20-year simulation 
period. The development of stand characteristics (age, basalarea, volume, dominant height, 
mean height, mean diameter) in those stands not harvested during the simulation period was 
also scrutinized. The calculations were performed with SIMO simulation and optimization 
software. In all 245 treewise measured circular plots established in 2007 in the vicinity of the 
Evo Forest Station, Finland, were used as study material. The results show that the use of tree 
species stratum data in forest-planning simulations is highly relevant from the viewpoint of both 
the development of stand characteristics and the timing of logging operations. The relative 
standard errors stemming from the level of input data varied from 2.1% to 20.6% and from 58% 
to 84% in stand characteristics and timing of logging operations, respectively. The significance 
of the stratumwise input data culminated in the functioning of the specieswise growth models at 
different stages of stand development. The results can be utilized in assessing the suitability of 
airborne laser scanning-based estimation methodologies in integrating detailed forest inventory 
with forest planning and operational logging planning. 
 
Keywords:Airborne laser scanning (ALS), forest management planning, simulation , tree species 
detection, tree species stratum 
 
1. Introduction 
 
Laser scanning can be used in two spatil levels to estimate the volume of tree stock: (i) at the 
stand or plot level, using height and density distribution features derived from laser pulses (e.g. 
Holmgren 2003; Lim et al. 2003; Næsset 1997a, 1997b, 2002, 2004, Suvanto et al. 2005) or (ii) 
at the single-tree level, using tree height and crown width measurements (Hyyppä and Inkinen 
1999, Persson et al. 2002, Popescu et al. 2003, Leckie et al. 2003, Maltamo et al. 2004). 
Stand-level laser scanning is more cost-efficient, due to its sparser pulse density (Holopainen & 
Talvitie 2006). On the other hand, single-tree interpretation makes it possible to understand on 
the stand's diameter/height joint distribution which facilitates forest-planning simulation and 
optimization, logging site planning, bucking control and wood procurement logistics. 
 
However, the accuracy of estimating tree species stratum-level data has so far been rarely 
studied, although the significance of tree species in forest-planning simulation and optimization 
calculations is considerable. Packalén and Maltamo (2007) investigated the accuracy of 
estimating tree species stratum-level data with feature-based laser scanning, digital ortophotos 
and the nonparametric k-most similar neighbour (k-MSN) method in eastern Finland. The 
accuracy levels derived were considerably poorer than those of stand mean volume (V). On the 
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stand level, the relative root-mean-square-error (rmse) of the estimated stratumwise mean V 
varied from 28% (pine, Pinus L.) to 62% (decidious), while the relative rmse of stand mean V was 
10%. On the plot level, the respective stratumwise statistics waried from 51% to 102%, while the 
relative rmse of plot mean V was 20.5% (Packalén and Maltamo 2007).  
 
Tree species stratum-level data are also error-prone in cases of traditional visual estimation and 
relascope plot-based estimation. Haara and Korhonen (2004) investigated the accuracy of visual 
estimation in eastern Finland. Their study showed that on the stand level the relative rmse of 
stratumwise mean V varied from 29.3% (pine) to 65% (deciduous), while the relative rmse of 
stand mean V was 24.8%. In other words, the estimation accuracy of the tree species stratum data 
presented in Packalén and Maltamo (2007) is similar to that of traditional visual estimation. 
 
Another method for obtaining tree species stratum data is single-tree detection and interpretation. 
Airborne laser scanning (ALS) tree species detection was studied by Holmgren and Persson 
(2004), Korpela (2004), Korpela et al. (2007) and Kaartinen and Hyyppä (2008). These studies 
showed that tree species can be determined to about 50-95% accuracy, depending on laser pulse 
density, availability of aerial photographs and automation state. The automation of tree species 
interpretation is one of the major challenges remaining in individual tree interpretation. 
 
In Finland, a new feature-based k-MSN laser-scanning method for estimating stock 
characteristics is currently being adopted in private forest management planning. Currently, the 
focus is on how to integrate the inventory data in the respective simulation and optimization 
calculations. It is then crucial to be aware of how inventory data of varying accuracy and scale 
affects the simulation results, e.g. the timing of loggings, which is of the significant economic 
importance to the forest owner. 
 
The effect of inventory data accuracy on forest-planning simulation results was investigated e.g. 
with the cost-plus-loss method and by analysing the timing of loggings and respective net yield 
(Barth and Ståhl 2007, Eid 2000, Eid et al. 2004, Duvemo and Lämås 2006, Duvemo et al. 2007, 
Holopainen and Talvitie 2006, Holopainen et al. 2008). However, the effect of the scale of the 
inventory data, e.g. stratum data versus mean data, has not previously been investigated in this 
context.   
 
1.1 The objective 
 
The objective here was to clarify the significance of tree species stratum data in forest-planning 
simulations and was accomplished by comparing the simulation results of mean data with those 
of stratum data.  
 
The comparisons were performed by stand characteristics (age (a), basal area (BA), V, dominant 
height (Hdom), mean height (Hgm), mean diameter-at-breast height (Dgm)) 20-year future 
simulation for stands not affected by loggings and by the timing of the first logging operation 
(thinning or clear-cutting) encountered during the simulation period for stands affected by 
loggings. Stratumwise characteristics calculated on the basis of the single-tree measurements 
were used as reference data.  
 
2. Material and Methods 
 
2.1 Study area  
 
The research material comprised 245 treewise fixed-radius (9.77 m) field plots measured in 
summer 2007 in an app. 2000-ha managed forested area located in the vicinity of Evo Forest 
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Station, Finland (61.19°N, 25.11°E). The sampling of the field plots was based on 
prestratification of existing stand inventory data. The plots were located with Trimble's GeoXM 
2005 Global Positioning System (GPS) devise (Trimble Navigation Ltd., Sunnyvale, CA. USA), 
and the locations were postprocessed with local base station data, resulting in an error of 0.6 m. 
The following variables were measured in trees having a breast height diameter (DBH) of over 
5 cm: location, tree species, crown class, DBH, height (h), lower limit of living crown and 
crown width.  
 
2.2 Stand classes 
 
The three (four) currently dominant tree species in forests in Finland are Scots pine Pinus 
sylvestris L., Norway spruce Picea Abies H. Karst., and silver birch Betula pendula Roth and 
downy birch Betula pubescens Ehrh. hereafter collectively referred to as birch. The most 
common alternatives with respect to a tree species mix are therefore 1) a single-species stand, 2) 
a two-species stand and 3) a three-species stand. The significance of tree species stratum data 
was analysed by these three stand classes. Appropriate sample plots for each class were selected 
by the criteria presented in Table 1.  

 
Table 1. Stand classes used in the study. 

 
Stand class Description Criteria 

1 Single-species stand Basal Area (BA) of the main tree species is greater than 90% 
of the total BA 

2 Two-species stand Combined BA of the two main tree species is greater than 
90% of the total BA. Neither BA is greater then 70% of the 
total BA. 

3 Three-species stand BA of each of the three main tree species is greater than 20% 
of the total BA. 

 
The stock statistics concerning the initial state of the field sample plots are presented in Table 2.  
 

Table 2. Initial stock statistics. 
 

Stand class  Age, a  BA, m2  V, m3  DgM, cm (HgM), m 
 avg 73 18.8 184.1 23.8 19.1 

1 min 26 0.4 1.2 5.5 3.8 
  max 124 68.6 764.0 51.3 33.8 
 avg 71 19.9 177.6 21.6 17.2 

2 min 42 1.5 7.6 9.4 6.7 
  max 193 42.1 487.5 48.9 29.8 
 avg 59 22.5 180.6 19.4 16.5 

3 min 37 7.0 27.4 9.0 7.2 
  max 73 38.1 347.2 39.8 27.0 

 avg 70 19.7 181.3 22.4 18.0 
Total min 26 0.4 1.2 5.5 3.8 

 max 193 68.6 764.0 51.3 33.8 
 
 
The sample plot sites varied from grove to dry heath and the development classes from 
advanced seedling stands to regeneration stands. Most of the sample plots were situated in 
advanced thinning stands (47%), regeneration stands (25%) or young thinning stands (24%). 
The remaining plots were situated in advanced seedling stands (2), shelter tree stands (1), seed 
tree stands (2) and seedling tree stands with an upper storey (1).     
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In the single-species stand class, 60% (41) of the sample plots were located in pine stands, 31% 
(21) in spruce stands and 9% (6) in birch stands. In the two-species stand class, 23 (46%) of the 
sample plots were situated in spruce-dominant stands, 14 (28%) in pine-dominant stands and 13 
(26%) in birch-dominant stands. In the three-species stand class, the dominant tree species was 
spruce in 13 (65%) cases, birch in 4 (20%) cases and pine in 3 (15%) cases.  
 
2.3 Simulations 
 
The calculations were carried out using SIMO simulation and optimization software (SIMO 
simulation framework, Tokola et al. 2006, Mäkinen et al. 2008), which enables performance of 
both tree- and stand-level simulations; here, the tree-level simulator was utilized. The nonspatial 
tree-level growth models found in SIMO are, for the most part, similar to those found in the 
MELA2002 and MOTTI simulators (Hynynen et al. 2002, Salminen et al. 2005). They include 
growth models for all sites and tree species in Finland, including separate models for peat lands. 
The tree-level simulator can be used to simulate the growth of either sample trees measured in 
the field or descriptive trees generated on the basis of a theoretical diameter/height distribution.  
 
In our study, the simulation was performed at the single-tree level. The statistics for the strata 
and compartments were derived as sums and means of the simulated tree properties.The 
procedure was based on the following two simulations carried out with SIMO software: i) the 
single stratum simulation and ii) the reference simulation.  
 
In the single-stratum simulation a single tree species stratum was formed from the treewise plot 
data. The species having the greatest number of stems of plot trees with aDBH greater than 5 cm 
was selected as the stratum's main tree species. 
 
In the reference simulation, multiple strata were formed from the treewise plot data representing 
the true initial and simulated final states. The result of the reference simulation was assumed to 
depict the final state of the stock. Reference simulation results regarding the timing of 
operations and development of stand characteristics were used as reference data with which the 
results of the single-stratum simulation were compared. The length of the simulation period was 
set at 20 years. Two types of simulation were then performed: those in which operations were 
not allowed, making it possible to compare stand characteristics at the end of the simulation 
period and those in which operations were allowed, making it possible to compare the timing of 
the next logging operation. Thinnings and clear-cuttings were studied separately; natural 
drainage was not allowed in either case. The comparisons were based on standard errors and 
biases.  
 
 
3. Results 
 
3.1 Final-state stand characteristics 
 
Deviations of model outputs in final-state stand characteristics (a, BA, V, Dgm, Hgm, Hdom) 
were investigated by comparing the reference simulation results to single-stratum simulation 
results by stand classes presented in Table 1. 
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Table 3. Deviations of model outputs in final-state stand characteristics. Reference simulation versus 

single-stratum simulation. Relative deviation values calculated by reference stand values given in 
brackets. 

 
Stand 
Class Obs.   

Age, 
a  

BA, 
m2  

V, 
m3  

Dgm, 
cm  

Hgm, 
m  

Hdom, 
m  

1 68 bias 0.7 (0.8) 0.6 (1.7) 1.7 (0.5) -0.1 (-0.3) -0.2 (-1.1) 0.3 (1.2) 
  se 1.5 (1.6) 1.8 (5.1) 11.4 (3.2) 0.6 (2.1) 0.5 (2.2) 0.5 (2.3) 
                

2 50 bias -0.4 (-0.5) 1.8 (4.7) 12.2 (3.4) 0.3 (0.9) -0.3 (-1.5) -0.6 (-2.8)
  se 17.1 (19.7) 5.6 (14.5) 75.9 (20.9) 1.9 (6.9) 1.3 (6.4) 2.6 (12.0)
                

3 20 bias -2.2 (-2.9) 2.8 (6.0) 19.6 (4.7) 0.3 (1.1) 0.0 (0.2) -0.2 (-1.1)
  se 8.5 (10.9) 8.4 (18.0) 85.9 (20.6) 1.7 (6.6) 0.9 (4.7) 2.0 (9.4) 
                

Total 138 bias -0.1 (-0.1) 1.4 (3.6) 8.1 (2.2) 0.1 (0.3) -0.2 (-1.0) -0.1 (-0.5)
    se 10.8 (12.4) 4.7 (12.5) 56.1 (15.2) 1.4 (4.9) 0.9 (4.4) 1.8 (7.9) 

 
 
The error statistics (model outputs) derived for the final-state stand characteristics presented in 
Table 3 indicate that the use of stratumwise stock data is significant in each of the three stand 
classes studied. The greatest influence can be seen in the two-species and three-species stand 
classes. In the one-species stands, where the proportion of other species is less than 10%, the 
single-stratum simulation results approach the reference simulation results and the respective 
deviations are clearly smaller than those in the other two stand classes. The differences between 
the error statistics of the two-species and three-species stand classes were not very large.  
 
The most significant standard errors were related to stand V (3.2-20.6%) and BA (5.2-18.0%). 
On the other hand, the mean characteristics such as Hgm (2.2-6.4%) and Dgm (2.1-6.9%) were not 
as sensitive to the use of single-stratum simulation. A minor bias (3.4- 6.1%) can be observed in 
the simulation results of stand V and BA. However, single-stratum simulation of Hgm and Dgm 
did not result in significant bias. 
 
The standard errors increased rapidly as the simulation period lengthened in both multispecies 
stand classes (Figure 1). In stand class 1, secondary tree species (max. 10%) did not cause 
significant deviations. An especially strong increase in standard errors was found in stand V. 
When single-stratum simulation was used, the simulation period length did not have large affect 
the simulation error of the mean stand characteristics. In these cases the final state standard 
errors were only about 5%. 
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Figure 1. Error standard errors by simulation year (1-20) and stand class. 
 
3.2 Timing of operations 
 
Differences in the timing of simulated thinnings and clear-cuttings were then investigated (Table 
4). 
 

Table 4. Error in timing of the next logging operation. Reference simulation versus single-stratum 
simulation. The proportion of correctly defined operations (logging type identical) is given in brackets. 

 
Timing error, next operation, a   
Stand class Operation Obs. Bias se 

1   47 -0.3 1.0 
 Thinning (100) 21 -0.7 1.5 
  Clear-cutting (100) 26 0.0 0.5 
2   38 0.9 4.3 
 Thinning (66.7) 21 1.6 4.5 
  Clear-cutting (73.7) 17 0.2 4.0 
3   19 0.8 3.3 
 Thinning (73.3) 14 0.5 3.1 
  Clear-cutting (80.0) 5 1.8 4.3 

Total   104 0.4 3.0 
 Thinning (80.7) 56  0.4 3.3 
  Clear-cutting (36.0) 48  0.3 2.7 
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The standard errors in timing varied from 0.5 to 1.5 years and from 3.1 to 4.5 years in 
single-species and multispecies stands, respectively; i.e. stratumwise simulation also had  
significantly influences the level of these errors. The errors found in multispecies stands are 
especially significant in this respect, since the average time to the next logging operation was 
only 5.3 years, resulting in 58-84% relative standard errors. No significant differences were 
found in the timing errors of thinnings and clear-cuttings. A slight timing bias (0.2-1.8 years) 
was also registered. 
 
The definition of the next operation was fully correct only in the single-species stand class. 
Furthermore, the operation was defined correctly on an average of 66.7-73.7% and 73.3-80% of 
the cases in the two-species and three-species stand classes, respectively. 
 
4. Discussion 
 
The objective here was to investigate the significance of tree species stratum data in 
forest-planning simulations by comparing the simulation results obtained using mean stand 
characteristics with those obtained by stratumwise data. The simulations were carried out using 
actual treewise measured field material and the SIMO simulation software. Comparisons were 
performed on the development of stand characteristics during the simulation period (20 years) 
and the timing of the first logging operation occurring during the simulation period. 
 
The simulation period commonly used in forest planning in Finland is 20 years, the same as the 
period length used in this study. In addition, a simulation period of this length ensures that the 
number of simulated operations is sufficient and that the functioning of the growth models is 
revealed. Since the development of stand characteristics without logging operations was also 
investigated, it was not deemed necessary to further extend the simulation period. 
  
In light of the present results, the use of tree species stratum data in forest-planning simulations 
is highly relevant from the viewpoint of both the development of stand characteristics and the 
timing of logging operations. The relative standard errors stemming from the level of input data 
varied from 2.1% to 20.6% and from 58% to 84% in stand characteristics and timing of logging 
operations, respectively. The largest standard error in the stand characteristics was found for 
stand V (3.2-20.6%) and BA (5.2-18.0%), probably because the V increment simulation was 
based on the increment functions of Dgm and Hgm, which naturally vary by tree species. The 
stratumwise data were not as relevant for simulating mean characteristic development (Hgm and 
Dgm) as it was for simulating BA and V development, probably because the mean characteristics 
are BA-weighted and the dominant species thus always has the greatest influence in the 
calculations. 
 
A slight bias was registered in the simulation results of stand V and BA (3.4-6.1%). However, 
no bias was found in the simulation results of the mean characteristics. If the intraspecies 
variation in a stand was not addressed, the simulations could have slightly underestimated the 
development of BA and V due to differences in the specieswise growth models. Simulation of 
the mean characteristics is not as sensitive to this type of variation. In general, the significance 
of the stratumwise input data culminates in the functioning of the specieswise and sitewise 
growth models at different stages of stand development. Future investigations should further 
address these factors.  
  
Our study highlights the importance of tree species stratum data in forest-planning simulations. 
It is therefore essential to acquire stratumwise data for forest-planning input data. The results of 
our study could be utilized for assessing the suitability of ALS methods for feature-based or 
single-tree estimation when detailed forest inventory data are integrated with forest planning 
and operational logging planning. 
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Abstract 
 
The objective of the EuroSDR/ISPRS Tree Extraction project was to evaluate the quality, 
accuracy, and feasibility of automatic or semi-automatic tree extraction methods mainly based 
on high-density laser scanner data. This paper summarizes the major general finding based on 
laser scanning approaches. Results showed that the tree extraction method is the main factor on 
the achieved accuracy. When the laser point density increases from two points to eight points 
per m2, the improvement in crown delineation accuracy was marginal, but in the case of feasible 
methods the accuracy of the tree location and especially the tree height determination improves, 
but also deterioration of the accuracy was reported. Individual tree based inventory requires also 
individual tree based reference collected in the field; this calibration is needed to reduce 
underestimation of tree height, calibration of the basal area and stem volume and possibly to 
verify experimentally the quality of the product. 
 
Keywords: tree extraction, airborne laser scanning, automation, EuroSDR, ISPRS 
 
1. Introduction 
 
The first application of airborne laser scanning (ALS) for forestry was the determination of 
terrain elevations (e.g. Kraus and Pfeifer 1998; Vosselman 2000), followed by standwise mean 
height and volume estimation (e.g. Næsset 1997a,b), individual tree based height determination 
and volume estimation (e.g. Hyyppä and Inkinen 1999; Brandberg 1999; Ziegler et al. 2000; 
Hyyppä et al. 2001), tree species classification (e.g. Brandtberg et al. 2003; Holmgren and 
Persson 2004) and measurement of forest growth and detection of harvested trees (e.g. Yu et al. 
2004). Extraction of the forest variables has been recently divided into two categories: 
inventories done at stand or plot level and inventories based on individual trees or groups of 
trees. These categories relate to the need of the forestry information. At the same time laser 
scanning is increasingly becoming a core data set for mapping authorities and the pulse density 
of the laser scanning is increasing constantly. In addition to forest inventory, tree information is 
used e.g. in flight obstacle mapping, power line mapping, real estate visualization and mapping, 
and telecommunication planning. The results obtained for individual tree extraction has varied 
significantly from study to study (percentage of correctly delineated trees has ranged from 40 to 
93 %) (see e.g. Hyyppä and Inkinen 1999; Persson et al. 2002; Brandtberg et al. 2003; Leckie et 
al. 2003; Straub 2003; Popescu et al. 2003; Andersen et al. 2002; Morsdorf et al. 2003; Wack et 
al. 2003). It is not known how much of this variation is caused by the methods and how much 
by the forest conditions. Concerning the methods there is a trend towards using more efficiently 
the point cloud data, rather than segmenting pure laser-derived DSMs. In EuroSDR/ISPRS Tree 
Extraction project twelve participants around the world extracted the trees in given forest test 
sites. The first objective of this study was to study the accuracy and feasibility of various 
methods using the same test data. The second objective of the study was to find out how the 
pulse density affect on individual tree extraction. More detailed comparison of the methods and 
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their differences and similarities is a subject of another paper.  
 
2. Material 
 
2.1 Study area 
 
Two forest test sites were close to each other in southern Finland, about 18 km west of Helsinki. 
Test sites were very diverse; partly flat and partly steep terrain, areas of mixed and more 
homogenous tree species at various growth stages. Main tree species were Scots pine, Norway 
spruce and silver and downy birches. The area of test site A was 2.6 ha and test site B 5.8 ha. 
 
2.2 Delivered data for tree extraction 
 
For test sites ALS data (Table 1) with three different pulse densities (2, 4 and 8 points per m2) 
was delivered to the participants. A DTM with 0.5 m grid spacing was calculated using 
Terrascan (based on Axelsson 1999, 2000, 2001) and visually checked before delivery as 
ASCII-grid. Delivered training data included species, location, DBH and crown delineation (3-5 
points) of 75 trees. Training data was measured in the field using a tacheometer, and it was 
meant for the participants to calibrate their methods into Scandinavian forest conditions. 
 

Table 1. ALS data of the study area 
 

Acquisition 29th of June 2004 
Instrument Optech ALTM 2033 
Flight altitude 600 m 
Pulse frequency 33 000 Hz 
Field of View ± 9 degrees 
Measurement density 2 per m2 per echo per strip 
Swath width 185 m 
Mode First and last pulse 

 
2.3 Reference data for quality verification 
 
Reference data for quality verification was collected with ground surveys and terrestrial laser 
scanner. RTK-GPS (Leica SR530) and tacheometer (Trimble 5602S DR200+) equipment were 
used to create a ground control point (GCP) network over the study area. Location of spherical 
reference targets for terrestrial laser scanner (Faro LS880HE) was determined with tacheometer 
measurements on the basis of the GCPs. For RTK-GPS –measurements the same GPS reference 
station was used as for airborne laser scanning. Terrestrial laser scanning (TLS) was carried out 
in 48 locations to obtain laser point coverage of all reference trees on five test plots, two plots 
on test site A and three plots on test site B. Together the five plots covered an area of 0.48 ha 
(5.7 % of test site area). Reference data included the location and species of 352 trees and the 
height of 254 trees. 
 
Point clouds of individual terrestrial laser scannings were georeferenced using spherical 
reference targets and Faro Scene software. Same software was used to transform the point 
clouds to a 3D-mesh, which was then exported in VRML2 format to Geomagic Studio software 
for editing and exporting to DXF format. 3D DXF vectors of individual scannings were 
combined using Bentley MicroStation for additional editing and measurement of tree 
parameters. Measured tree parameters included tree trunk location, tree top location, tree height 
and crown delineation. Intensity images of original scannings in Faro Scene software were used 
to determine tree species and crown base height. 
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2.4 Produced tree extraction results 
 
Participants were requested to extract trees using the given material. They were allowed to use 
any method and data combination. Participants were asked to provide from each tree that they 
could extract tree location and height, crown delineation, and height of crown base or the 
volume of the crown, if possible. Of twelve participants, eleven used ALS data for tree 
extraction and nine used solely ALS data. 
 
3. Methods 
 
3.1 Methods used by participants 
 
The methods have been reported in detail in Kaartinen and Hyyppä (2008, forthcoming). Here a 
more anonymous, brief description of the key elements in the methods is given. 
 
Method A was implemented in eCognition Expert. The method can be divided into four main 
tasks: 1) creation of a forest mask, 2) initial split of the forest mask, 3) splitting the forest mask 
into tree crowns and 4) correction of over split crowns. A low pass filter was applied to remove 
small gaps and too many local minima and maxima. The creation of the forest mask was made 
by thresholding the CHM images at a height of 2 m. The method uses the highest point/pixel in 
the object as the seed and expands the seed to the crown boundaries, identified by a positive 
difference between the current and proposed pixel. This was repeated until all areas within the 
current object had been included into new objects. The difference required to form a boundary 
was defined with a threshold. The threshold was initially high and a boundary was formed only 
where a large difference occurs, in this case 1 m. The key to this method is the classification of 
objects into two groups, crowns and crown-clusters. Those objects identified as crowns were 
removed from further splitting iterations and only considered later, while crown-clusters were 
processed further in the hope of separating the crowns contained within. 
 
Method B was fully automatic using raw laser points and it had the following steps: (1) a DSM 
was created, (2) a DTM was created, (3) a CHM/nDSM was created, (4) the CHM was filtered 
with different Gaussian filters resulting in different images, (5) the different images are 
segmented separately and the segment chosen for a specific area is selected through fitting a 
parabolic surface to the laser data, (6) the height and crown diameter were estimated for the 
identified trees. 
 
Method C was based on a tree model with three geometric parameters (size, circularity and 
convexity of the tree crown). The processing strategy comprises four steps. First, a wide range 
of scale levels of the DSM was created. The second step was a segmentation, which is achieved 
by applying a watershed transformation. In the third step the best hypothesis for a crown from 
the overlapping segments of all levels based on the tree model was selected. The selection of the 
best hypotheses was achieved with the help of fuzzy functions for the tree model parameters. 
 
In method D, a DSM pixel was considered to be a low, differing pixel, if at least seven (surface 
models from point density of 8 pulses/m2), or six (other point densities) of the 
eight-neighbourhood were more than five metres higher than the pixel itself. These pixels were 
replaced with the median of the more than five metres larger neighbour pixel values. The DTM 
was then subtracted from the final DSM to get a CHM for tree crown segmentation. Before 
segmentation, the CHM was smoothed with height based filtering. Five Gaussian filters were 
used so that the filter size increased along the height of pixel being smoothed. Smallest and 
largest σ values were selected by visually ensuring that the number of local maxima was 
reasonable at both ends of the tree height range. A negative image of the height filtered image 
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was then created for watershed segmentation that was used to separate tree crowns from each 
other. Watershed regions associated with the local minima in the negative image were identified 
using a drainage direction following algorithm. To get the boundaries between crowns and 
background, pixels lower than two metres in the height filtered image were masked out from the 
crown segments. Finally small segments (at most three pixels in size) were combined with one 
of the neighbour segments, being it a tree crown or background, based on the smallest average 
gradient on the common segment boundary. Tree locations and heights were then obtained from 
the location and value of the pixel having the highest value within each segment. 
 
In method E, the process comprises several steps, i.e. retain uppermost echoes, interpolate them 
into a DSM-grid, find local maxima in the DSM, run a region-growing algorithm with some 
restrictions in order to derive objects belonging to the class of objects often named star objects. 
The DSM was now divided into segments that represented tree crowns, while parts of the area 
were not covered by trees and had no DSM value. The DSM was adjusted (lifted) using the 
residuals between the DSM and the first echoes. The 90 percentile of the residuals was 
calculated, and this frequently turned out to be around 70 cm, and this was added to all z values 
in the DSM. The tree heights were derived as the z value of the local maxima after this 
adjustment. 
 
In method F, tree locations and tree height were computed from the CHM. The CHM was 
computed by selecting the highest canopy height in each grid cell. Furthermore, each trunk of 
the training trees was located with a window size of 3x3 (i.e., 3 metres), and a height histogram 
with one-metre interval was used to build up a laser classification tree model for species 
determination. The highest laser elevation value among laser hits on a specific area (i.e. 3x3 
metres), is assumed to be the potential trunk location of the tree. Two approaches were used to 
estimate the potential tree locations. The first approach was whereby running a local maximum 
filter in the CHM with a window size of 3x3 (i.e., three-metre squares), all potential tree 
locations were selected. The second method was that the 3x3 local maximum filter processes 
only heights less than 15 metres in the CHM. The first approach was applied to test site B, and 
the second approach was used on test site A. The crown widths were derived based on the 
training tree data and the CHM. The expirical relationship between the height of the trees and 
their searching crown size was defined. 
 
Method G employed an automatic algorithm of local maxima (LM) filter with circular moving 
window of varying sizes. Local Maximum Filter is often used to locate tree position based on 
the assumption that the highest elevation corresponds to the tree apex. When applying the LM 
filter, the window size has great influences on tree identification. On the other hand, the taller 
the tree is, the larger the crown width. Thus the determination of filter size was based on the 
relationship between the crown size and tree height. Prior information was utilized to derive 
such a relationship; to predict the crown size, regression models were fitted with tree height as 
the independent variable. For the test data, about ninety trees for each test site were visually 
identified from the CHMs and the corresponding heights and crown width were manually 
recorded by on-screen measurement. The crown diameter was the average of two values 
measured along two perpendicular directions from the location of the tree top. 
 
In method H, an algorithm, which removes the points (ground and not ground) derived from the 
echoes penetrated inside the crown from the dataset, was implemented. At first, the algorithm 
provides a triangulation of all the points; the following step is the removal of all the vertexes 
that present a difference greater than a fixed threshold. The procedure therefore allows a correct 
DSM to be obtained. The method applied for tree counting was based on a morphological 
analysis of the laser point distribution. For this purpose the Top Hat algorithm was implemented. 
This is a mathematical function of image elaboration, which allows the top elements at the scale 
of the represented values to be found. The mathematical formulation of the Top Hat is related to 
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the theory of image processing formulated by Serra (1982, 1988). In some cases, because of the 
presence of small height variations among adjoining points belonging to the same crown, more 
than one apex can be counted for each tree. In order to minimize this kind of error a control 
algorithm was introduced. It detects and corrects the apexes, which are erroneously classified 
(these are often localized at the edge of the crown). In order to delineate single crowns an 
algorithm of region growing was implemented. 
 
Method I is based on local maxima detection in the CHM and a following cluster analysis of 
the raw data with found local maxima as starting points. The DSM generation includes the 
choice of four parameters, which are destination grid resolution, search radius, and size and 
shape of a Gaussian smoothing function. The outcome of the cluster analysis is the raw data 
being flagged with a distinct number of all returns presumably belonging to a tree. This cluster 
is then treated by a routine, which takes the relevant measures from the point cloud. These are 
the following: 

• Position (x, y) is derived as the centre of gravity of the echo positions belonging to the 
cluster. 

• Tree height is computed as the maximum height of the cluster’s echos. 
• Crown diameter is estimated using the convex hull of the cluster by transferring the 

circumdistance of the convex hull to a radius assuming circular shape. 
 
3.2 Methods used for evaluation 
 
Tree location accuracy was evaluated by measuring distances from every reference tree to the 
nearest tree found on the delivered model. For tree location the coordinates of the reference 
treetop were used. Only distances within 5 metres from the reference tree were included in the 
analysis. If several reference trees have hits on the same tree in the analyzed model, only the 
best match according to distance and height was accepted to analysis, other observations were 
disregarded. Location accuracy was analyzed for two cases: all trees and trees over 15 m tall. 
The trees approved for location accuracy evaluation were also used for tree height evaluation, 
and again two cases were used: all trees and trees over 15 m tall. 
 
The crown delineation accuracy was evaluated by comparing the total delineated area of 
reference trees on test plots to delivered model delineation. If a participant did not deliver crown 
delineation as vector data, the crown covered area was determined as a circle around the trunk 
location by using the radius or area delivered by the participant, and final delineated area was 
obtained as a union of these circles. 
 
Trees in the reference test plots were extracted also manually by an FGI employee to get an idea 
of what accuracy can be achieved this way. Extraction was executed using laser scanner data (8 
points per m2) and GIS software. Also aerial images were used for interpretation purposes. Trees 
were delineated visually by using laser points which were colour coded based on the elevation, 
and the location and height were measured by finding the highest laser points within the 
delineated trees. Ground height was interpreted visually in a 3D-view. The results of this manual 
extraction are marked as “Manual” in the figures in section 4. Results and discussion. 
 
If the observed value differed from the reference value more than mean ± 3*STD, it was 
considered as gross error, or outlier, and was removed. In tree height analysis first all values 
deviating more than 10 metres from the ground truth were removed. 
 
4. Results and discussion 
 
In following figures the laser point densities are marked after the method ID, for example, B_2 
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for two points, B_4 for four points and B_8 for eight points per m2. 
 
4.1 The amount of extracted trees 
 
The amount of extracted trees on the reference test plots is shown in Figure 1. The amount of 
extracted trees reveals how many percent of the true trees have been extracted. In order to 
provide non-biased estimates e.g. for volume, the correct percentage rate should be as high as 
possible. The percentage of detected trees varied between 25 to 90% implying different 
capabilities in detecting suppressed trees. Best models were significantly better in separating 
tree groups into individual trees compared to the manual method. Surprisingly, there was no 
improvement in the detection rate when the pulse density was increased from 2 to 8 points per 
m2. It is still expected that there should be more focus on finding smaller trees under the 
dominating storey. In principle, the higher pulse density should result in better tree finding 
capability, but that is subject to the forest type. It seemed that the test site was relatively suitable 
for individual tree detection even with a pulse density as low as 2 points per m2. We expect that 
in younger stands density of 8 points per m2 would have been beneficial. 
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Figure 1. Amount of extracted trees. 
 
4.2 Tree location accuracy 
 
The results clearly showed that the variability of tree location is small as a function of point 
density and it mainly changes as a function of the model provider (Figure 2). Obviously, the 
calibration of the models with the given training data has not been successful and several 
models assumed the trees to be significantly larger in width (e.g. A, C, I). With the best models 
for all the trees, the mean location error was less than 1 m and the difference with 2, 4 and 8 
points per m2 was negligible. With trees over 15 m, standard deviation of 0.5 m was obtained. 
The automatic models were as good as manual processing of the point cloud in determining the 
tree locations. In tree finding, there were in general few outliers.  
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Figure 2. Tree location accuracy. 
 
4.3 Tree height accuracy 
 
Tree height quality analysis showed again that the variability of the point density was negligible 
compared to method variability (Figure 3). With the best models RMSE of 60 to 80 cm was 
obtained for tree height. High quality tree heights were obtained by models of B, D and G. The 
results with the best automatic models were significantly better than those with the manual 
process. In general, both the underestimation of tree height and standard deviation were 
decreased as the point density increases. The overestimation of the model E to tree height was 
due to the correction applied to the tree height in the preprocessing phase. The main reason for 
the difference of the laser-based methods was that some of the methods used significantly 
stronger filtering in the preprocessing phase. It can also be concluded that when comparing the 
results from literature, the forest conditions play a major role. With the model D, a low detection 
rate for tree finding has been published, but in the comparison, it showed to be one of the best 
algorithms.  
 

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

A
_8

B
_2

B
_4

B
_8

C
_2

C
_4

C
_8

D
_2

D
_4

D
_8 E_

2
E_

4
E_

8
F_

2
F_

4
F_

8
G

_2
a

G
_2

b
G

_4
G

_8
a

G
_8

b
H

_2
H

_4
H

_8 I_
2

I_
4

I_
8

M
an

ua
l

[m
]

Tree height, all trees (outliers removed)
Mean
STD
RMSE

 
 

Figure 3. Tree height accuracy. 
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4.4 Crown delineation accuracy 
 
Total crown area seems to vary significantly between the models (Figure 4). The errors leading 
to false total crown area are: inadequate tree finding capability (small trees missed), inadequate 
filtering of the raw point cloud data or DSM (leading to too large crowns but too few of them) 
and inadequate calibration of the method with the given reference data. The models, which have 
been tested more with practical forestry, have already more experience in this calibration, such 
as the B and E methods. 
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Figure 4. Total crown area accuracy. 
 
5. Conclusion 
 
The following conclusions were drawn: 

• Results showed that the extraction method is the main factor on the achieved accuracy 
and surprisingly high variability of the results were provided by various methods.  

• Before using the methods into operational forests inventory, the methods should be 
carefully verified.  

• The quality of the method versus other methods cannot be verified without testing the 
methods in the same forest conditions since the effect of the variability of the forest 
conditions is assumed to have a high impact on achieved accuracy (by comparing the 
results achieved those with previous literature). Thus, more comparison of the methods 
should be done in the future. 

• More detailed analysis of reasons why certain method failed and succeeded in this test 
should be reported in near future. Differences and similarities of the methods should be 
reported. 

• When the laser point density increases, the accuracy of the tree location, detection rate 
of smaller and more trees and especially the tree height determination can be improved, 
but in practise, the improvement depends on the method. Surprisingly, deteriorating of 
the accuracy by the applied methods was also reported. 

• Individual tree based inventory required individual tree based reference collected in the 
field. Visual interpretation of the airborne laser point cloud is not a feasible way to do 
the calibration of the extraction method, since this calibration is needed to reduce 
especially the underestimation of tree height, and for the calibration of the basal area 
and stem volume. 

• Individual tree based solutions may be applied even with lower point densities (e.g. 
using 2 points per m2), but the optimal point density is most probably dependent on tree 
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size and density of the forest. This proposes further possibilities of using individual tree 
based methods. 
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Abstract 
 
Accurate estimates of both live and dead biomass in forested ecosystem are important for 
carbon dynamics studies and forest management. Lidar remote sensing has been used 
successfully to estimate live biomass, but few studies estimated dead biomass. In this study, our 
primary goal was to distinguish between live and dead biomass in a mixed coniferous forest on 
North Rim of the Grand Canyon using small footprint discrete lidar.  The study is a part of a 
project to develop forest structure monitoring protocols for the National Park.  The park’s goal 
is to understand present and future ecosystem states and dynamics, biodiversity, habitat, 
movements of organisms, and flow rates of energy and materials.  We examined lidar intensity 
values for differentiating live vs dead trees using field measurement on 58 plots measured in 
2007. We found that lidar intensity values hold great promise for separating dead from live trees. 
Applying regression techniques we modeled both live and dead biomass.   
 
North Rim forests consist of mixed conifer, dominated by Spruce fir (Picea spp.) and Subalpine 
fir (Abies lasiocarpa) on the higher elevation, mixed conifer with various combinations of 
ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), Engelmann spruce 
(Picea engelmannii), blue spruce (Picea pungens), white fir (Abies concolor), and quaking 
aspen (Populus tremuloides) in the mid elevation, and pure ponderosa pine forest on the lower 
elevations.  The park has been preserved by the federal government since late 19th century, at 
which time grazing and wildfire have been suppressed. This has resulted in development of 
structures associated with older forest, including a significant amount of standing dead trees. 
 
In this study, lidar intensity was used to separate the first return pulses into live and dead trees. 
We hypothesized that dead trees have lower intensity values relative to live trees. Regression 
analysis, and associated cross validation demonstrated that live and dead tree biomass were 
separable. Total biomass estimation averaged 251.1 Mg ha-1 (R2 = 0.83, RMSE = 61.5 Mg ha-1, 
bias: 0.35 Mg ha-1), dead averaged 54.7 Mg ha-1(R2: 0.52, RMSE: 41.9 Mg ha-1, bias: -1.28 
Mg ha-1).  Live biomass was estimated as the difference of total and dead, averaging 195.4 Mg 
ha-1 (R2: 0.69, RMSE: 55 Mg ha-1, bias: 0.45 Mg ha-1).      
 
Keywords: small footprint, lidar, forest, biomass, dead trees, North Rim USA 
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Abstract  
 
Airborne laser scanning has become a popular technique to estimate canopy height and forest 
structure. However, current discrete laser scanning systems still suffer the limitation of 3m 
multi-target resolution and the loss of information about range estimation. In order to improve 
range resolution and accuracy, new generation small-footprint waveform laser scanning data 
were investigated. A new approach was developed to detect targets from complex overlapping 
and weak pulses, which are likely to occur in vegetated areas. The algorithm is based on the 
popular Gaussian decomposition method and contains two main processing procedures. The 
shapes of overlapping pulses are analysed to find visible peaks and overlapping peaks, and then 
reasonable constraints and checks are applied to the fitting process. The test results showed the 
developed detection algorithm resolved overlapping pulses very well as long as the pulse shapes 
illustrated asymmetric behaviour or a non-Gaussian distribution. Weak pulses exhibiting a 
Gaussian shape were also successfully detected. 
 
Keywords: laser scanning, waveform, detection 
 
1. Introduction   
 
Airborne laser scanning has developed rapidly to become the technique of choice for high 
resolution terrain model generation and detailed vertical distribution of canopy structure in 
vegetated areas. Current pulsed laser scanning systems are based on time-of-flight techniques to 
estimate range distances between scanners and targets. Pulse detection methods are applied to 
detect targets and determine range in order to measure the elapsed time. However, different 
methods can result in different range resolution (i.e. the ability to differentiate two neighbouring 
targets from one another) and different range accuracy (i.e. the ability to seek the corresponding 
positions from transmitted and received pulses) (Baltsavias, 1999; Wagner et al., 2004b; Jutzi 
and Stilla, 2005). Inaccurate range determination obviously reduces the accuracy of the 
three-dimensional laser points (Baltsavias, 1999), thereby indirectly affecting the estimate of 
forest characteristics (e.g. canopy height). In order to meet the demand for high accuracy 
applications, studies into range estimation are therefore necessary.  
 
In general, typical pulse detection methods applied in discrete laser scanning systems are 
normally threshold-based (e.g. peak detection, leading edge detection, constant fraction 
detection) - (Lemmens, 2007). Return pulses with strong, nearly perfect peaks are primarily 
detected. The common difficulty, however, is to detect weak pulses and complex overlapping 
pulses, which are likely to occur in vegetated areas. Weak pulses below the threshold go 
undetected and information about targets which present low reflectance or have been observed 
at a distance is discarded (e.g. ground information under canopy). On the other hand, when the 
distance between successive targets diminishes, overlapping pulses are present (Baltsavias, 
1999; Wiechert, 2004). The shapes of overlapping pulses are variable and can differ 
significantly to standard returns, making it virtually impossible for typical pulse detection 
methods to resolve targets correctly. Therefore, multi-target resolution is seriously limited 
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(Baltsavias, 1999; Katzenbeisser, 2003) and range distance can be inaccurately estimated (Jutzi 
and Stilla, 2006). For example, when overlapping pulses occur in areas of low vegetation, 
ground height could be overestimated. Wiechert (2004) has emphasised that the capability of 
target separation has a great impact on the quality of elevation models derived from laser 
scanning data. 
 
Established discrete laser scanning systems only provide three-dimensional coordinates of 
points and their associated intensity values. Users are unable to determine the errors caused due 
to the limitations of the pulse detection methods used because the information about range 
estimation is missing. Moreover, most systems only capture first and (or) last return, or up to 
four returns, the information in between have been discarded. Commercial small-footprint 
waveform airborne laser scanning systems have recently become available that store the entire 
waveform of each received pulse, thereby offering users the opportunity to apply their own 
pulse detection methods in order to detect targets and define ranges. This creates significant 
opportunities to overcome the shortcomings of typical pulse detection methods. New potential 
for improving the classification of laser points is also expected using waveform data (Flood, 
2001; Pfeifer et al., 2004; Wagner et al., 2004a) since the characteristics of targets are believed 
to be present in the waveform (Brenner et al., 2003). 
 
Since 2004, new generation commercial small-footprint waveform laser scanning systems have 
emerged on the market (Hug et al., 2004; Lemmens, 2007) and there has been an increasing 
interest in maximising the potential of waveform data. Wagner et al. (2007) investigated the 
emerging benefits of using this new waveform data. In general, studies have focussed on 
overcoming the limitation of discrete laser scanning systems. For example, various detectors 
have been developed to extract more laser points than discrete systems (Persson et al., 2005; 
Nordin, 2006; Reitberger et al., 2006). However, little attention has been paid to detecting 
targets from complex pulses and validating results. On the other hand, parameters related to 
target characteristics have been extracted from waveform data in order to improve the 
classification of laser points, which has been a popular and challenging research issue for 
discrete data (Doneus and Briese, 2006; Wagner et al., 2006; Mandlburger et al., 2007). Thus far, 
the relationship between target characteristics and derived parameters has not been studied in 
detail and not widely examined over different land cover types (Doneus and Briese, 2006; 
Mandlburger et al., 2007; Pfeifer and Briese, 2007). More research effort is required into the 
issue of whether this so-called additional information can offer more reliable analysis for 
different applications and how to integrate it with other datasets (Jutzi and Stilla, 2005; 
Mandlburger et al., 2007; Pfeifer and Briese, 2007). 
 
This paper presents a method to detect targets from weak and overlapping pulses in order to 
achieve high range resolution and accuracy. The method also provides an important foundation 
for extracting the correct surface features of individual targets. The overview of waveform data 
derived from a Riegl LMS-Q560 is introduced in Section Two. Section Three presents the 
details of the developed method. Section Four contains a qualitative validation and comparison 
with commercial software. Finally, the main findings of the study are summarised in Section 
Five. 
 
2. Full-waveform data  
 
Waveform data from a Riegl LMS-Q560 full-waveform laser scanner were used in this study. 
The specifications of this laser scanner are presented in Ullrich et al. (2008). For each 
timestamp the transmitted waveform, received waveform and scan angle are stored. The 
sampling rate for digitising the waveform is 1GHz. The waveform is constructed as an 
amplitude-against-time dataset. The shape of transmitted waveforms is a Gaussian-like 
distribution (Wagner et al., 2006) as shown in Figure 1 (a). The received waveform is the record 
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of the returned energy from each laser pulse and can vary with the height distribution of the 
illuminated surface (Harding et al., 1994). The simplest cases of received waveforms are 
composed of nearly perfect peaks. For example, Figure 1 (b) shows the received waveform with 
two returns which are both similar to the shape of the transmitted pulse. More difficult cases are 
waveforms with complex shapes which are not like the transmitted pulse (see Figure 2). 
Moreover, waveforms with weak pulses also exist (see Figure 1(c)). 
 

 
 

Figure 1: (a) Example of transmitted waveform (b) Received waveform with nearly perfect peaks (c) 
Received waveform with weak pulses (note Y-axis scale change for illustrative purposes) 

 
 

 
  

Figure 2: Received waveforms with complex shapes (note Y-axis scale change for illustrative purposes) 
 
 

After examining different examples of typical received waveforms, a number of questions stand 
out: 

• How many individual targets are hidden within a complex waveform? 
• Where is the relative point for range estimation? 
• Are weak pulses targets or noise? 

 
A method was developed to seek the answers for the above questions and is described in Section 
Three. 

3. Methodology  
 
Because pulses are transmitted with a Gaussian-like distribution, the Gaussian decomposition 
method can be used for range estimation. This assumes that each return is Gaussian in nature 
and that the received signal is a sum of individual Gaussian distributions (Hofton et al., 2000). 
Fitting Gaussian functions to waveform data provides each return with a parametric description 
which can be used to store pulse shape information and decreases the effect of noise. Hofton et 
al. (2000) and Jutzi and Stilla (2005) concluded that the Gaussian decomposition method can 
improve the accuracy of range measurement compared with algorithms using only single values 
(e.g. peak algorithm, leading edge algorithm). The algorithm developed herein is therefore 
based on the Gaussian decomposition method. Waveform data from each laser pulse can be 
modelled using equation (1). The width parameter is 2 times the standard deviation of the 
Gaussian peak. 
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Where A = the amplitude of ith Gaussian      ti = the ith Gaussian peak                    
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       Nlevel = noise level of the waveform       n  = the number of Gaussians    
       widthi   = pulse width of ith Gaussian  
 
In order to get good fits and reasonable estimates, two main processing procedures are applied. 

3.1 Initial Parameter Estimates 
 
Reasonable initial estimates of the number of targets to be detected and the coefficients of 
Gaussian functions are needed for good fits to be achieved. The main task of this procedure is 
finding potential peak positions from weak and overlapping pulses. Firstly, visible peaks need to 
be found for the presence of standard returns. Figure 3 shows the workflow adopted for finding 
visible peaks. Local maxima are selected as the candidates for visible peaks. AT is a threshold to 
separate signal from background noise. A more stringent check is further applied on weak 
visible peaks (As is the threshold for selecting weak peaks) and neighbouring samples since only 
weak returns with pulse-like shapes should be identified as illuminated targets. In addition, the 
separation between two visible peaks must be greater than half the pulse length. Any peaks 
found within this distance are treated as noise. This is based on the assumption that when the 
separation between two Gaussian components diminishes to less than one pulse length, there is 
only one main peak existing, and at separations of less than half a pulse length, pulses become 
entirely like one standard Gaussian distribution. This assumption is demonstrated using 
simulated data and illustrated in Figure 4. 

 
Figure 3: Flowchart for finding visible peaks              Figure 4: Simulation of received waveform    
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Based on the above assumptions, in order to resolve overlapping pulses, the shapes of pulses are 
analysed to find overlapping peaks. The flowchart for this stage is presented in Figure 5. 
Essentially, the algorithm looks for asymmetric pulses. It is implemented to find inflexion points 
on both sides of primary visible peaks. In addition, in order to decrease the sensitivity of finding 
inflexion points caused by noise effects, step (a) in Figure is applied. Step (b) limits the place 
where overlapping peaks can be identified to avoid detecting spurious peaks from background 
noise. Finally, if the number of samples on the edge of a primary peak is much greater than 
those on the edge of the transmitted pulse, one overlapping peak is forced to exist. Figure 6 
shows the examples of detecting visible and overlapping peaks. Once visible and overlapping 
peaks are detected, initial values for the corresponding amplitude and timing point will also be 
selected. An initial width value for each Gaussian component is chosen to be the same value as 
the width of the transmitted pulse. 
 
 

 
 

Figure5: Flowchart for finding overlapping peaks          Figure 6: Examples of detecting visible and             
                                                                      overlapping peaks 
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3.2 Parameter Optimization 
 
In order to identify any peaks missed during the first procedure, remove noise, and determine 
the best estimation of peak positions, Gaussian fitting with reasonable constraints and checks 
are applied. The flowchart for this stage is presented in Figure 7. In the fitting process, a 
non-linear optimization technique – the Trust Region algorithm (Branch et al., 1999) – is used to 
apply constraints on parameter estimates. The lower boundary for Gaussian amplitude is 
specified as 2, which is the DC offset value, to avoid erroneous estimation. At first, initial 
parameter estimates from the first procedure (refer to Section 3.1) are used in Gaussian-fitting. 
Residual maximums from the Gaussian fit are checked to find the peaks missed during the first 
procedure. Since the ringing effect generates spurious small peaks immediately after pulses with 
high amplitudes, in order to avoid finding the peaks resulting from ringing, the corresponding 
amplitude of the sample with high residual value is further checked. Step (a) in Figure 7 selects 
ambiguous peaks which could result in overlapping and weak pulses to perform further checks, 
otherwise individual Gaussian parameters are taken as the best estimation. Step (b) contains 
final checks for reasonable parameter estimates. If any unreasonable parameter is found, the 
peak will be removed. The constraints are applied on special cases. Sep < 2ns is to limit the 
minimum separation between two peaks to 2ns, which is ½ pulse length of the Riegl LMS- 
Q560 system, based on the assumption described in Section 3.1. In order to avoid erroneous 
estimates, thresholds for estimated amplitude and width are applied (e.g. A<Amin, Width> σmax, 
Width< σmin). Moreover, A< (Max(x))/10) & Dts< Sr & Max(x)> Pm is set to remove peaks 
generated by the ringing effect. To prevent detecting background noise, A< Aw & (Width> σwi or 
< σwm) is set to limit the width boundary of extreme weak pulses and A< Ad & Width> σd is the 
constraint for potential weak pulses. Finally, Sep< So & DW< Do is applied to check the width 
difference between two extremely-overlapping pulses whose separation is close to half the pulse 
length. It is assumed that the width difference between two overlapping peaks must be big 
enough to allow the presence of a non-Gaussian shape.  

 
Figure 7: Flowchart for the best estimation of the number of targets and peak positions 
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4. Results 
 
Waveform data from a Riegl LMS-Q560 full-waveform laser scanner were collected over 
different land cover classes in Bristol, United Kingdom in August 2006 and used to test the 
developed approach. Qualitative validation for the detection of overlapping pulses and weak 
pulses was performed by examining 3D points and orthoimages acquired from the same 
platform. The performance was compared with commercial software which also processes 
waveform data. 
 
4.1 Qualitative Validation for Overlapping Pulses 
 
In Great Britain the height of most safety barriers along motorways is 0.61±0.03m from the 
ground to the centre of the barrier beams (Wignall et al., 1999). This height can result in 
overlapping pulses if lasers hit both the barrier and the ground within the footprint. In order to 
validate the result of resolving overlapping pulses, waveforms that interacted with vehicle safety 
fences were investigated. Figure 8 shows a sample of examined motorway and red points 
represent laser points known to interact with safety barriers. Figure 9 (a) and (b) shows sections 
of laser points as derived from commercial software and the developed algorithm respectively. 
Figure 9(c) illustrates the corresponding waveforms. It is apparent that the developed algorithm 
resolved overlapping pulses very well, and the hidden peaks were successfully found. It is 
evident that more points were extracted using the developed algorithm than with the commercial 
software. 
 

 

          
 

Figure 8: Examined motorway in Bristol 
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                                         (a) 
 

        
                  

(b) 
    
 

 
 
 
 
 
 
 
 
 
 

(c) 
 
Figure 9: (a) Points from commercial software (b) points from the developed algorithm (c) corresponding  
            waveforms 
 
 
 
4.2 Qualitative Validation for Weak Pulses 
 
Figure 10 shows an example of detecting weak pulses in a vegetated area. Red points represent 
3D points with low amplitude. Compared with the commercial software, weak pulses are more 
likely to be detected using the developed algorithm. Interestingly, numerous weak pulses 
occurred at positions of potential ground points beneath forest canopies. This implies that these 
laser pulses penetrated the vegetation to the ground level, but the energy of the last returns was 
very weak to the point of being undetectable by the commercial algorithm. 
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Figure 10: (a) Points from commercial software (b) points from developed algorithm (c) corresponding  
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5. Conclusion 
 
This paper has presented a new approach to resolve overlapping pulses and detect weak pulses 
from small-footprint waveform laser scanning data. The results show the shapes of overlapping 
pulses were found to be variable and depend on the amplitude, widths and separation distance of 
overlaid individual pulses. Due to the success of finding overlapping peaks, multi-target 
resolution has been improved. Moreover, the range accuracy will be improved as peak positions 
from individual returns are successfully identified. This benefit can potentially reduce the risk of 
overestimating ground height in vegetated areas. On the other hand, successfully detecting weak 
pulses can offer the opportunity to acquire more accurate digital terrain models in vegetated 
areas. Further research is being performed to provide a quantitative validation of these findings, 
as well as exploring the benefits of waveform parameters (amplitude, width and range) which 
are extracted after successfully identifying individual targets. It is expected that these waveform 
parameters offer additional information to further discriminate between on- and off-terrain 
points, thereby further enhancing outputs from airborne laser scanning. 
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Abstract 
 
Airborne laser scanning produces high resolution data which opens up for estimation methods 
on individual tree level. However, the detection rate depends on the forest structure, and 
typically suppressed trees below a dominant tree layer are not detected. This paper presents a 
method to produce tree lists consistent with unbiased estimates on raster cell level. First, 
automatic delineation of tree crown segments was performed. The number and attributes of trees 
were estimated within segments. Second, forest variables were estimated on a field plot level 
using both laser canopy height distribution and results from tree detection. Percentiles of the 
stem diameter and tree height distributions were estimated using regression models. Third, the 
estimated percentiles were used as input for imputation of field trees from similar field plots in 
order to create a target distribution matrix. The number of trees in this matrix was estimated by 
scaling with the estimated total volume for each field plot. Finally, the initial tree list obtained 
from the tree crown segmentation was adjusted by using the estimated target distribution matrix. 
Random errors and bias for stem volume and stem number estimates could be reduced by 
combining analysis on tree and raster cell level. 
 
Keywords: Lidar, single tree, area based, tree list, diameter distribution 
 
1. Introduction 
 
High resolution airborne laser scanning, ALS, data (≥10 measurements m-2) can be used for 
analysis on a tree level (e.g. Hyyppä et al. 2001; Persson et al. 2002; Solberg et al. 2006). A 
digital height model is created from laser data and image analysis techniques, most often 
Individual Tree Crown delineation, ITC, are used to detect individual trees and measure position, 
height, and canopy shape. This method is now being marketed as operational. However, the 
detection rate depends on the forest structure (Persson et al. 2002). Thus, estimates that are 
based only on analysis of individual trees might be biased (Maltamo et al. 2004). 
 
ALS is used operationally in Scandinavia for estimation of forest variables on raster cell level, 
the so called area based method, usually with regression models built on the Laser Canopy 
Height, LCH. The area based method generally produces forest variable estimates with high 
accuracy (Næsset et al. 2004) and low bias (Maltamo et al. 2006). Single tree methods usually 
have lower accuracy and underestimate the amount of trees (Næsset et al. 2004). Maltamo et al. 
(2004) have suggested a combination of methods to use the high accuracy from area based 
methods and the information for the dominant tree layer from single tree methods 
 
The aim of this study is to develop methods to supply an information system with a list of trees, 
each tree with estimated attributes, e.g. stem diameter and tree height. A method is presented to 
estimate tree lists with a combination of individual tree and raster cell level estimates. The 
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objective is to develop and validate a method that produces tree lists consistent with unbiased 
estimates on a raster cell level. 
 
2. Material and Methods 
 
2.1 Study area 
 
The study area is 1989 hectare large and located in the north of Sweden (lat. 640 25’ N, long. 140 
50’ E). The dominating tree species are Norway spruce (Picea Abies), birch (Betula spp) and 
Scots pine (Pinus Silvestris). The elevation ranges from 325 to 658 m a.s.l., which means that 
the site is located close to the limit for productive forest. 
 
2.2 ALS data 
 
The laser data acquisition was performed on August 7 and 8 2007 using a Leica ALS50-II 
airborne laser scanning system carried by a helicopter. The flying altitude was 600 m and the 
scan angle ±16 degrees, resulting in a scan width of 375 m and a scan density of about 10 points 
m-2. Laser returns were classified as ground or non ground using a progressive Triangular 
Irregular Network (TIN) densification method (Axelsson 1999, 2000) in the TerraScan software 
(Soininen 2004), and the ground returns were used to derive a Digital Terrain Model (DTM). 
 
2.3 Field data 
 
The area was divided into five strata using an existing stand register and a total of 179 field 
plots were allocated (Table 1). The field plot radius was 6 m in stratum 1-3 and 8 m in stratum 
4-5. The position of the field plots were measured using a Global Navigation Satellite System 
(GNSS). The trees on the field plots were measured using the Forest Management Planning 
Package (Jonsson et al. 1993). Within the plots, all trees with a stem diameter larger than the 
minimum stem diameter, 40 mm in stratum 1-3 and 60 mm in stratum 4-5, were callipered and 
tree species was recorded. The positions of the trees were registered relative to the centre of 
each plot by measuring azimuth and distance with a compass and ultrasonic device, respectively. 
The position of a tree was not measured if the tree had a large inclination. 
 

Table 1: Summary of field plot data 
 
Stratum Selection criterion Number 

of field 
plots 

 Species 
composition, 
percentage 
pine/spruce/
other 

Stem volume, 
average and 
5/95 
percentiles 
(m3 ha-1) 

Stem density, 
average and 
5/95 
percentiles 
(ha-1) 

1 Age 25-74 years, 
pine dominated 
(>=60%) 23  61/25/14 40, 28/59 1484, 539/2847 

2 Age 25-74 years, 
spruce dominated 29  0/65/35 49, 13/122 1524, 654/2493 

3 Age 25-74 years, 
mixed forest 33  31/40/29 43, 6/132 1299, 601/2440 

4 Age >75 years, 
spruce dominated 60  9/74/17 119, 41/218 895, 540/1450 

5 Age >75 years, 
pine dominated or 
mixed forest 34  36/56/8 140, 51/261 895, 413/1577 
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2.4 Individual tree crown delineation, ITC 
 
The first task was to automatically delineate tree crowns based on geometric tree crown models. 
A correlation image was produced by using geometric tree models and a Digital Canopy Model 
(DCM) derived from ALS height data. The correlation image was then smoothed and used for 
segmentation: a seed was placed at each pixel, with a DCM value greater than the height 
threshold and with a positive correlation value, and was allowed to climb to the neighbour pixel 
with the highest correlation value. The pixels with seeds climbing to the same local maximum 
defined a tree crown segment (Holmgren et al. 2006). The result was crown segments; each 
included an individual tree or a group of trees. The tree position was estimated by taking the x, 
y-position of the maximum canopy height value within the segment, and a measure of tree 
height (H) was achieved from the value of the maximum. The crown area of an individual tree 
could be derived by counting the number of pixels of a segment. A width (W) of a segment was 
derived assuming that a tree crown was circular. 
 
2.5 Field plot matching 
 
The three dimensional spatial pattern of the laser detected trees were matched with the spatial 
pattern of field measured positions of individual trees on a plot. The trees detected in ALS data 
were automatically linked to field measured trees (Olofsson et. al 2008). 
 
2.6 Estimation on tree segment level 
 
Each segment should ideally correspond to one tree on the ground but in reality, one segment 
may enclose several trees or one tree may be divided into several segments (Figure 1). Single 
tree properties have been estimated in two different ways: With regression models for variables 
of one tree in each segment, ITC, and with regression models for variables of the largest tree 
plus variables of the other trees in the segment, ITC with classification. 
 

 
 
Figure 1: Example of polygons from segmentation of ALS data and field measured trees shown as point 

symbols and circles with radius proportional to diameter. 
 
2.6.1 Classification of segments to determine number of trees 
 
Features were extracted from ALS data within the segments in order to model the number of 
field trees within a segment. Only segments where the centre was located inside a field plot and 
at least 2 m from the boundary were used in the analysis to reduce the number of segments 
covering ground outside field plots, referred to as reference segments. The variables 1-2 (Table 
2) were calculated from laser data, the rest were derived from field data. 
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Table 2: Variables used for analysis on tree crown segment level 
 
 Variable Description 
1 W , A is the area of the segment 
2 W/mean(W) Mean(W) is the mean of segment widths within same plot 
3 N Number of field measured trees within segment 
4 Dmax Maximum field measured stem diameter found within segment 
5 Dother Sum of field measured stem diameter for other trees within segment 
6 Hmax Maximum field measured tree height found within segment 
7 Hother Mean of field measured tree height for other trees within segment 
8 Bmax Maximum field measured basal area found within segment 
9 Bother Sum of field measured basal area for other trees within segment 
10 Vmax Maximum field measured stem volume found within segment 
11 Vother Sum of field measured stem volume for other trees within segment 
 
The strongest correlation for number of field measured trees inside segment was obtained for W 
and W/mean(W). W and W/mean(W) were divided into eight intervals and each reference 
segment was placed in an interval in order to estimate the probability for a reference segment to 
enclose a certain number of trees. The number of segments enclosing 1, 2, 3 and 4 or more field 
measured trees respectively was calculated for each interval and divided by the total number of 
segments in the interval. 
 

       (1) 
 
where  = number of segments enclosing i field measured trees in the interval and Nmax = 4. 

 is an estimate of the probability for a segment to enclose i field measured trees. The 
reference segments were used to build regression functions for 4-11 (Table 2). The regression 
was done separately for segments enclosing different number of field measured trees. 
 
An unknown segment was first placed in an interval determined by W and W/mean(W). The 
number of trees inside the segment was estimated as the sum of the probability to have a certain 
number of trees inside the segment times the number of trees. 
 

      (2) 
 
2.6.2 Estimation of tree variables from segments 
 
The variables 4-11 (Table 2) were estimated in each segment as 
 

      (3) 
 
where Ai is the value of the variable calculated from a regression model for segments enclosing 
i field measured trees. 
 
The result for each segment was an estimate of variables for the largest tree in the segment, i.e. 
4, 6, 8 and 10 (Table 2). ITC with classification also resulted in an estimate of variables for the 
rest of the trees in the segment, i.e. 5, 7, 9 and 11 (Table 2). The later estimate was divided by 
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the estimated number of trees minus one to get an estimate for each tree. 
 

     (4) 
 
If the result for the tree diameter was below the minimum value for the field measured tree 
diameter, Nestimated was iteratively reduced with one until the resulting tree diameter was above the 
minimum value. If the tree diameter was too small even when divided by one, the estimate was 
discarded. The estimates for the largest tree and the rest of the trees were put in a list of tree 
candidates. 
 
2.7 Estimation on raster cell level 
 
2.7.1. Estimation based on laser canopy height distribution, LCH 
 
Several features, height percentiles, average height of laser reflections, standard deviation of 
laser reflections and vegetation ratio, were derived based on the Laser Canopy Height (LCH) 
distribution by using vegetation returns. In order to exclude returns from below the canopy, e.g. 
shrubs and stones, vegetation returns were defined as returns with a vertical distance to the 
DTM greater than one meter and 10% of the maximum height within the plot/raster cell. These 
features were used to build regression models for the field measured percentiles for stem 
diameter and height distributions at 25%, 50%, 75% and 100%, as well as average stem volume 
per hectare and number of stems per hectare. Stepwise regression was used to find the most 
significant variables and Seemingly Unrelated Regression (SUR) was finally used to model the 
percentiles (Table 3). 
 

Table 3: Seemingly unrelated regression (SUR) for tree height and  
stem diameter distribution using laser canopy height distribution 

 
SUR model for stem diameter percentiles SUR model for tree height percentiles 
D25 ~ p10+p70+zavg+zstdh+vegratio H25 ~ p10+ p70+zavg+zstdh+vegratio 
D50 ~ p70+zavg+zstdh+vegratio H50 ~ p70+zavg+zstdh+vegratio 
D75 ~ p70+zavg+zstdh+vegratio H75 ~ p95+zavg+zstdh+vegratio 
D100 ~ p95+zavg+zstdh+vegratio H100 ~ p95+zavg+zstdh+vegratio 
 
The regression model used to estimate stem volume per hectare was (Eq. 5) and the regression 
model used to estimate number of stems per hectare was (Eq. 6). The result was corrected for 
logarithmic bias (Holm, 1977). 
 
log(Vol) ~ log(p90) + log(vegratio) + log(zavg)     (5) 
 
Dens ~ p90 + zstdh + vegratio       (6) 
 
where D25, D50, D75 and D100 = 25, 50, 75 and 100 percentile from field measured tree diameter, 
H25, H50, H75 and H100 = 25, 50, 75 and 100 percentile from field measured tree height, Vol = 
stem volume per hectare, Dens = number of stems per hectare, p10, p20, … = 10, 20, … 
percentile from laser reflection heights on plot, zavg = average height of laser reflections on plot 
and zstdh = standard deviation of laser reflections on plot and vegratio = vegetation ratio, the 
number of laser reflections from vegetation divided by the total number of laser reflections on 
plot. 
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2.7.2. Estimation based on laser canopy height distribution, LCH, and distribution of 
detected trees, ITC 
 
The laser reflection variables were combined with variables from individual tree detection 
aggregated on plots and used to build regression models for the field measured variables. 
Stepwise regression was used to find the most significant variables and SUR was used to model 
the percentiles (Table 4). 
 

Table 4: Seemingly unrelated regression (SUR) for tree height and  
stem diameter distribution using distribution of detected trees 

 
SUR model for stem diameter percentiles SUR model for tree height percentiles 
D25 ~ p10+zavg+vegratio+D60(ST)+ H50(ST) H25 ~ p10+zavg+vegratio+ D60(ST)+ H50(ST) 
D50 ~ p30+zavg+vegratio+ D60(ST)+ H75(ST) H50 ~ p30+zavg+vegratio+ D60(ST)+ H75(ST) 
D75 ~ p70+zavg+vegratio+ D75(ST)+ H80(ST) H75 ~ p70+zavg+vegratio+ D75(ST)+ H80(ST) 
D100 ~ p95+zavg+vegratio+ D75(ST)+ H100(ST) H100 ~ p95+zavg+vegratio+ D75(ST)+ H100(ST) 

 
The regression model used to estimate stem volume per hectare was (Eq.7) and the regression 
model used to estimate number of stems per hectare was (Eq. 8). 
 
Vol ~ vegratio + Vol(ST)       (7) 
 
Dens ~ p90 + vegratio + Dens(ST) + H100(ST)     (8) 
 
where D10(ST), D20(ST), … = 10, 20, … percentile from diameters from individual tree 
detection, H10(ST), H20(ST), … = 10, 20, … percentile from heights from individual tree 
detection, Vol(ST) = stem volume per hectare from individual tree detection and Dens(ST) = 
number of stems per hectare from individual tree detection. 
 
2.8 Adjusting tree candidate list from estimates on raster cell level 
 
The estimates of tree diameter and height percentile, stem volume and stems per hectare were 
used to identify plots with similar distributions. This was done by finding the plots with the 
smallest sums of squared differences between the values, i.e. the nearest neighbours. Plots were 
included in the list one by one until the number of trees was at least 800 or the number of 
included plots was 10. 
 
The field measured trees on plots with similar distributions were put into a field distribution 
matrix where each row corresponded to a tree height percentile and each column to a tree 
diameter percentile (Table 5). The percentiles were calculated from the list of trees on similar 
plots. 
 

Table 5: The distribution matrixes used for the analysis 
 
Field distribution Target distribution Stem distribution 

     
     
     
     
     

     
     
     
     
     

     
     
     
     
     

 
The number of trees  in each interval was multiplied by a scaling factor. 
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     (9) 
 
The result was an estimated target distribution matrix where each element corresponded to a tree 
diameter and height percentile and the value  corresponded to the number of trees on the 
plot in each percentile. The distribution of tree candidates was calculated by summing the 
number of tree candidates  in each percentile given by the target distribution. Tree 
candidates with a tree diameter or height larger than the 100 percentile were excluded from the 
list. 
 
The difference between the target distribution and the candidate distribution was calculated for 
each interval. If the number of tree candidates was too big, that number of tree candidates was 
excluded from the list. If the number of tree candidates was too small, that number of trees with 
correct tree diameter and height was added to the list by selecting trees at random from the list 
of field measured trees. The result was a list of trees with distribution and stem volume on plots 
predicted by the estimates on plot level. 
 
The result was aggregated on plot level and the procedure was repeated 50 times to study the 
average accuracy of the estimation. 
 
2.9 Validation 
 
RMSE and bias of stem volume per hectare and stem number per hectare was calculated for 
each method. Error index for tree heights, diameters and basal area on each plot was also 
calculated. The error index EI is defined as (Reynolds et al. 1988), 
 

       (10) 
 
where  is the number of estimated trees to histogram class j, is the number of actual trees 
in class j, and  is the total number of actual trees. This index measures the proportion of 
mismatch between two histograms based on given class boundaries. 
 
3. Results 
 
For estimation of stem volume, marginally lower RMSE was obtained from the model based on 
individual tree crown delineation after accumulation to plot level (Table 6, A) compared to the 
area based method that used laser canopy height percentiles as explanatory variables in the 
regression model (Table 6, C). For estimation of number of stems, RMSE was lower for the 
method based on LCH distribution compared to the ITC based method. ITC resulted in a large 
negative bias which was reduced to zero by using LCH. 
 
Both RMSE and bias was reduced for the ITC based method by classification of segments 
(Table 6, A and B). Further reduction of RMSE was possible if the estimates on segment level 
were summed to plot level and then used together with vegetation ratio as explanatory variables 
in a linear regression model (Table 4 and Eq. 7). By using this method (Table 6, D) for 
estimation of stem volume, the bias could be reduced to zero and the lowest RMSE was 
obtained. Adjusting the tree lists with the diameter-height distribution target matrix did not 
change the volume estimates much. For the stem number estimates, both RMSE and bias were 
reduced (Table 6, E and F). 
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Table 6: RMSE and bias for stem volume and stem number estimates on plot level using the methods: 
Individual Tree Crown delineation (ITC), ITC with classification, Laser Canopy Height (LCH) 

distribution, LCH and ITC distributions, ITC with adjustment, and ITC with classification and adjustment. 
Percentages of mean values within brackets 

 
Stem volume (m3ha-1) Stem number (ha-1)  Method 
RMSE Bias RMSE Bias 

A ITC 35 (36%) -14 (-14%) 595 (52%) -403 (-35%) 
B ITC with classification 33 (34%) -2 (-3%) 515 (45%) -208 (-18%) 
C LCH distribution  35 (37%) -2 (-2%) 358 (31%) 0 (0%) 
D LCH and ITC distribution  31 (33%) 0 (0%) 339 (30%) -2 (0%) 
E ITC with adjustment 34 (36%) 4 (4%) 402 (35%) 44 (4%) 
F ITC with classification and 

adjustment 
33 (34%) 4 (4%) 411 (36%) 52 (5%) 

 
The error index, which measures the proportion of mismatch between two histograms, decreased 
after adjustment of tree lists with the diameter-height distribution target matrix. This was observed 
for tree height, stem diameter, and basal area distributions, although the different was most obvious 
for tree height and stem diameter distributions (Table 7). 
 
Table 7: Error index for distribution of tree height, stem diameter, and basal area, on plot level using the 

methods: Individual Tree Crown delineation (ITC), ITC with classification, ITC with adjustment, and 
ITC with classification and adjustment. 

 
Error index  Method 
Tree height Stem diameter Basal area 

A ITC 98 97 90 
B ITC with classification 109 99 92 
E ITC with adjustment 95 92 89 
F ITC with classification and adjustment 96 93 89 
 
4. Discussion 
 
This study examined combinations of area based estimations and single tree estimations from 
segmentation. Such a combination gives more accurate estimation of stem volume per hectare 
than area based estimations only. The result for stem volume from LCH area based estimation 
was slightly less accurate than the result from ITC but it is not possible to draw any conclusions 
from that since the difference was small. RMSE was higher for all methods compared to other 
studies (Maltamo et al. 2006, Næsset et al. 2004). One reason may be that the plot size was 
small. Trees standing close to a plot boundary may have a big part of their branches on the other 
side. It is likely that the overall accuracy would be higher if a larger plot size was used. The 
proportion of deciduous forest was high, approximately 30% in stratum 2 and 3, which may 
degrade the accuracy considerably (Næsset et al. 2004). The analyses are not done with 
stratified data. Stratification of data and use of separate regression models for different strata 
may improve the accuracy of the estimates. However, the aim of this study is to compare the 
different methods and their results relative to each other using the same dataset. 
 
The study has also proposed a new method to create tree lists from estimation of forest variables 
on raster cell level. Those tree lists are more accurate estimates of stems per area unit than tree 
lists from individual tree detection. However, the RMSE of stem volume per area unit is almost 
the same. This may be due to the random selection from the list of field measured trees. 
 
The error index was lower for the tree lists adjusted with results from the area based method. 
Individual tree detection works best for larger trees and the area based method probably adds 
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most information for smaller trees. It may be possible to improve this by deriving larger trees 
from individual tree detection and adjusting the distribution according to results from the area 
based method for smaller trees. This is in line with the method used by Maltamo et al. (2004). 
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Abstract  
 
During the past millennium man has significantly changed the land-surface vegetation. 
Land-cover change by man has occurred since prehistoric times, but has accelerated over the 
past decades. Model studies indicate that changes in land cover affect climate, e.g., models 
indicate in the Sahel a causal link between reduction of vegetation and increased drought 
severity in the Amazon triggered by extensive deforestation. 
 
Here we present observational evidence for land-cover change at the global scale and a 
subsequent link with the intensification of drought. We analyse global climate data, data on 
historic land use and satellite data indicating vegetation height (ICESAT / GLAS) and amount of 
solar radiation absorbed for photosynthesis (AVHRR / SeaWiFS). Analysis of these data 
indicates that vegetation height and the amount of solar radiation absorbed for photosynthesis 
are reduced in regions of the world where vegetation is significantly altered by humans. These 
reductions in vegetation appear the most severe in some regions in the tropics and sub tropics. 
Moreover, we find that droughts are significantly more severe in areas where vegetation has 
changed, both in regions where vegetation growth is limited by precipitation as well as in 
regions where vegetation growth is limited by temperature. 
 
Keywords: GLAS/ICESAT, land-cover change, land-atmosphere interactions 
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Abstract  
 
The objective of our study was to estimate the relationship between crown information and 
individual tree growth using airborne light detection and ranging (LiDAR) data. We established 
two study plots in the University of Tokyo Forest in Chiba for the analysis of canopy 
information. We conducted a linear regression analysis between the crown lengths and widths 
obtained from ground surveys and those obtained from airborne LiDAR data. The crown lengths 
and crown widths obtained from airborne LiDAR data were correlated with those obtained from 
ground surveys (R2=0.46, R2=0.56). Next, we compared the crown surface area derived from 
airborne LiDAR data to tree growth observed in the study plot. The crown surface areas 
obtained from airborne LiDAR data were highly correlated with tree growth obtained from 
ground surveys (R2=0.95). Thus, airborne LiDAR accurately measured individual tree growth. 
We also compared tree growth to the proportion of crown surface area to stem surface area 
calculated from a stem curve based on a field survey. An exponential regression between tree 
growth and the proportion of crown surface area to stem surface area was carried out, resulting 
in a coefficient of determination of 0.74.  
 
Keywords: airborne LiDAR, crown, even-aged stands, stem, tree growth 
 
1. Introduction  
 
A forest grows due to the photosynthesis of its trees (Arain and Restrepo-Coupe 2005). Forest 
growth decreases as the respiration of trees increases (Bosc et al. 2003). This suggests that one 
can predict forest growth based on the balance between the photosynthesis and respiration of 
trees. 
 
The main parts of a tree involved in photosynthesis and respiration are the canopy and wood 
including the stems, branches, and roots, respectively. To estimate forest resources, one can 
collect direct, ground-based data on woodiness, such as the diameter at breast height (DBH) and 
the number of stems. Various growth models have been developed based on stem information, 
including the tree height and DBH (Castedo-Dorado et al. 2007; Qin et al. 2007). However, it is 
difficult to measure a crown structure that is high and complex. It is even more difficult to 
measure crown information over a wide area. Thus, no growth models that include crown 
information have been developed for Japanese mountainous areas at the regional scale. 
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Previous studies have suggested the utlility of remotely sensed data for measuring forest 
resources such as stand age (Farid et al. 2006), tree height (Hirata 2005; Takahashi et al. 2005; 
Næsset and Bjerknes 2001), and forest biomass (Labrecque et al. 2006).  In addition, airborne 
light detection and ranging (LiDAR) data enable us to obtain a wide range of canopy 
information, including leaf area (Roberts et al. 2005), canopy fuel (Andersen et al. 2005), and 
canopy structure (Coops et al. 2007).  
 
As mentioned above, it is important to analyze the relationship between woody information and 
canopy information in developing a growth model that considers the balance of respiration and 
photosynthesis. However, few previous studies have analyzed the relationship of crown 
information estimated from LiDAR and woody information measured by a ground survey in 
Japan.  
 
The objective of our study was to model tree growth as a function of the crown surface area 
derived from airborne LiDAR data. First, we examined the accuracy of crown information 
derived from airborne LiDAR for calculating the crown surface area. We then conducted a 
linear regression analysis of the crown lengths and widths obtained from ground surveys and 
those obtained from airborne LiDAR data. Next, we compared the tree growth observed in the 
study plot to the crown surface area derived from airborne LiDAR data and the proportion of 
crown surface area to stem surface area calculated from a stem curve based on a field survey. 
Finally, considering the balance of tree photosynthesis and respiration for the development of 
the growth model, we discuss the predicted tree growth using crown information derived from 
airborne LiDAR data. 
 
2. Methods  
 
2.1 Study area  
 
The University of Tokyo Forest in Chiba is located in the cities of Kamogawa and Kimitsu, 
Chiba Prefecture, Japan, between 50 and 370 m above sea level. The terrain is undulating with 
steep slopes, and most soils are of the brown forest type. The forest is located in a 
warm-temperate zone, with an average annual temperature of 14°C. The average rainfall is 2182 
mm year-1. The total forest area is 2216 ha, 824 ha (37%) of which comprise sugi (Cryptomeria 
japonica) and hinoki (Chamaecyparis obtusa) stands, 949 ha (43%) are natural hardwood forest, 
and 387 ha (17%) are natural conifer forest. The remaining 57 ha (3%) are demonstration forest. 
Stand age varies from approximately 10 to 100 years. Many permanent plots in sugi and hinoki 
stands have been established within the study site. The tree height and DBH were recorded 
approximately every 5 years in these permanent plots. 
 
2.2 Data correction  
 
2.2.1 Ground survey data 
 
We conducted a ground survey in a 27-year-old hinoki stand to check the accuracy of crown 
length measurements obtained from airborne LiDAR. For ground surveys, a circular sample plot 
22.6 m in diameter (0.04 ha) were established in the hinoki stand. DBH, tree height, base of the 
crown, crown width, and tree position were measured for all standing trees in each plot. We 
defined the base of the crown as the branch from which the crown continues all the way to the 
top (i.e., slightly higher than lowermost and solitary branches). We also measured the crown 
width from uphill and contralateral aspects. The tree positions were measured by differential 
global positioning system (DGPS) receivers (Trimble Navigation), Impulse 200 LR (Laser 
Technology), and MapStar System Electronic Compass Module II (Laser Technology). In 
calculating the observed crown length, the heights to the base of the crown were subtracted from 
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the heights of the trees. The heights to the base of the crown and the total heights of the trees 
were measured using VERTEXIII (Haglöf). 
 
The tree positions were also measured in permanent plots aged 102 years to link the stem 
growth data and crown information obtained from airborne LiDAR. 
 
2.2.2 Airborne LiDAR data 
 
The ALMAPS-G4 (Asahi Laser Mapping System), which consists of the ALTM 3100 laser 
scanning system produced by Optech, Canada, GPS airborne and ground receivers, and an 
inertia measurement unit (IMU) that measures the helicopter’s roll, pitch, and heading were 
used to acquire airborne LiDAR data. The laser scanner system transmits laser pulses at 1064 
nm (near-infrared) and receives the first and last echoes of each pulse. The elapsed time 
between transmittance and reception is measured to calculate the distance between the system 
and the measured object. 
 
Airborne LiDAR data were acquired on 14 August 2005. The flight altitude of the helicopter 
above the ground was approximately 500 m, and the average flight speed was approximately 
19.4 m s-1. The pulse repetition frequency of airborne LiDAR was 70 kHz, and the scan 
frequency was 27 Hz. The maximum scan angle (off nadir) was 18°. The beam divergence was 
1.2 mrad. Therefore, the footprint diameter was approximately 60 cm. The interval between 
footprints was about 25 cm. Both first pulse and last pulse were acquired to identify forest 
canopy and topography data in rugged terrain. 
 
Data from a region of interest (ROI) 200 m wide and 1700 m long were selected for this study. 
A digital elevation model (DEM) and a digital surface model (DSM; Fig. 1a) for the study area 
were prepared from the airborne LiDAR data, with a 25 cm cell size. Data for the digital canopy 
model,(DCM) which delineates canopy height from the ground, were calculated by subtracting 
the DEM from the DSM. 
 
2.3 Data analysis 
2.3.1 Estimating the crown length and width from LiDAR data 
 
The crown cross-sectional surface of the individual trees was estimated from LiDAR data with 
TNTmips ver. 6.6 (MicroImages, 2001). Using the DEM and DSM data, we estimated the 
crown cross-sectional surface of individual trees in each plot. The crown length and crown 
width of each tree were estimated from airborne LiDAR data using the TNTmips ver. 6.6 
(MicroImages, 2001), software of the GIS and image-processing system. First, each tree was 
identified using the DEM and DSM. Tree height was obtained from the DCM showing the 
canopy surface height from the ground height, and was calculated by subtracting the DEM, i.e., 
the height above sea level, from the DSM, showing the surface of the canopy. When the plot 
was magnified, airborne LiDAR data could identify the crown of each individual tree as a DCM 
(Fig. 1b). We defined each individual tree derived from airborne LiDAR data with a tree 
positioning map measured by a ground survey.  
 
Second, we estimated the crown cross-sectional surface. The crown length of each tree was 
estimated by subtracting the height to the base of the crown from the total tree height. We 
measured the height to the base of the crown on the rebound point obtained from the DSM 
cross-sectional surface (Nakajima et al. 2008; in press), because we considered the opposite side 
of objective tree canopy from the rebound point to be the crown of the neighboring tree (Fig. 2). 
The direction of the DSM cross-sectional surface was estimated from the average slope aspect 
derived from the DEM, because there was often more space for branch and leaf expansion on 
the slope side of trees.      
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                       (a) 

 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1: (a) Digital surface model and (b) digital crown model overlapped with tree positioning data 
 
Figure 3 shows an example of a cross-sectional surface of a tree. We calculated the crown length, 
crown width, and width at approximately the middle point of the crown length for this figure. 
Third, the estimates of crown length and width from airborne LiDAR data were compared to the 
data measured manually on the plot. The crown lengths and widths obtained from ground 
surveys were regressed against the crown lengths obtained from airborne LiDAR. We then 
calculated the coefficient of determination. These crown information data were also used for 
estimating the crown surface area. 

 

 
 

Figure 2: Position at which tree height was measured to determine the base of the crown. The base of the 
crown and crown width are indicated by a bold arrow and dotted arrow, respectively.  
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Figure 3: Example of the cross-sectional surface of a dominant tree  
 
2.3.2 Estimation of tree growth using crown information derived from airborne LiDAR 
data 
 
Finally, we obtained the relationship between the surface areas of the crown and stem using data 
derived from airborne LiDAR and the ground survey. In this study, we assumed that the stem 
surface and crown surface are the main parts of respiration and photosynthesis, respectively. 
This assumption is based on suggestions by previous studies that photosynthesis activity is very 
high on the crown surface (Kajihara 2000). Bosc et al. (2003) reported that the surface area of 
wood has a stronger relationship with respiration than with woody volume. With this 
assumption, we calculated the crown surface area and stem surface area and estimated the 
relationship of the individual tree growth and crown surface area or proportion of crown surface 
area to stem surface area. 
 
2.3.2.1 Relationship between tree growth and crown surface area 
 
In this procedure, we applied formula (1), the crown curve reported by previous studies 
(Kajihara 2000; Nakajima et al. in press), to the crown profile: 
 

XaaL
DXY

)2( −+
=                                                       (1) 

 
where X: distance from the top of the tree (m) 
      Y: width at distance X (m) 
      D: crown width (m) 
      L: crown length (m) 
      a, b: parameters 

 
The crown surface area is estimated with formula (2) showing the surface of the solid revolution 
of formula (1): 
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where Sc: crown surface area (m2) 
 
We calculated the crown surface area by integrating formula (2) with the Romberg quadrature 
and applied eight angles (45, 90, 135, 180, 225, 270, 315, and 360 degrees) of the crown around 
the tree top to these equations. We estimated the average value of the eight directions of crown 
surface area of the tree in the permanent plot. We compared the crown surface area to tree growth 
(m3 year-1) over the past 20 years calculated from the Yamamoto-Schumacher formula (Forestry 
Agency 1970) applied to the plots measured twice. The crown surface was regressed against the 
stem growth. We then calculated the coefficient of determination. 
 
2.3.2.2 Relationship between tree growth and the proportion of crown surface area to stem 
surface area 
 
We calculated the stem surface area from tree height and DBH, observed during the ground 
survey, and the relative taper curve (Nakajima et al. in press). We applied the relative taper 
curve estimated in the University Forest in Chiba (Nagumo and Tanaka 1981). Formula (3) is 
the actual taper curve: 
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where Ys: stem radius (m) 
     Ds: radius (m) at breast height (1.3 m)  
     H: tree height (m) 
     a, ß, γ: parameters 
 
The stem surface area is estimated with formula (4) showing the surface of the solid revolution 
of formula (3): 
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where Ss: stem surface area (m2) 
 
We calculated the stem surface area by integrating formula (4) with the Romberg quadrature. 
The crown surface divided by stem surface area was regressed against the stem growth (m3 
year-1) and was calculated as described above. We then calculated the coefficient of 
determination.  
 
3. Results and discussion 
 
3.1 Estimating the crown length and width from LiDAR data 
 
The crown lengths and widths estimated by airborne LiDAR were plotted against those 
measured in the ground surveys (Fig. 4). 
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Figure 4: Crown lengths and widths estimated by airborne LiDAR  
 
The coefficients of determination for crown length and width were 0.46 and 0.56, respectively. 
The first pulse of the airborne LiDAR captured the tendency of canopy size correctly because 
the distance between neighboring footprints was relatively narrow.  
 
In particular, the constant and slope of the regression lines for crown length were -1.7202 and 
0.7957, respectively. This result suggests the underestimation of crown length derived from 
airborne LiDAR data. A cause of the underestimation in this high-density sample plot (about 
4000 stems ha-1) could be that airborne LiDAR did not include the length of the shaded canopy. 
We verified the outcomes discussed above in the following way. In high-density stands, where 
branches shade other trees, we measured the sunlit canopy, as well as the shaded canopy, and 
included these data in the ground survey data because the shaded canopy was not completely 
dead. In other words, the length of the canopy in the survey was the sum of the sunlit and 
shaded canopies. However, the measurements included only the sunlit canopy, because the DSM 
measured by airborne LiDAR was obtained primarily from the first pulse, a laser that does not 
reach the shaded canopy. Therefore, differences between the crown lengths obtained from 
airborne LiDAR and ground surveys in high-density stands would be caused by an 
underestimation in airborne LiDAR, as airborne LiDAR did not include the length of the shaded 
canopy.  
 
However, this difference would not be significant for predicting stand growth. Kajihara et al. 
(1989) compared the distribution of stem volume in sunlit and shaded canopies and found that a 
shaded canopy has no influence on the stem growth of sugi and hinoki. In other words, the 
surface area of the sunlit canopy per unit area has more impact on growth than that of the 
shaded canopy. Kajihara (1985) showed that the surface area of the sunlit canopy plays an 
essential role in the growth of sugi stands. 
 
3.2 Estimation of tree growth using crown information derived from airborne LiDAR data 
 
3.2.1 Relationship between tree growth and crown surface area 
 
Figure 5 shows the relationship between tree growth and the crown surface area of the trees. 
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The coefficient of determination was 0.95. The P value and root mean square error (RMSE) 
were less than 0.01 and 0.008, respectively, suggesting a strong correlation between tree growth 
and crown surface area. This finding is also consistent with those of previous studies, which 
reported that in general, a larger crown surface area results in a greater annual increment 
(Kramer 1966).  
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Figure 5: Relationship between individual tree volume growth and crown surface area  

 
3.2.2 Relationship between tree growth and proportion of the crown surface area to stem 
surface area 
 
Figure 6 shows the relationship between tree growth and the ratio of the crown surface area to 
the stem surface area of the trees. The coefficient of determination was 0.74. This result 
suggests a correlation between tree growth and the proportion of crown surface area to stem 
surface area. To predict tree growth considering both stem information and crown information, 
some previous studies (e.g., Cole and Lorimer 1994; Wyckoff and Clark 2005) reported that the 
best fit was a non-linear model. Thus, we expected that the relationship between individual tree 
volume and the ratio of the crown surface area to the stem surface area of the trees would be 
non-linear. The coefficient of determination was less than that between tree growth and crown 
surface area. However, this relationship (Fig. 6) might be more applicable to sugi, regardless of 
tree age, similar to the previous non-linear regression growth model (i.e., Cole and Lorimer 
1994).   
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Figure 6: Relationship between individual tree volume and the ratio of stem surface area to crown surface 

area  
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As described above, we estimated the crown length by the DSM obtained from the first pulse. 
The first pulse reflected against the sunlit canopy does not include information on the shaded 
portion of the canopy, where sunlight is blocked by branches from other trees. In other words, 
Figures 5 and 6 suggest a strong relationship between the sunlit crown surface area and tree 
growth. This result is also consistent with previous reports that the shaded canopy does not 
contribute to tree growth (e.g., Kajihara 1985). 
 
Note that we considered only the stem surface area as the main contributor to respiration. 
However, a tree respires not only on the surface of its stem but also on the surface of its 
branches and roots. Thus, to obtain an accurate estimation of the relationship between 
photosynthesis and respiration, we should compare the crown surface area to the sum of the 
surface area of stems, branches, and roots. Fukuda et al. (2003) showed the relationships 
between the total biomass and bole biomass of sugi depending on stand age. Given that stem 
biomass is highly correlated with the total biomass, it might be possible to estimate total tree 
growth based on stem growth models such as in Figures 6 or 7.  
 
4. Conclusion  
 
Airborne LiDAR was successful for acquiring precise measurements of crown lengths and 
widths in high-density stands. Based on these results, we estimated the relationship between tree 
growth and the crown surface area of individual trees. We found strong correlations between the 
crown surface area and tree growth. We also found that tree growth could be modeled as a 
function of the ratio of the crown surface area to the stem surface area.  
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Abstract 
 
The aim of this research is to improve a method to identify individual trees using airborne 
LiDAR. In our research, “Crown Shape Index” was invented to detect individual tree tops. The 
index is calculated based on unevenness of grid digital height model (DHM). And the authors 
devised a new method that extracts crown area surrounding tree top by referring to statistics 
theory. The authors applied the index and method to a Japanese cedar forest. Crown Shape 
Index applied to low density forests resulted in 80 to 90% detection accuracy. With the increase 
in tree density, the accuracy dropped by 10 to 20%. Further, in order to understand the accuracy 
of Crown Shape Index, the identification result was compared with that of aerial photo 
interpretation by human eyes. As the result of this comparison, it was found that the Crown 
Shape Index method could detect 80 – 100% of the detection numbers by aerial photos. From 
this result, individual tree identification by Crown Shape Index is considered to have the same 
level of accuracy with manual aerial photos interpretation method. 

 
Keywords: individual trees detection, LiDAR, Crown Shape Index 
 
1. Preface 
 
Forests fix CO2 and contribute to restrain the global warming. Forests can maintain water 
resources and conserve soil and also provide space and environment for outdoor recreation. 
Recently, these functions of forests are highly evaluated.  
 
In order to preserve precious forests, they should be managed properly and for that purpose, it is 
required to know exact conditions of forests.  
 
One of the most basic information on forest is the number of trees growing in forests. 
Traditionally, on-the-spot investigations have been the most popular method for countering 
number of trees. However, with the development of LiDAR technologies, application of LiDAR 
data for forest survey has been studied and now the technology has great potential in individual 
stand detection. 
 
Most researches on individual stand identification by LiDAR data have used DHM (Digital 
Height Model), which is the difference between DSM and DEM, as a criterion for the detection 
and watershed algorism or local maximum filter as a method. [1,2,3,4] Also, there was a research to 
identify individual stands based on crown shape model using raw laser pulse data.[5]  
 
Shape of crown, however, is very complex and particularly in dense forests DHM cannot give 
clear height difference between tree tops and edge of crowns. Thus, reliable detection of 
individual tree is difficult in dense forests. 
 
In our research, we have invented a new index by processing DHM data of crown area to 
improve the individual trees detection result. 
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2. Study Area and Data Used 
 
Study area is an artificial forest of Cryptomeria japonica (Japanese cedar) in Kosugi Village, 
Yamanashi Prefecture in central Japan. In the study area, square shaped plots whose size is 
almost equal to average tree height (20m) in the area were established and number of stands, 
DBH, tree height, slope angle, slope direction and coordinates of corner points of the plots were 
surveyed. GPS receiver was used to acquire the coordinates. Characteristics of the four plots are 
given on Table 1.  

Table1: The forest state of investigation site 
 

Plot_No average tree height
（m）

average DBH
（cm）

stand tree density
（trees/ha）

P1 20.8 27.0 860
P2 21.2 28.2 1176
P3 20.3 23.3 1964
P4 18.7 21.1 2435  

 
LiDAR data used in the research was acquired on December 1, 2006. Specifications for the data 
acquisition are summarized as Table 2. 
 

Table2: Specifications for data acquisition 
 

sensor leica　ALS50-Ⅱ
laser pulse rate 100KHz
scan rate 62Hz
scan angle ±9°
average point density 4pts/m2

Flying Height AGL 1890m
position accuracy X,Y < 0.20m 
elevation accuracy Z < 0.11m 
Laser classification Class 4  

 
From this dataset, two sets of data were made. First, abnormal data were removed. Then, the 
data were filtered. From the two sets of data TIN was made and 0.5 meter grid data, DSM 
(Digital Surface Model) and DEM (Digital Elevation Model）were generated. Further, DEM was 
subtracted from DSM to make DHM（Digital Height Model）. 
 
3. Individual Tree Identification Method 
 

3.1 Development of Crown Shape Index 
 
In DHM height difference between tree tops and edges of crown is not large. Therefore, it is 
difficult to identify individual trees with DHM. To deal with this problem, the authors have 
developed an index named Ridge/Valley Index. [6] Its principle is as follows. 
 

1) Prepare 0.5 meter grid DHM of canopy surface. 
2) At First, “upper open degree” phi1 is calculated. This is an angle between a vertical line and 

a line which starts from each grid point of DHM and tangent to the crown surface, which is 
represented by DHM, within each search area. 

3) Similarly, “lower open degree” phi2 is calculated. 
4) Angle phi3 is calculated by the following formula: 
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Phi3 = (phi1 – phi2)/2 
 
5) Total 8 phis are calculated for 8 directions for each DHM grid point and their average is 

computed. This average is named as the Crown Shape Index. 
 

Ridge/Valley Index expresses the condition of canopy at each grid point. The authors could 
emphasize the shape of canopy surface by using this index. 
 

Phi1

vertical line

search area size

+

Phi2

Phi3

Phi1

Phi2

search area size

－
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Figure1: Concept of Ridge/Valley Index（Cross section） 
 
Difference in Ridge/Valley Index value of tree top and that of crown edge is larger than the 
difference given by DHM and also the index is almost the same for any tree top regardless of 
tree height. Since the index can represent outline of crown shape the authors assumed that it 
could be used for individual stand identification by using a uniform threshold value. 
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Figure2: Relation between Ridge/Valley Index and cross section of crown surface 
 
It was found, however, that approximately only 70% of trees were identified by the index in low 
density forests (1000 stands/ha). This means there was much miss identification. Analysis of the 
results revealed that there were three issues which need to be dealt with. 
 
1) Clarification of the shape of small crowns where height difference between tree tops and 

crown edge is small.（Although Ridge/Valley index can represent relatively flat crown area 
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better than DHM, small crowns were not represented well.） 
2) Prevention of the index value becomes extremely large at crown edges. 
3) Clarification of positions of tree tops 

 
In order to solve these problems and to improve the accuracy of individual stand identification, 
the authors improved the Ridge/Valley Index. 
 
Ridge/Valley Index can represent approximate shape of tree crowns by degrees. This index 
cannot work well in forests where crown surface is relatively flat. 
 
To solve this problem a tree crown model was made based on the shape of ridge and valley 
formed by Upper Open Degree (phi1) and Lower Open Degree (phi2), and this model was 
defined as the Crown Shape Index. The principle of the Crown Shape Index is shown in Figure 
3. 
 
In Figure 3, relatively flat line represents the crown surface. Upper Open Degree and Lower 
Open Degree were switched to emphasize the undulation of crown surface. The lower undulated 
line is the result of this switching process. 
 

 
 

Figure3: Principle of Crown Shape Index 
 
The Crown Shape Index is calculated as follows: 
 
1) Upper and lower open degrees are replaced with pre-fixed values according to the following 

5 criteria. 
 

1. 150≦phi1 ⇒ phi1=150、 
phi2≦30 ⇒ phi2=30 
(To prevent extreme values at crown edges） 

2. 90≦phi1＜150 ⇒ phi1=150、 
30＜phi2≦90 ⇒ phi2=30 
(To emphasize convex part of crown shape) 

3. 30≦phi1＜90 ⇒ phi1=30、 
90＜phi2≦150 ⇒ phi2=150 
(To emphasize convex part of crown shape） 

4. phi1＜30 ⇒ phi1=phi1、 
150<phi2 ⇒ phi2=phi2 

5. If DHM values of the surrounding 8 directions are higher than the DHM value of a 
grid point then 179.9 is assigned to phi1 while 0.1 is assigned to phi2. 
(To emphasize the position of crown tops） 
 

2) By using the Upper and Lower open degree value assigned according to the above 5 criteria, 
phi3 is calculated by the same method with Ridge/Valley Index. 
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3) Average of phi3 for 8 directions is computed. And this average is Crown Shape Index for 
that particular grid point. 

 
Larger Crown Shape Index value represents convex area while smaller index represent concave 
areas. 
 
3.2 Development of a method of individual stand identification 

 
In individual stand identification using Ridge/Valley index, a uniform threshold value was used 
to extract crown area of each tree. However, since a uniform threshold value was used, if the 
index value is lower than the threshold value, the area cannot be identified as crown area even if 
the area is actually crown area. 
 
To solve this problem, the authors tried to set a threshold value for each crown individually. For 
this purpose it is necessary to establish individual crown area for each tree. Individual crown 
area should be clearly separated from adjacent crown areas. If more than two crown areas are 
connected, they are regarded as belonging to one single tree and this result in smaller number of 
individual stand identified.  
 
Therefore, the size of individual crown area for individual stand identification should be 
approximately half of the size of actual crown. 
Relation with crown area and the smaller crown area surrounding tree top are shown in Figure 
4. 

 

crown area

crown part

 
 

Figure 4: Crown area and area near tree top 
 

Table 3 shows the ratio of crown part near tree top to the size of crown area for four cases of 
different pixel sizes. Average percentage of the crown top area against crown area is 
approximately 16% on Table 3. 
 

Table3: Ratio of crown part 
 

unit:pixel
1×1 2×2 3×3 4×4

1 4 9 16
3×3 5×5 7×7 9×9

9 25 49 81
crown part ratio 11.1% 16.0% 18.4% 19.8%

average

crown part

crown area

16.3%  
 
The authors pondered if optional 9 pixels (3×3) are chosen, the 9 pixels will be regarded as 
normal distribution, because Crown Shape Index is regarded as normal distribution (in figure 5 
left histogram). And we extracted the crown part by referring to statistics theory. When value is 
normal distribution, in statistics theory a range of +-1 σ of the mean occupies 68% of total 
(figure 5). We exploited the theory and detected crown parts. 
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In order to detection the crown top area (crown part), we decide the threshold every local 
domain (crown area size). The threshold is the value that added standard deviation (σ) to the 
mean (μ) of Crown Shape Index of a domain. Centre value of the domain was compared with 
the threshold, and if centre value is bigger than the threshold, centre pixels form crown area 
surrounding tree top. 
 

 μ μ＋σμ－σ

68％

16％84％

 
 

Figure 5: Histogram of Crown Shape Index and principle of determining threshold value 
 

3.3 Flow of individual stand identification 
 

Flow of individual stand identification where 0.5 meter grid DSM and DEM are used to 
compute Crown Shape Index is shown in Figure 6.  
 
The points with the possibility to select the tree top are extracted by using a local maximum 
filter. A local maximum filter was applied to Crown Shape Index. In this case, the filtered 
domain was fixed to 3 pixels by 3 pixels. The filter replaces the value of the center point with 
the maximum value in the domain.  
 
Crown Shape Index values before and after the process are compared. If the two values are 
equal, that point is identified as a possible tree top. 
 

DEM

Calculation of
Crown Shape Index

Tree height
grid data

Virtual 
reproduction
crown shape 

Local Max Filter
3*3（pixel）

extraction of tree
top candidates

Detection of crown part
by kinetic threshold value

Selection of
tree tops

Labeling of 
crown part

DSM

Calculation of upper open 
degree and lower open degree. 

Search area is about the 
interval trees. Identify the highest DHM among tree top candidate points for 

each tree crown part where the candidate points exist. The 
selected point is defined as the tree top of that crown.

Identification of 
tree tops

 
 

Figure 6: Flow of individual stand identifications using Crown Shape Index 
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4. Result 
 

The result of the process described in Figure 6 is shown in Figure 7. 
 

Image of DHM Image of Crown Shape Index

Result of extracted tree top
candidates

Result of extracted crown partIndividual stand identification
result  

 
Figure 7: Individual stand identification result 

 
Verification of the identification result was carried out by comparing with the result of field tree 
counting and tree counting by stereo view of aerial photos. 
 
In order to increase the number of verification sites, more than one plot is established in P1, P2 
and P4 stand and number of trees was counted in such plots. Verification result is summarized 
on Table 4.  

Table 4: The rate of individual tree detection 
 

P1-1 P1-2 P2-1 P2-2 P-3 P4-1 P4-2
1964

30 28 67 76 64 69 63
The number of detected tree tops 28 27 55 70 53 47 54

The accuracy of detected trees 93% 96% 82% 92% 83% 68% 86%
The number of detected tree tops 24 25 58 68 45 48 45

The accuracy of detected trees 80% 89% 87% 89% 70% 70% 71%
86% 93% 105% 97% 85% 102% 83%

2435

The comparison of aerial photos and LiDAR data

Stand tree density (tree/ha) 860 1176
The number of actual trees

Aerial Photos

LiDAR data

 
 

In low density forests (P1 and P2) 90 to 100 % of trees were identified on stereo view of aerial 
photos. In dense forests, the accuracy drops by nearly 20%. In dense forests, number of 
suppressed tree increases and their small crowns are not easily identified by human eyes on 
aerial photos. 
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Crown Shape Index applied to low density forests resulted in 80 to 90% identification accuracy. 
With the increase in tree density, the accuracy dropped by 10 to 20%. This means that Crown 
Shape Index method showed similar accuracy dropping tendency with visual photo 
interpretation method with the increase in tree density. This may further indicate that LiDAR 
data could not detect small crowns of suppressed trees. 
 
From the above results, the authors conclude that the accuracy of individual tree identification 
in low density forests increased from 70% of the Ridge/Valley Index method by using improved 
Crown Shape Index. 
However, in dense forests, the accuracy is not high enough and further research is required. 
 
Further, in order to understand the accuracy of Crown Shape Index, the identification result was 
compared with that of aerial photo interpretation by human eyes. The comparison result is 
summarized as the last row of Table 4. As the result of this comparison, it was found that the 
Crown Shape Index method identified 80 – 100% of the detection by aerial photos. From this 
result, individual tree identification by Crown Shape Index is considered to have the same level 
of accuracy with manual aerial photos interpretation method. 
 
5. Conclusion  

 
In this research, individual trees in forest were identified by using a newly developed Crown 
Shape Index which clearly represents tree crown shape. 
 
It was confirmed that the Crown Shape Index had a great potential in individual stand 
identification at the same level of accuracy with aerial photo interpretation. 
However, number of identified trees tends to be less than actual number of trees and further 
improvement of the index is required. 
 
Further, the authors plan to apply the method to forest of other species in order to make the 
method applicable to various types of forests. 
 
A system to calculate crown size and tree density from identified tree top and to select areas 
which require maintenance will also be developed to contribute to better forest management. 
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Abstract 
 
The mean and standard deviation of lidar-derived height data have shown to be important 
variables with which to summarize forest structure. However, lidar data has a limited spatial 
extent and a very high economic cost. Landsat data provides useful structural information in the 
horizontal plane and is easily accessible. The integration of both data sources offers an 
interesting opportunity to aid sustainable forest management. Different spectral indices (NDVI 
and Tasseled Cap) were obtained from three Landsat scenes (March 2000, June 2001 and 
September 2001), and the mean and standard deviation of lidar height measurements were 
calculated in 30 m square blocks. Correlation and forward stepwise regression analysis was 
applied to these data sets. Mean lidar height versus NDVI and wetness Tasseled Cap showed the 
best correlation coefficients (ranging between 0.65 and -0.73). The best regression models 
included NDVI and wetness for June and September as dependent variables (adjusted r2: 0.55 – 
0.62). These results showed that lidar data can be used to train Landsat to map forest structure, 
and it should be interesting to further optimize this approach. 
 
 
Keywords: lidar, Landsat, mean height, forest structure 
 
1. Introduction 
 
Canopy structure can be defined as the organization in space and time, including the position, 
extent, quantity, type and connectivity, of the aboveground components of vegetation (Parker, 
1995; Lefsky et al., 1999). Structure includes vertical (e.g. number of tree layers, understory 
vegetation) and horizontal features (e.g. spatial pattern of trees, gaps) as well as species richness 
(Maltamo et al., 2005). 
 
The mean and standard deviation of lidar-derived height data have shown to be variables that 
synthesise forest structure of the canopy. Zimble et al. (2003) used lidar-derived tree height 
variances to distinguish between single-story and multi-story forest classes. Lefsky et al. 
(2005a) pointed out that mean height and height variability figures derived from lidar data are 
strongly related to canopy indices and thus related to stand structure. These authors consider 
these variables to represent the same kind of enhancement of lidar data that the Tasselled Cap 
indices represent for optical remote sensing. Pascual et al. (2008) found that mean, median and 
standard deviation of height derived from lidar could be used to distinguish horizontally 
heterogeneous forest structure types.  
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Small footprint airborne laser scanners provide detailed information on the vertical distribution 
of forest canopy structure (Hyyppa et al., 2008), but over a limited spatial extent and with a 
high economic cost. Landsat data provides useful structural information in the horizontal plane 
and is much more accessible (Cohen & Spies, 1992). Therefore the integration of optical remote 
sensing imagery and lidar data provides improved opportunities to fully characterize forest 
canopy attributes and dynamics (Wulder et al., 2007).  
 
Hudak et al. (2002) developed spatial extrapolation of lidar data over Landsat images. Methods 
for the combination of lidar-derived metrics and optical images has been also devised (Chen et 
al., 2004; Lefsky et al., 2005b). In addition, two coincident lidar transects, representing 1997 
and 2002 forest conditions in the boreal forest of Canada, were compared using image segments 
generated from Landsat ETM+ imagery (Wulder et al., 2007).  
 
Given the relationship between mean and standard deviation of height derived from lidar and 
forest structure, the objective of the present work is to evaluate the relationship between 
summaries derived from lidar and spectral information from the Landsat satellite. The final aim 
of this work is to establish whether Landsat data can be used to predict lidar forest canopy 
height (mean and standard deviation). 
 
2. Methods 
 
2.1 Study area 
 
A 127.10 ha (1293 x 983 m) area, located on the western slopes of the Fuenfría Valley (40º 45´N, 
4º 5´ W) in central Spain, was selected as the study area. The Fuenfría Valley is located in the 
northwest portion of the Madrid region (Figure 1). The predominant forest is Scots pine (Pinus 
sylvestris, L.) with abundant shrubs (Cytisus scoparious (L.) Link., C. oromediterraneus Rivas 
Mart. et al., Genistaflorida (L.)) in some areas.  
 

 
Figure 1: Study site. Fuenfría Valley, in the village of Cercedilla, northwest of Madrid (Spain). 

 
There are small pastures on the lowest part of the hillside. In the northern sector of the study site 
there is an extensive rocky area. The site has a mean annual temperature of 9.4ºC and 
precipitation averages 1180 mm per year. Elevations range between 1310 m and 1790 m above 
sea level, with slopes between 20% and 45%. The general aspect of the study site is east. 
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2.2. Lidar data 
 
A small footprint lidar dataset was acquired by TopoSys GmbH over the study area in August, 
2002. The TopoSys II lidar system recorded first and last returns with a footprint diameter of 
0.95 m. Average point density was 5 points m-2. The raw data (x, y, z-coordinates) was 
processed into two digital elevation models by TopoSys using the company’s proprietary 
software. The digital surface model (DSM) was processed using the first pulse backscatters and 
the digital terrain model (DTM) was constructed from the last returns. Filtering algorithms were 
used to identify canopy and ground surface returns for an output pixel resolution of 1 m 
horizontally and 0.1 m vertically. According to TopoSys calculations the DSM and DTM 
positional accuracy was 0.5 m horizontally and 0.15 m vertically.  
 
To obtain a digital canopy height model (DCHM), the DTM was subtracted from the DSM. 
Both the DTM and DCHM were validated before use by land surveying with a total station and 
ground-based tree height measurements. The vertical accuracies, calculated as Root Mean 
Square Error (RMSE) obtained for the DTM in open areas and the DCHM under forest canopy 
were 0.30 m and 1.3 m, respectively (Pascual, 2006). These accuracies were acceptable for this 
study, and were in agreement with previous studies. For example, Clark et al. (2004) reported 
RMSEs for DTMs ranging from 0.06 to 0.61 m and for DCHMs ranging from 0.23 m to 2.41 m 
in tropical landscapes. 
 
2.2. Image data and preprocessing 
 
In this study we used three Landsat ETM+ images from scene path/row (201/32) corresponding 
to three different dates (March 15th, 2000, June 6th, 2001 and September 10th, 2001). The 
Landsat images were georeferenced and radiometrically calibrated.  

June and September’s Landsat images were co-registered, at the Alcalá University’s Geography 
Department, using digital highway maps of the Madrid region (E 1:50.000). RMSE was less 
than 30 m (1 pixel); the projection system was UTM (Datum Europeo 1950) with a pixel 
resolution of 30 m. We validated the image co-registration in the study area using a set of easily 
recognisable points.  

From the March Landsat image, a subset area of 30 x 30 km was orthorectified. Control points 
were selected, taking as reference September’s georeferenced image. The source of altitudinal 
information was a 20 m pixel DTM of the Madrid region. We used 38 control points, 
homogenously spread out over the subset image. RMSE was 11.49 m (0.4 pixels). The COST 
absolute radiometric correction model of Chavez (1996) was applied to each image to convert 
digital counts to reflectance.  

 
2.3. Lidar DCHM summaries (mean and standard deviation) and spectral indices 
 
The DCHM lidar (1 m pixel) was degraded to 30 m cell blocks, providing a 30 m grid of 32 
rows and 41 columns. The mean and standard deviation of the 900 lidar height values contained 
in each 30 x 30 m block were calculated. Two new 30 m pixel images of the mean and standard 
deviation of lidar height values were thus obtained. 
 
NDVI and Tasseled Cap (TCAP) were calculated for the March, June and September Landsat 
images. TCAP transformation was obtained using coefficients for brightness, greenness and 
wetness derived by Crist (1985). According to Cohen et al. (2003), no published transformation 
exists to convert atmospherically-corrected ETM+ spectral data into Tasseled Cap indices. 
However, the authors have verified that Landsat TM and ETM+ are similar enough to assume 
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that any differences in Tasseled Cap indices derived from data from the two different sensors are 
minor.  
 
2.4. Sample design and statistical analysis  
 
First, we created a mask to exclude bare soil, rocks, pasture and shrubs from subsequent 
analysis (Figure 2) performing unsupervised classification of the September Landsat image. In 
addition, systematic sampling was used to reduce the spatial autocorrelation inherent in remote 
sensing imagery. The sampling procedure was designed based on semivariograms of the lidar 
DCHM mean height and wetness Tasseled component. Semivariograms were calculated using 
the free distribution software Variowin 2.2. (Pannatier, 1996). Mean lidar height was selected 
based on previous work (Pascual, 2006) and wetness TCAP component because is often related 
to forest structure (Cohen & Spies, 1992). The semivariance tends to stability at 130-150 m. 
Therefore, two samples were obtained, each using one out of every four or five pixels, one for 
statistical model building and the other to independently validate the model.  
 

 
Figure 2: 0.5 m pixel digital orthophoto of the study area (yellow frame). Different covertures (pasture, 

bare soil, shrubs and Populus sp) were digitalised and labelled. 
 
 
Pearson’s correlation among Landsat spectral indices and lidar statistical descriptors was 
performed. Furthermore, forward step regression analysis (p enter = 0.05; p remove = 0.05) was 
carried out between both variable sets. All statistical analysis was conducted using 
STATISTICA 6.1 software. Before proceeding with regression analysis, the normality of the 
dependent and independent variables was verified and transformed when needed. 
 

Populus sp

Pasture

Bare soil shrubs 
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3. Results and Discussion 
 
Mean lidar height and standard deviation of lidar height provided two images (Figure 3) with a 
gradient from black to white representing spatial variation in canopy height.  
 

 
Figure 3: Mean lidar height image (30m pixel) (left) and Standard deviation of lidar height (right). 
Black to white gradient represent growing height values. Vectorial digitized covertures are included.  

 
Correlations among NDVI indexes (Figure 4) and the square root of mean lidar height 
( hmean ) indicated a moderately strong relationship among these variables (r = 0.65, r = 0.70 y 
r = 68; p = 0.05; n = 47 for March, June and September respectively). Standard deviation of 
lidar height (sd_30) demonstrated an insignificant relationship with all NDVI indices for the 
three dates (Table 1).  
 

Table 1: Pearson’s correlation between lidar-derived metrics and spectral indices (n = 47).  
March 15th 

 NDVI Br Gr We 
hmean  0.65* -0.50*  0.46* 0.64* 
sd_30 0.20 -0.16 0.18 0.20 

June 6th 
 NDVI 1/Br Gr Log(-We) 

hmean  0.70* 0.65* 0.50* -0.72* 
sd_30 0.30* 0.13 0.26 -0.11 

September 10th 
 NDVI 1/Br Gr Log(-We) 

hmean  0.68* 0.59* 0.34* -0.73* 
sd_30 0.29* 0.15 0.17 -0.04 

*significant correlations p < 0.05; Br, Gr and We are brightness, 
greenness and wetness Tasseled components derived from 
ETM+. 

 
Lu et al. (2004) found strong correlations between NDVI and forest attributes derived from field 
measurements. Nevertheless, Hall et al. (1995) and Franklin et al. (1997) do not consider this 
spectral index especially appropriate for the study of forest attributes because of the weak 
correlation that has been shown with certain parameters of vegetation. Regarding this, Lu et al. 
(2004) indicate that conclusions as to its application vary depending on the biophysical 
parameters and the characteristics of the study area.  
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a)   

b)   

c)   
Figure 4: NDVI (left ) and colour composition of the TCAP components (right): brightness in red 
channel; greenness in green channel and wetness in blue channel. a) March 15th; b) June 6th; and c) 

September 10th with the feature digitalized covertures (bare soil, pasture, shrubs). 
 

 
Regarding TCAP transformation, the brightness and wetness of June and September (Figure 4) 
presented moderately strong correlations with the square root of mean lidar height (r = 0.65, r = 
-0.72 y r = 0.59 r = -0.73; p = 0.05; n = 47 respectively) (Table 1). When considering the 
Tasseled Cap components of each date separately, wetness presented higher correlations with 
the square root of mean height. Other authors have also reported strong correlations between the 
wetness component and multiple forest attributes measured in the field such as the dbh 
(diameter at breast height), crown diameter, mean height and basal area (Cohen & Spies 1992; 
Cohen et al. 1995). Wetness is considered the most interesting spectral index to estimate forest 
structure of dense formations (Cohen & Spies 1992; Cohen et al. 1995; 2001). In addition, this 
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component has been revealed as most significant when studying the temporal evolution of 
forests, such as mortality (Collins & Woodcok, 1994), harvesting and silvicultural activities 
(Wilson & Sader, 2002; Healey et al., 2005) or in the evaluation of damage by plagues (Skakun, 
et al., 2003). Standard deviation of lidar height (sd_30) and Tasseled components revealed weak 
and not significant correlations (Table 1). 
 
Regarding regression analysis (Table 2), the three models presented coefficients of 
determination ranging from 0.55 to 0.63. Standard deviation of height derived from lidar 
(SD_30) was excluded from regression analysis due to low Pearson´s correlation (Table 1).  
 
None of the three models presented colinearity problems (i.e. linear relationship among the 
independent variables problems). The variance inflation factor (VIF), as indicator of 
multicolinearity, did not present any variable values close to 5 or 10. According to Montgomery, 
et al. (2002) those are the thresholds that question regression coefficients estimated by 
minimum squares. 
 

Table 2: Forward stepwise regression models 
 

Name Models (forward stepwise regression) r2 
adjusted RMSE 

Mod. 
NDVI 

junNDVImarNDVIhmean _0085.0_0043.0137.1 ⋅+⋅−=  0.55 4.07 

Mod. 
TCAP 

)_(907.0_133.0970.3 sepWeLogmarGrhmean −⋅−⋅+=  0.62 4.58 

Mod. 
Mixed 

junNDVIsepWeLoghmean _140.0)_(666.0832.2 ⋅+−⋅−=  0.59 4.32 

 
 
A validation of regression analysis was performed using an independent sample of 54 pixels. 
Observed versus predicted values were represented in scatterplot graphs (Figure 5). All models 
showed a moderately strong adjustment (r = 0.73, p = 0.000; r = 0.72, p = 0.000 y r = 0.79, p = 
0.000, n = 54 for Mod. NDVI, TCAP and MIXED respectively). Based on validation results, the 
best regression models were Mod. NDVI and Mod. MIXED.  
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Figure 5. Scatterplots of independent (n=54) validation regression models (observed vs. predicted). Left 
(Mod. NDVI); middle (Mod. TCAP) and right (Mod. MIXED). 
 
Conclusions 
 
Mean lidar height derived from lidar for a Scot pine forest in Cercedilla was estimated through a 
combination of spectral indices derived from Landsat images. Wetness TCAP component 
showed higher correlations with square root of mean height derived from lidar. A wetness 
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relationship with forest structure has been reported by different authors. Regression models 
were explicative, because of the relationships among variables. Nevertheless regression models 
presented high variability (r2: 0.55 – 0.62) that diminished their predictive capacity. These 
results show that lidar data can be useful for training Landsat to map mean height. Given the 
relationship between mean lidar height derived from lidar and the forest structure, Landsat data 
can help to characterize forest structure. This approach should be analyzed in future research. 
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Abstract  
 
During the last 15 years the assessment of biodiversity has become more important in forestry. 
Coarse woody debris (CWD) has been recognized as one of the strongest indicators of forest 
biodiversity and the assessment of it has been emphasized in the development of new inventory 
methods for sparse populations. In this study, the use of airborne laser scanning (ALS)-based 
probability layers in guiding the sampling-based field inventory of CWD was tested on a field 
area of 286 hectares. The auxiliary information was used by implementing point proportional to 
size (PPS) sampling in the selection of the first stage sample units in simple random sampling 
(SRS) and adaptive cluster sampling (ACS). The sampling methods were compared by means of 
the accuracy of the mean volume (m3ha-1) estimates for CWD with fixed input effort specified 
as field working hours. The accuracy of CWD volume estimates with PPS and PPS+ACS, 
where ALS-derived probability layers were utilized, was higher than the accuracy of SRS and 
ACS. Thus, this paper introduces new possibilities for making the inventory of CWD more 
efficient. 
 
Keywords: Airborne laser scanning, Coarse woody debris, Probability layers 
 
 
1. Introduction  
 
In large-scale forest inventories, information about the forest characteristics is often acquired 
using sampling, since an inventory of the total population is often expensive or even impossible. 
During recent decades, increasing attention has been paid to forest biodiversity on all its levels, 
from the variety of ecosystems to richness in species and genes. Coarse woody debris (CWD) 
has been recognized to be one of the most important indicators of forest biodiversity, since a 
high proportion of rare and specialised species is dependent on it (e.g. Siitonen 2001; 
Karjalainen and Kuuluvainen 2002). Traditional methods of measuring and modelling these 
attributes have been expensive and of low accuracy, because dead trees are rare and their 
existence is clustered (Kangas et al. 2004). Since forest biodiversity has been emphasized in 
forest policies and on the operational forest management level, a broad selection of inventory 
methods for CWD have been introduced and tested.  
 
In general, objects which are more interesting than others may be included in the sample with a 
higher probability; this may be because better results are desired. Thus, different units in the 
population may be included in a sample with different probabilities (Thompson 2002). The use 
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of auxiliary information in combination with a field inventory has been studied widely (e.g. 
Ringvall et al. 2007). The multi-source National Forest Inventory of Finland, for example, 
utilizes satellite images in producing large area information about forest characteristics (Tomppo 
1991). Due to the development of remote sensing, more accurate and lower-cost information is 
available to be used as auxiliary information. One of the most promising remote-sensing 
technologies for increasing the accuracy and efficiency of large-scale forest inventories is 
airborne laser scanning (ALS) (Næsset 2002; Maltamo et al. 2006), which produces a 
three-dimensional illustration of the forest area. ALS-derived variables can be used in producing 
probability layers, which represent, for example, the likelihood of CWD existing in each grid 
cell of the layer. ALS can be utilized in guiding the field inventory to the more interesting areas, 
and thus the efficiency of field sampling methods may be improved. 
 
In this study, the possibility of utilizing ALS as auxiliary information by implementing point 
proportional to size (PPS) sampling in the location of sample units in simple random sampling 
(SRS) and adaptive cluster sampling (ACS) was studied with the forests in commercial use in 
Central Finland. The efficiency of PPS and PPS+ACS was compared with SRS and ACS, where 
auxiliary data is not utilized. The aim of this article is to present an extensive comparison of 
different ALS-derived probability layers in guiding the inventory of CWD in one large area 
from the perspective of efficiency. 
 
 
2. Material  
 
2.1 Study area and data collection 
 
The field work for this study was carried out in the summer of 2007. The study area is located in 
Sonkajärvi district in Central Finland and the forest area assessed is in active commercial forest 
management use. The age structure of the stands in the area is slightly biased towards younger 
age classes, but all classes are present in the area. As typical in Central Finland, the area consists 
of a mosaic of mineral soils, water bodies and both drained and undrained peat lands. 
  
The field data was collected by measuring randomly located 100-meter-wide strips in a 
north-south direction. All dead trees with a base diameter greater than 10 centimeters were 
measured. The characteristics recorded for the standing dead trees were the diameter at breast 
height (dbh) and total height. For snapped trees, the measured variables were the dbh, the 
lengths of the standing and downed parts and the direction of the downed part. For downed dead 
trees, the falling direction, the total length and the dbh were measured. If the snags were shorter 
than 1.3 metres or the breast height could not be assessed, the diameter in the middle was 
measured instead of the dbh. All the observations were located with GPS (Global Positioning 
System) devices and the differential corrected using a base station located in the same 
municipality.  
 
For the simulation study, all the strips measured were artificially gathered to make a uniform 
area. The compilation was formed by replacing the strips measured in spatially true order into a 
new coordinate system so that the directions of the strips remained in a north-south direction. 
The total compilation area was 286 hectares, the dimensions of the rectangle being 
1.1km*2.60km. The mean CWD volume in the study area was 2.69m3ha-1, and the volumes 
ranged between 0m3ha-1 and 69.2m3ha-1.  
 
 
2.2 Laser data and data processing 
 
The Georeferenced ALS point cloud data from Sonkajärvi were collected on 27th and 28th July 
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2006 using an Optech ALTM 3100 scanner operating at a mean altitude of 2500 m a.g.l (above 
ground level), which resulted in a nominal sampling density of about 0.5 measurements per m2 
when the pulse frequency of 50 kHz was used. The data were captured using a half-angle of 15°, 
resulting in a swath width of 1350 m.  
 
Both the first and last pulse data were recorded and the last pulse data were employed to 
generate a digital terrain model (DTM) using the method explained in Axelsson (2000). Above 
ground heights, i.e. canopy heights, for the laser points were obtained by subtracting the DTM 
at the corresponding location. The height distribution of the first and last pulse canopy height 
hits was used to calculate grid-wise percentiles for 0, 1, 5, 10, 20, …, 90, 95, 99 and 100% 
heights (h0, h1, …, h100) (see Næsset 2004), and cumulative proportional crown densities (p0, p1, 
…, p100) were calculated for the respective quantiles. All metrics were calculated separately for 
both the first pulse data and the last pulse data. ALS-based variables were calculated with a 
vegetation limit of 0.5 meters. 
 
 
3. Methods  
 
3.1 Producing the probability layers  
 
CWD measurements and ALS data were available from an independent study area in Juuka in 
Eastern Finland (Kotamaa 2007). The laser scanning equipment and measurements from this 
area were similar to those from the Sonkajärvi study area. Thus, the correlations between the 
ALS-derived height-, density- and intensity metrics and the CWD volumes were studied in the 
data available from Juuka. Using this data, we searched for the ALS-derived height metric 
which had the best correlation with the observed CWD volume. Respectively, we also searched 
for the density-, intensity- and deviation metrics which best correlated with the CWD volume.  
 
Furthermore, two logistic CWD volume models were used in producing the probability layers. 
Two different independent modelling data were available from Juuka and Sonkajärvi region and 
were used in constructing the models. The logistic regression model can be expressed as follows 
(e.g., Hosmer and Lemeshow 1989; Dobson 1990):  
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where πj is the probability for observation yj, β0 the constant of the model and βi the parameter to 
be estimated for independent variable xi. xij is the ith independent variable connecting to the 
observation yj and ε the error term of the model, j = 1, 2, …, N. Equation 2 is intrinsically 
bounded within the interval [0, 1]. 
 
Since the unknown model parameters are non-linearly related to πj, Maximum likelihood (ML) 
method is used to estimate the model parameters in logistic regression (Alenius et al. 2003). The 
models were fitted using glm-function with the R software (R Development… 2006). The method 
searches the parameter estimates which maximize the log-likelihood function l (Eqn. 3) i.e. it 
finds the most probable values of distribution parameters for a set of data. 
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In constructing logistic regression models, the existence of CWD (volume limit 0 m3ha-1) was 
given a binary outcome, and it was predicted with the continuous explanatory variables derived 
from ALS data. The model parameters and independent variables in the models were investigated 
in order to find the best fitting model in the modelling data. The models predict the probability of 
CWD existing in each grid cell. In the logistic model from Juuka, the parameter estimates for the 
model constant and independent variable l_h90 were -3.2607 and 0.3434, respectively; while the 
parameter estimates for the model constant and l_h30 in the local model from Sonkajärvi were 
-0.9907 and 0.1443, respectively. In the logistic models, l_h90 and l_h30 denote the height at which 
the accumulation of last return laser hit heights in the vegetation is 90% and 30%, respectively. 
However, it is worth noting that if locally fitted logistic models are used in practice in producing 
probability layers, the collection of field data for CWD modelling requires a field inventory, and 
that data as such could be used for estimating the sampling statistics of CWD volume in the area. 
 
In this study, the total study area of 1.1km*2.60km was divided into grid cells of 20m*20m. In 
total six different probability layers were constructed, four of which were produced by 
calculating the ALS-based variables for each grid cell, and two of which were produced using 
logistic models to predict the probability of CWD existing in each grid cell. Thus, either the 
value of ALS-derived variables as such or the value predicted with the logistic regression 
models determined the probability of each grid cell in the probability layer.  
 
3.2 Sampling methods 
 
The simulated sampling methods were simple random sampling (SRS) and adaptive cluster 
sampling (ACS). In these sampling methods, the simulated plots were squares – equalling the 
size and the location of the grid cells in the produced probability layers. The sample plots were 
placed in the study area by drawing grids randomly and with replacement. In SRS the estimator 
for the mean CWD volume (m3ha-1) was calculated as the mean of the inventoried plots  
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where iy  is the CWD volume (m3ha-1) on plot i and n is the number of plots. The variance 
estimate was obtained from the variation between the sample plots (see e.g. Gregoire and 
Valentine 2008) as 
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An estimator for the standard deviation of mean CWD volume is obtained by taking the square 
root of its variance. 
  
In ACS a population is divided into N units and an initial sample of size n1 is selected of these 
units. In ACS, simple random sampling without replacement was used to select an initial sample 
of the population, and whenever the amount of dead wood in a sampling unit exceeded the 
initially set limit, four neighbouring units of that unit were added to the sample (Thompson 
1990). The volume limit of 30 m3ha-1 was used in this study, since it has been noticed to be 
effective in Finnish commercial forests (Pesonen et al. 2008a). The estimates for the population 
mean and variance were calculated using Horvitz-Thompson (HT)-estimator (Thompson 1990). 
If the network containing unit j is Aj, and mj denotes the number of units in Aj, the probability 
that the initial sample intersects Aj is 
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An unbiased HT estimator for the mean is 
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where ĸ is the number of distinct networks intersected by the initial sample and *
ky  is the sum 

of the y values for the kth network. The inclusion probability kα  is the same for all units in 
network k. The joint inclusion probability of networks j and k i.e the probability that one unit 
belongs to networks j and k is given by  
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The unbiased estimator for the variance of HTμ̂  is  
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In the selection of sampling units, it is possible to select the units by utilizing some previously 
available information and taking into account that each unit in the study area may not have the 
same inclusion probability. In this study, the plots were placed in the study area by utilizing ALS 
data as auxiliary information. The probabilities of CWD existing were derived from the 
produced probability layers, and the sample plots were placed in the grid cells with a probability 
proportional to the predicted probabilities.  
 
In unequal probability sampling with replacement, PPS, an unbiased estimator for the 
population total is obtained as (see e.g. Thompson 2002)  
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where ip  is the probability of selecting the ith unit of the population, for i = 1 , 2, …, N. In 
this study, the total CWD volume estimated from plot i was calculated by summing the observed 
volumes in a grid cell i and dividing the sum with the ALS-based estimate for the probability of 
a grid cell i to be included in the sample. The estimate for the mean volume per hectare was 
calculated by dividing the estimated total volume with the study area in hectares.  
 
Similarly, in ACS it is possible to select initial sampling units with unequal probabilities. 
Roesch (1993) and Smith et al. (1995) have used PPS sampling in ACS in inventorying rare and 
clustered characteristics of trees and the number of wintering waterfowls, respectively. Smith et 
al. (1995) have presented the calculation of the estimates with unequal probabilities in ACS 
(PPS+ACS). In PPS+ACS the Equations 7 and 9 were used in calculating the estimators for the 
mean and variance. However, the intersection probabilities were then calculated as  
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In Equations 11 and 12 ja  denotes the probability of CWD existing in the jth network and *A  
is the sum of predicted probabilities in the study region. 
 
  
3.3 The simulation and comparison of different sampling methods 
 
The alternative sampling methods with different probability layers were simulated in the study 
area where every downed and standing dead wood log was precisely located. The simulations 
were made for the combined CWD volume including both CWD materials.  
 
Once the sample units were placed in the study area, the accuracy statistics for the simulated 
sampling methods were calculated based on the field measured CWD data. The estimates for the 
population mean, absolute and proportional standard error of mean were calculated. Different 
sampling methods were simulated with the study area 500 times. The mean and variance 
estimators in each simulation were calculated with equations specific to each sampling method, 
and the average of these was the mean and variance obtained for the specific sampling method. 
 
Since the costs of field inventory methods vary depending on the measurement time and the 
travelling time between the plots, the time consumption of each sampling simulation was taken 
into consideration. For each sampling approach, the achieved accuracies with a fixed inventory 
time were calculated in order to make the different sampling strategies comparable.  
 
 
4. Results 
 
Different ALS-based probability layers were utilized in the placement of the sample units in 
PPS and PPS+ACS and the accuracy of the layers were compared in terms of the precision of 
the estimated mean CWD volume in the area by additionally taking into account the required 
inventory time of each sampling approach. The precision of the estimates varied notably 
between different probability layers. 
 
The probability layers were formed using the variables which were observed to have the highest 
correlation with CWD volume. Thus, correlations were only analyzed in order to find the 
variables which have the highest correlation with CWD volume and the correlations were not 
utilized as such in producing the probability layers, but the layers were formed by calculating 
the value of the ALS-based variables for each grid cell of the layer. The ALS-derived height-, 
density-, deviation-, and intensity metrics which had the highest correlation with CWD volume 
in the Juuka data and the respective strengths of the correlations and their directions in the 
Sonkajärvi data are shown in Table 1. The correlations were similar in both regions. The 
ALS-derived heights at the upper percentiles captured by the first pulse and the standard 
deviation of heights had the strongest correlation with CWD volume. If the standard deviation 
of laser pulse heights increased, greater CWD volumes were observed in both areas, for 
example.  
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Table 1: The strengths and the directions of the correlations between CWD volume (m3ha-1) and 
ALS-based variables. 

ALS-based variablea Juuka Sonkajärvi 
f_h60 0.366 0.320 
f_hstd 0.327 0.301 
l_i10 -0.183 -0.151 
f_p90 -0.141 -0.103 

a The prefix f or l denotes the laser pulse type, first or last pulse, h60 denotes the 
height at which the accumulation of laser hit heights in the vegetation is 60%, hstd is 
the standard deviation of the height distribution pulses. The p90 denotes the 
proportion of laser hits accumulating at the 90% height and i10 is the value of 
intensities accumulated in the 10th percentile. 

 
The higher the correlation between CWD volume and the ALS-based variable was, the more 
improvement in the accuracy of volume estimates was usually achieved while utilizing 
probability layers in guiding the placement of sample plots. With a given inventory time in SRS, 
utilizing probability layers produced from ALS metrics of f_p90, l_i10, f_h60 and f_hstd produced 
4%, 6%, 13% and 15% smaller standard errors of the mean for the CWD volume estimate, 
respectively (Figure 1); the respective improvements in the accuracy of ACS were 3%, 5%, 9% 
and 11% (Figure 2). The utilization of probability layers produced using logistic models applied 
in the Juuka and Sonkajärvi regions improved the accuracy of SRS with 8% and 10%, 
respectively, while the accuracy of ACS improved with 6% and 7%. Thus, the locally fitted 
logistic model was more accurate, but the ALS-derived height- and deviation metrics improved 
the accuracy of the estimates even more. 
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Figure 1: The standard error of mean for the CWD volume estimates in SRS without auxiliary 

information and utilizing different ALS-based probability layers. 
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Figure 2: The standard error of mean for the CWD volume estimates in ACS without auxiliary 

information and utilizing different ALS-based probability layers. 
 
 
5. Discussion 
 
Since CWD is recognized to be a key factor for biodiversity in boreal forests, recently inventory 
techniques for assessing CWD have been developed (e.g. Thompson 1990; Buckland et al. 
1993; Ståhl 1997). However, field surveys can still be expensive. This study focused on the 
possibilities for improving the efficiency of field inventories with SRS or ACS by utilizing 
different ALS-based probability layers as auxiliary information. 
 
The utilization of probability layers in the guidance of field inventories improved the accuracy of 
CWD volume estimates. The efficiency of SRS and ACS could be improved notably when 
utilizing probability layers produced from ALS-derived height metric and standard deviation of 
heights, but only slight improvements were achieved when the probability layer was constructed 
from ALS-derived density- or intensity metrics, since there was only minor correlation between 
CWD volume and these variables. The efficiency of probability layers derived from both a locally 
fitted logistic CWD model and a logistic model from a separate area was weaker than direct 
ALS-derived height metrics, since the correlations between CWD volume and the predictions of 
logistic models were weaker. It could also be possible to combine different ALS variables in 
probability layers. Coefficients for these variables could be searched for by means of optimization 
or by modelling. However, in the case of modelling the drawback would be statistically 
non-significant independent variables in the constructed models. 
  
Even the utilization of a locally fitted logistic CWD model could not improve the accuracy of SRS 
and ACS as much as direct ALS-derived variables. The same result was obtained when utilizing 
two linear regression models which were constructed using data available from Juuka and 
Sonkajärvi. Furthermore, there were considerable difficulties in the construction of linear 
regression models for predicting CWD volumes. The observed high accuracy of ALS-based 
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probability layers compared to model-based layers improves the usability of direct ALS metrics 
since then any previously fitted model and expensive modelling data for predicting the 
probabilities in grid cells are not required. Therefore, the usability of ALS-derived probability 
layers in guiding the field inventory is relevant and prior information about the correlations 
between the existence of CWD and ALS-based variables can be used in constructing the 
probability layers. This information can be obtained from nearby areas which have older 
modelling data, such as from Juuka in our case. Like Pesonen et al. (2008a, 2008b), this study 
found that CWD volume is strongly correlated with ALS-derived heights and the standard 
deviation of height pulses. Hence, these variables can be used in constructing the probability 
layers and used in making the field inventory more efficient; or, respectively, for achieving a 
given accuracy level less inventory load is needed.   
 
This study focused on estimating the combined CWD volume including both downed and 
standing dead trees. The probability layers can also be produced separately for different CWD 
materials if the combined CWD volume is not in focus. It was observed in this study that the 
standard deviation of heights captured by the first pulse ALS data and the heights at upper 
percentiles correlated strongly with both downed and standing dead wood volumes. The 
utilization of probability layers which were constructed separately for both CWD materials, 
improved the accuracy of volume estimates in a manner similar to the case of combined CWD 
volume.  
 
The direct estimation of CWD volumes in commercial forests have proved to be challenging with 
sparse pulse ALS data and only the accuracy of logistic regression with a volume limit of 0m3ha-1 
has proved to be appropriate (Kotamaa 2007); however, ALS data is suitable as auxiliary 
information in making the field inventory more efficient. The utilization of probability layers in 
guiding the field inventory of CWD is a new approach and while the costs of ALS data are 
decreasing quickly, data from increasingly large areas is being acquired. In this study, the costs of 
ALS data were assumed to be zero, which naturally is not true. Nowadays, while the inventory of 
living trees could be done accurately enough by utilizing ALS (e.g., Næsset 2007), the same ALS 
data, which is originally gathered for other purposes, could be utilized in CWD inventories as 
well. Further studies are focusing on how auxiliary information derived from ALS data could also 
be utilized in other field inventory methods than SRS and ACS. 
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Abstract 
 
Accurate estimates of forest aboveground biomass are needed to reduce uncertainties in global 
and regional terrestrial carbon fluxes. The Geoscience Laser Altimeter System (GLAS) onboard 
the Ice, Cloud and land Elevation Satellite is the first spaceborne lidar sensor that will provide 
global estimates of forest height useful estimating forest biomass. In this study we investigated 
the utility of GLAS for large-scale biomass inventories. We compared accuracy and regional 
variability of GLAS height estimates in two eco-regions in the Eastern and Western United 
States using data from the U.S. Forest Service Inventory and Analysis (FIA) program and found 
that current GLAS algorithms provided generally accurate estimates of height. GLAS heights 
were at average 2-3 m lower than FIA estimates. To translate GLAS-estimated heights into 
forest biomass will require general allometric equations. Analyzes of the regional variability of 
forest height–biomass relationships using FIA field data indicated that general non-species 
specific equations are applicable without a significant loss of prediction accuracy. We developed 
height-biomass models from FIA data and applied them to the GLAS-estimated heights. 
Regional estimates of forest biomass from GLAS differed between 39.7 – 58.2 Mg ha-1 when 
compared to FIA. 
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Abstract 
 
This paper reports an analysis of results from processing return signals from canopy covers 
using a artificial neural network to find if there is an improvement on detecting tree height and 
position compared to a more classic local maximum filter approach.    The hypothesis taken 
into consideration is that a neural network permits to insert several useful parameters in the 
decision process thus making it more “programmable” and apt be used in different forest cover 
situations.  Quad-tree is a method to organize the data to optimize the process done by the 
neural network. 
We conclude that results from classic methods and the neural network both give significant 
results compared to ground-truth measured on the terrain.  If the network is implemented with 
a certain number of trainers there is an improvement compared to the local maximum, but the 
difference is not statistically significant.  Nevertheless further improvements can be foreseen in 
the future thanks to the intrinsic nature of neural networks to be able to include additional nodes 
to adapt itself to the final objective – tree recognition. 
 
Keywords: neural network, local maximum filter, LiDAR 
 
1. Introduction 
 
New LiDAR technology has opened new frontiers in many fields which benefit from geomatic 
information.  LiDAR surveys give three-dimensional spatial data with significant accuracy and 
also integrate other information such as intensity of return signal, metric and non-metric images 
as well as hyperspectral images to give end-users remotely sensed information which can be, to 
a certain degree, correlated to stand characteristics.   
 
Forestry and related environmental sciences have been looking into LiDAR for  accurate 
spatial modeling of trees and terrain.  Land use mapping is of primary interest in land planning 
and LiDAR has proven a significant added value to classic remote sensing image classification 
methods (Lee and Shan, 2003).  
 
In the field of forestry, future research is focused on LiDAR-processing methods which will 
permit to extract information at lower costs.  Classic methods require forest characteristics to 
be assessed using ground-plots, field-data and statistical methods.  Error sources and factors to 
consider in field methods are the reliability of the workers (human error), statistical method 
adopted (number of samples, variance, significance of the test) and costs. 
 
LiDAR data and higher training of operators  able to process remote sensing data correctly, 
will pay back in lower costs and higher accuracy for forest inventories.  Of course remote 
sensing will never replace completely field work because ground truth and on-site experience 
are very important factors, but a lot of tedious and repeating forestry work can be substituted 
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with state of the art LiDAR data processing. 
 
Tree species, mean diameter and height distribution in the stand are all information which are 
used in forest planning and inventories.  This information can be correlated    with LiDAR 
data with a certain amount of reliability.  Tree top extraction from LiDAR data gives 80% 
accuracy in uneven stands, better than digital photogrammetry and comparable if not better than 
ground measurements (Koukoulas and Blackburn 2005; Stonge et al., 2004; Magnussen et al., 
1999).  Integration of LiDAR with remote sensing imagery (Bork et al. 2007) is also promising 
because of complementarity between the two types of data, one giving geometric information 
the other spectral information. 
 
2. Methods 
 
The process was applied to a small test site to check for accuracy of results by comparing with 
ground-measured truth.   
 
2.1 Study area 
 

 
The whole study area comprises of a watershed basin located in the Belluno province, in the 
Veneto Region in Italy.  This area was chosen because it presents an interesting combination of 
orographic and vegetation characteristics.  Steep slopes and flat ground are present, as well as 
bare soil/rock, grassland and four different tree-species.  Height above sea level variation goes 
from a minimum of 1120 m to 2600 m.  The stream-line follows an almost east →  west 
direction as can be seen from figure 1 which is oriented north.  Length of its major and minor 
axis are respectively 3125 and 2200 meters. 

 
Figure  1: Study area 
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LiDAR and image data were recorded at the same time during a flight which took place the 13th 
of July around 14:00 italian time.  High resolution orthorectified images of the area at a mean 
spatial resolution of 15 cm were therefore available.   Cloud of LiDAR points has a density of 
6-11 pts / m2   where a single signal return was detected.  Density can get as high as 19 pts / 
m2   where vegetation causes multiple returns. 
 
Around 35% of the study area is covered by bare ground, and the rest is mostly covered by 
forest with a limited presence of grassland.  Tree species present are: Larix decidua, Picea 
abies, Pinus mugo and Fagus sylvatica. Some salix is present at the lowest points of the basin, 
but not in significant numbers.  There is a vast majority of Larix decidua and Picea abies 
which corresponds to Del Favero's classification of forest typologies (Del Favero 2004). 
 
2.2 Dataset 
 
For this particular analysis a sub-area was chosen with a total of  6000 m2  and with 55750 
points. The first step was to isolate the points belonging to the sub-area and to gather all 
information on ground truth.  Tree breast height diameter (BHD) and tree height were recorded 
by a survey while geographic position was recorded using the high resolution image.  Ground 
measures and the digital orthophoto were used to digitize canopy borders as well. 
The first processing step was to correct absolute height values of points by subtracting the 

ground model creating a new variable called dz which represents the height above ground of 
each point.  The minimum threshold for points to consider was 0.5 m above the ground to filter 

 
Figure 3: Sub-area for study: left – class by echo, middle – class by height, right right a section showing 

ground irregularity and canopy models. 

Figure 2: Sub-area used in analysis; left from laser points, right from RGB image 
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out most understory vegetation.  After this process the dz variable had a maximum value of 
29.32 m, which is reasonably close to that of the highest tree which is 29.81 m.  LiDAR 
measure of tree height have an error which can be estimated from its components.  First of all 
the error from the laser sensor: ± 0.3 m as reported by constructor. Then the highest point is not 
necessarily the actual tree top and since point density is about 6-11 pts / m2  that would mean 
0.2-0.3 m between points, therefore 0.1-0.15 m in the worst case scenario.  The total is 0.45 m 
difference between points, which can be considered the same height-wise if canopy has a slope 
of one. 
 
The LiDAR data in the sub-area was furthered filtered out in order to isolate a dataset with 
unique echo plus first-of-many echo (UFE).  The points from the UFE set where included only 
if they did not belong to ground class (see equation 1).  
 
This set gives us points which belong to vegetation, but without intermediate or last echoes, but 
only with unique echo and first-of-many echo.  This is actually a subset of the previous dataset 
where intermediate and last echoes are removed thus giving us the position in space of the first 
surface which caused the return of the laser signal towards the sensor.  The total number of 
points for this dataset was 20253. 
 
UFE = Unique U first-of-many  ∩ ground class                        (1) 
 
This set gives us point population which represents the canopy model surface.   
 
LiDAR data was processed with commercial software Terrascan from Terrasolid © , the neural 
network process was costum designed with a dynamic linked library developed in C language.  
The dataset was pre-processed with a low-pass filter correctly scaled to smooth out the noise 
due to leaf-scale variability. 
 
2.3 Neural Network and quad-tree setup 
 
The model for decision process is a back-propagation artificial neural network (ANN), while the 
organization in a quad-tree structure is integrated in the neural network.  The structure of both 
the ANN and the quad-tree was setup using C code, compiled both as a library and as a 
stand-alone executable.  The process reads the data, organizes points into quad-tree bins, sends 
data to the ANN, and receives feedback from the ANN for training. 
 
2.3.1 Quad-tree organization 
 
Data is fed to the first function as a table with these columns: x,y,dz,echo number and echo type.  
The spatial domain falls in the first three columns, whereas the others are added alphanumeric 
information.  The spatial data will be processed contextually, furthermore topological relations 
such as nearest neighbour and focal statistics are important as they can give added criteria to the 
process.  That is the reason why the data was organized into a quad-tree which assigns points 
to a certain address in the tree.  In this case each “leaf” in the quad-tree is cannot have more 
than 9 points and less than 4 points.  Spatially this means that each smallest square covers 
about half of a squared meter. 
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2.3.2 Neural network: nodes and neurons 
 
The points are fed to the ANN, which evaluates criteria, assigns weights and defines if a point is 
part of tree-top or it is part of canopy and if it part of canopy borderline. 
 
Criterion for assigning a point to the tree-top class and parameters which can be tuned in the 
ANN and therefore make up the hidden nodes: 

1. Point is a local maximum considering a certain radius.  Radius will actually be a 
multiple of the spatial resolution of the smallest “leaf” of quad-tree and is a parameters 
which can change to tune the ANN.  

2. Point must have neighbors with a local density totaling at least the minimum point 
density divided by two around an area which is dependent on tree species and 
configuration.  The area to consider is also a parameter which can vary. 

3. To be considered actual top of the tree a point must coincide with topmost value of local 
kriging interpolation, if it does not then a new point is created with such coordinates. 

4.  
A variable number of points are used as trainers for the ANN, as backward propagation permits 
to calibrate parameters in the hidden nodes in order to improve accuracy at each iteration of the 
process.   

 
The actual tree top is determined after using a kriging interpolator of the point itself and 18 
nearest neighbors. The interpolation part was done by having a call to a separate module from 
GRASS open source software, as it would have been a hardous and time consuming task to 
implement a kriging interpolator directly in the C library.  

 
 

 
Figure 5:  Neural Network: _In = input nodes, _n = hidden nodes, _On = output nodes 

 
Figure 4: Example of quadtree organization 
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3. Results 
 
Encouraging results were found even if not significantly different from classic local maximum 
filters. The number of trainers previously set in the output layer is important, as will be 
discussed in the next section. 
 

Table 1: Results from ANN using different number of training outputs 
 

Thinning operation 
Number of 

trees 
correct 

Number of 
trees 

incorrect* 

Total 
trees 
found  

RMSE of 
positioning 

(cm)  
Ground - truth 56 na 56 na 
Neural network with 2 trainers 44 8 52 24 
Neural network with 4 trainers 41 9 50 24 
Neural network with 8 trainers 55 4 59 21 
Neural network with 14 trainers 59 2 61 23 
Neural network with 20 trainers 55 8 63 23 
Local maximum filter 52 4 56 24 

*Defined as not belonging to tree top but to canopy 
 

 
4. Discussion and conclusions 
The results seem promising even if not significantly different from the local maximum filter. If 
the network is implemented with a certain number of trainers there is an improvement compared 
to the local maximum, but the difference is not statistically significant.  Nevertheless further 
improvements can be foreseen in the future thanks to the intrinsic nature of neural networks to 
be able to include additional nodes to adapt itself to the final objective – tree recognition. 

Some drawbacks to this method are found in the complexity of its actual implementation by 
untrained professionals.  Normalization of data, initial tuning of parameters and preprocessing 
of data should by done accurately, and it is often a source of error which heavily weights on 
final result.   
 
There is a lot of testing and refinement to be done to this method. It will be an interesting phase 
in the future to measure other datasets in the Missiaga basin to find if forest types can be 
associated with weights and parameters which make up the trained ANN. 
 

 
Figure 6: Point distribution on top of ground digital elevation model – green crosses represent trees 

found with 14 trainees while red crosses indicate misinterpretations. 
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Abstract 

 
A high resolution Airborne LiDAR data creates better opportunity for an individual tree 
measurement and provides valuable results for more precise forest inventory. This paper 
presents tree filtering approach that able to separate dominant tree and undergrowth vegetation. 
The results can be used for a detailed individual tree measurement. This process is one of the 
main steps for a single tree extraction from the high resolution Airborne LiDAR data. The 
filtering technique lies on the fact that a dominant tree has distinct parts in the histogram that 
represent tree crown, tree trunk, and ground surface with or without undergrowth vegetation. 
The shape of the histogram was used to identify points that belong to the tree crown and the tree 
trunk. More points were assigned to the tree trunk based on an iterative analysis of the 
histogram at certain height above the ground surface. This step was coupled with the RG 
segmentation. It was found that the filtering routine failed to remove very close undergrowth 
vegetation. It was also observed that in order to get a good result, the tree filtering method needs 
at least small area of the tree trunk. 
 
Keywords: High resolution Airborne LiDAR, RG segmentation, 1D Gaussian filter, Gaussian 
fitting 
 
 
1.  Introduction  
 
Laser scanning is now becoming one of the important sources of information for forest 
applications. The laser beam with specific settings may be able to penetrate the forest structure, 
thus giving a better opportunity for accurate forest variable measurements. Hyyppä et al. (2004) 
has listed out numerous techniques and algorithms for tree variable extraction. The features and 
the predictors in the statistical method are being assessed from the laser derived surface models 
and point clouds. This information is then used to estimate forest parameters based on 
regression and discriminant analysis (Table 1). On the other hand, the image processing 
methods use the neighborhood information of point clouds and pixel of a Digital Surface Model 
(DSM). The physical features such as, tree crowns, individual trees, group of trees or the whole 
stands can be derived using this method. In this method, further step of forest parameters 
extraction are assessed using the existing models and statistical methods.  
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Table 1 : Tree variable extraction based on statistical method of LiDAR data (Hyyppä, et al., 2004) 
 

Method Description on method Forest properties 

Canopy profile area The canopy profile area is directly related 
to the logarithm of the timber volume Volume of timber 

Height percentiles of the 
distribution of canopy 

heights 

The Height percentiles of the distribution of 
canopy heights as predictors in regressions 
models to estimate mean tree height, basal 

area and volume 

Predictors in regressions 
models to estimate mean tree 

height, basal area and 
volume 

Canopy reflection sum, 
ground reflection sum and 

Canopy closure 

Canopy reflection sum is the sum of the 
portion of the waveform return reflected 

from the canopy.  Ground reflection sum is 
the sum of waveform return reflected from 
the ground multiplied by a factor correcting 
the canopy attenuation. Canopy closure is 
approximated by dividing the sum of the 

canopy and ground reflection sums 

Predictors in regressions 
models to estimate tree 
height, basal area and 

volume 

Canopy height and density 
metrics 

Canopy height metrics included e.g. 
quantiles corresponding to the 0,10,…,90 
percentiles of the first pulse laser canopy 

heights and corresponding statistics, where 
as canopy density corresponded to the 

proportions of both first and last pulse laser 
hits above the 0,10,…,90 quantiles to total 

number of pulses 

Canopy height and density 
metrics 

Tree cover and Surface 
cover 

Tree cover is calculated from the proportion 
of laser hits from tree canopy divided by the 
total number of laser hits. Surface cover is 
defined as the proportion of laser hits from 

the surface and the total number of hits 

Area of the tree and area of 
the ground surface 

Relative standard deviation 
of tree heights, the 

proportion of single returns 
and the proportion of first 

return, proportion vegetation 
points, mean intensity, 

standard deviation of both 
single and surface returns 

The proportion vegetation point is defined 
as a number of returns that are located 

above the crown base height divided by the 
total number of returns from the segment. 
This information is used for tree species 

classification 

Tree species classification 

Crown shape Crown shape is defined by fitting a 
parabolic surface to the laser point cloud Crown shape 

 
  
Litkey et al.(2007) pointed out that there are two main feature extraction methods that can be 
used to derive forest information from Airborne LiDAR data. The first method is based on a 
statistical canopy height distribution (e.g., Naesset (1997)) and the second approach is based on 
an individual tree detection (e.g., Hyyppä and Inkinen (1999) and Persson, et al. (2002)). It was 
stated that the methods based on the statistical canopy height distribution typically use 
regression, non-parametric or discriminant analysis for forest parameter estimation. On the other 
hand, the individual-tree-based method uses the neighbourhood information of canopy height 
point clouds and the pixels of Canopy Height Model (CHM) to extract features such as crown 
size, individual tree height and tree location. The forest inventory data are then being estimated 
using existing models and statistical techniques. 
 
Numerous studies stated that a discrete return laser scanner data can produce accurate 
information on a tree canopy since the quantiles of height distribution of laser scanner data area 
related to the vertical structure of the tree canopy (Maltamo, et al., 2004). Furthermore, since 
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some of the laser pulses penetrate the canopy of dominant tress, it is possible to analyze 
undergrowth vegetation. In their study, Maltamo et al. (2004) used a histogram plot to analyze 
multi-layered canopy structure. In this study it was concluded that the characteristics of the 
canopy height laser point data, especially the shape of the height distribution can be used to 
identify multi-layered stand structures. Reitberger et al. (2007) introduced a method to delineate 
tree crown and detection of stem position of single a trees from dense Airborne LiDAR data. In 
this study, trees were delineated using a watershed algorithm on the CHM and the possible stem 
position was derived from the local maxima of the CHM. In this study, they have introduced a 
3-step algorithm to search stem position in each tree segment. Firstly, all the points between the 
ground and the crown base height were separated and the points were clustered using 
hierarchical clustering based on their horizontal distances. Finally, the stem position was 
estimated using a robust RANSAC-based adjustment of the stem points.  
 
The objective of this study is to develop a new tree filtering approach for high density airborne 
LiDAR data that is able to separate dominant trees and undergrowth vegetation. The filtering 
process is one of the main steps of individual tree variable measurement (refer Figure 1). In this 
paper, the filtering method was tested on different LiDAR datasets with different density of 
undergrowth vegetation. The results can be used for individual tree variable measurements of 
dominant trees and undergrowth vegetation. In this case, the tree measurement can be carried 
out directly on a single tree rather than based on the regression models.  
 
 
 
 
 
 
 
 
` 
 

 
 
 
 
 
 
 
 

Figure 1: The overall flow for an individual tree measurement 
 
2.  Materials and method  
 
2.1 Study site  
 
This study was conducted at the Duursche Waarden floodplain, the Netherlands. The floodplain 
is along the IJssel River, which is the smallest tributary of the Rhine River in the Netherlands 
(Straatsma and Middelkoop, 2006). This area is partly covered by meadow and arable land and 
most of the areas have become nature. The vegetation in this area comprises of (1) softwood 
forest Willow (Salix abla, Salix viminalis), poplar (Populus nigra, Populus x canadensis), (2) 
hardwood forest oak (Quercus robur), ash (Fraxinus excelsior) and a small pine stand (Pinus 
sylvestris) on a river dune, together with (3) reed marshes (Phragmites australis), and (4) 
herbaceous vegetation with sedge (Carex hirta), sorrel (Rumex obtusifolius), nettle (Urtica 
dioica), thistle (Crisium arvense) and clover (Trifolium repens).      
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2.2 LiDAR data  

The LiDAR data used in this study was captured by the FLI-MAP 400 system. The FLI-MAP 
400 is a helicopter mounted LiDAR system designed to capture highly detailed terrain features 
with high accuracy. It was claimed that the absolute accuracy of the FLI-MAP 400 data 
measured over hard and level surfaces is 2.5 to 3.0 cm. The system is capable of scanning in 
three directions (forward, down (nadir) and back) and this increases the chance of capturing a 
significant amount of reflected pulses from the ground even in a quite densely vegetated area. 
The FLI-MAP 400 data records maximum four laser reflections with an unmatched distance of 
0.9 m, which enables optimal interpretation of a detailed terrain model even in vegetated areas. 
The data with an average density of 70 points per meter square were acquired during winter in 
2007. The leaf-off data allow better penetration through a tree canopy and therefore the vertical 
structure of a tree can be easily revealed. In this study, 10 sample trees were selected with 
different tree species and undergrowth density. All samples were delineated manually and for 
further processing stage, each sample was attached with one seed point located on top of the 
tree.   

2.3 Histogram-based tree filtering    
 
In this study, the new tree filtering approach is called a histogram-based tree. This method relies 
on the fact that a dominant tree would have distinct parts in the histogram that represent tree 
crown, trunk, ground surface and undergrowth vegetation. Previous study by Straatsma and 
Middelkoop (2006) has shown that the shape of height distribution of a tree has a higher 
frequency of laser pulses from the crown and undergrowth vegetation. On the other hand, the 
reflected laser pulse from the trunk is at a lower frequency. The segmentation process starts 
from a seed point located on top of the tree crown, and the shape of histogram is used to identify 
points that belong to the tree crown and the tree trunk. The RG segmentation is then used to 
subdivide the points into the tree crown and the trunk. The search for the tree trunk continues by 
iteratively analyses the shape of the histogram at certain height above the ground. This process 
is coupled with the RG segmentation to assign additional points to the tree trunk. The process 
continues until it is no longer able to distinguish between tree trunk and the undergrowth 
vegetation. Furthermore, if the process stops before it reaches the ground surface, the tree trunk 
is extrapolated by fitting a three dimensional line (3D line) using the points which have been 
previously assigned as a tree trunk. The additional points for a tree trunk is then collected based 
on the distance between the line and the remaining point clouds.  
 
2.5 One-dimensional (1D) Gaussian filtering 
 
As explained earlier in section 2.3, the histogram of the point cloud distribution of a single tree 
was used as a reference to assign points into tree crown, tree trunk, undergrowth vegetation and 
ground surface. In this study, the boundary that marks each part of the tree on the histogram was 
defined automatically using a multi-modal Gaussian fitting routine. It was observed that, the 
original histogram contains noises that need to be removed in order to get better result in 
Gaussian fitting process. Thus, the first step was to smooth the histogram. A 1D Gaussian filter 
was used to smooth out the histogram surface. In this study, only one value of sigma (0.015) of 
Gaussian filter was used for all the datasets (refer Figure 2).  
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Figure 2: One-dimensional Gaussian filter 
 
 
2.6 Gaussian fitting on histogram  
 
A Gaussian fitting on the histogram was based on nonlinear curve-fitting problems in a least 
square sense which is available in Matlab (lsqcurvefit). This routine determines the possible 
number of Gaussian peaks based on the pre-defined values such as number of possible Gaussian 
shapes and Gaussian model parameters (sigma, position, frequency). In order to determine this 
information, the peaks in the histogram of a single tree can be assumed to have a composition of 
tree crown, undergrowth vegetation and ground surface (refer Figure 3). As depicted in Figure 3, 
the Gaussian fitting routine was then applied on the filtered histogram to define a specific 
boundary for these 3 parts. Each boundary was defined by 3σ value from the Gaussian each 
peak (µ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Shape of histogram for a single tree 

 
All tree samples were delineated manually by hand and a seed point was attached on top of each 
tree. A semi-automatic tree detection and crown segmentation will be explained later in another 
study. The histogram-based tree filtering process was carried out with the following steps: 

1. Place a seed point on top of each tree.  
2. Define growing distances for 3 parts, 1) tree crown, 2) tree trunk and 3) distance 

between a 3D line and point clouds to extract additional points for tree trunk  
3. Calculate a histogram for a single tree and filter the histogram with 1D Gaussian filter  
4. Fit a Gaussian function on the filtered histogram to extract 3 different parts of the tree, 

namely, 1) tree crown, 2) undergrowth vegetation and 3) ground surface 
5. RG segmentation from the tree crown to the level that marks the beginning of the tree 
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b - Starting level (elevation) for tree trunk 
c - Starting level (elevation) for undergrowth vegetation  
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a b

trunk  
6. RG segmentation for the tree trunk  
7. Iteratively analyze the shape of the histogram to add more points to the tree trunk  
8. Stop step (7) if the process is no longer able to distinguish between points that belong to 

the tree trunk, the undergrowth vegetation as well as the ground surface 
9. Create a 3D line based on the points that have been classified as a tree trunk  
10. Assign additional points to the tree trunk based on their distances to the 3D line.  

Step (9) creates a 3D line, which intends to extrapolate tree the trunk until it reaches the ground 
surface. This will be the last step of collecting points for the tree trunk, since the filtering 
process as indicated in step (8) was no longer able to distinguish between the points that belong 
to the tree trunk, the undergrowth vegetation and the ground. This step assigned more points to 
the tree trunk by selecting points at certain distance from the extrapolated tree trunk (3D line). 
The tree filtering method basically needs three input parameters, namely growing distance for 
the tree crown, growing distance for the tree trunk, and distance between points to the 
interpolated 3D line. In general, large growing distance value was used for segmenting the tree 
crown, and small growing distance value was used for the tree trunk instead.  
 
3.  Results and discussions  
 
The results showed that the histogram-based method performs quite well in separating the 
dominant trees and the undergrowth vegetation (refer Figure 5). Furthermore the 1D Gaussian 
filtering helps in reducing noises in the original histogram and enhanced the general shape of 
the histogram. This process subsequently eased the multi-modal Gaussian fitting on the 
smoothed histogram (refer Figure 4). However, it should be noted that, different setting of the 
Gaussian filter for example with different σ value would produce different result on a smoothed 
histogram. This could suppresses some useful information and reduce the effectiveness of the 
tree filtering method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Examples of the original histogram, filtered histogram and fitted histogram for tree 1 (a) and tree 2 (b) 
 

Figure 4 shows some examples of the original histogram, the smoothed histogram and the 
estimated Gaussian functions on the histogram.  
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Figure 5: Original trees and filtered trees 
 

In this study it was found that the histogram-based tree filtering method requires at least small 
area of a tree trunk and the reflected laser pulses from this area should be less than the tree 
crown. In this case it would be rather difficult for trees with dense branches along the tree trunk. 
Very small area of tree trunk caused overlapping boundary between the tree crown and the tree 

Tree 1 Tree 2 Tree 3 Tree 4 

Tree 5 Tree 6 Tree 7 Tree 8 

Tree 9



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 551

trunk. Thus, 3σ value will not be appropriate to represent the boundary of each part. Figure 7 (a) 
shows an example for a tree condition where there is a very small area of tree trunk and the 
undergrowth vegetation is very close to the dominant tree. In this example, a special experiment 
was conducted to observe the size of the area for the tree trunk in the histogram. For this 
purpose, the σ value for 1D Gaussian filter was tuned from 0.0026 to 0.1 and the different 
between two levels (between b and c) was observed (refer figure 3). It was found that the 
Gaussian fitting routine failed to identify appropriate value for level b and c, in which the 
different between them (level b – level c) should have a positive value. Figure 7 (b) shows that 
the histogram-based approach failed to separate the dominant tree and the undergrowth 
vegetation.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The different in meter for level b and level c 
 
In this study, it was also observed that each tree requires different value of growing distance 
depends on the closeness of the undergrowth vegetation to the tree crown and the tree trunk 
(refer Table 2). Small growing distance should be used for very close undergrowth vegetation. 
Therefore, further study is required to optimize the tree filtering method, in which values for the 
growing distance should be defined based on the density of the undergrowth vegetation.  
 

Table 2: Growing distance for each tree 
 

Dataset 

Growing 
distance 
for tree 
crown 

(m) 

Growing 
distance 
for tree 
trunk 
(m) 

Growing 
distance for 

3D line 
(m) 

Tree 1 0.8 0.5 0.6 
Tree 2 0.8 0.6 0.5 
Tree 3 0.8 0.4 0.5 
Tree 4 0.8 0.6 1.0 
Tree 5 0.8 0.6 1.0 
Tree 6 0.5 0.4 0.5 
Tree 7 0.8 0.6 1.1 
Tree 8 0.5 0.4 0.5 
Tree 9 0.5 0.3 0.5 
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Figure 7: Original tree (a), filtered tree (b), original histogram (c), filtered histogram (d) and fitted 
histogram (e) 

 
 
4. Conclusions 
 
In general the histogram-based tree filtering method which aims at separating the dominant tree 
and undergrowth vegetation performed well on all datasets. The results can be used in further 
detailed tree variable measurement for instance, species identification, stem diameter, crown 
size, crown volume and etc. However, the filtering method failed to filter the dominant tree 
which is very close to the undergrowth vegetation. It was also shown that the filtering method 
still needs to be optimized by taking into account the density of the undergrowth vegetation. 
This information will be used as the basis to select proper growing distance values for tree 
crown, tree trunk and 3D line. Further study is also required to quantify the effect of different 
magnitude (σ) of the 1D Gaussian filter to the performance of the histogram-based tree filtering 
method. In future, this method will be applied together with the tree detection and crown 
delineation routines on a larger Airborne LiDAR dataset. 
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Abstract 
 
A comparative study of three individual tree recognition methods is presented with a view to its 
application on forest inventory. It was tested on a mixed Mediterranean forest using aerial 
images from a DMC photogrametric camera, LIDAR airborne data (ALTM 3025E) with a 
density of 0.85 pulses/m2 and a combination of both. DMC orthorectified images are composed 
of RGB channels having a spatial resolution of 10 cm. We performed a Minimum Noise 
Fraction rotation transform (MNF) on the RGB data in order to segregate the noise in the data. 
The LIDAR data product that we used was the Tree Canopy Model (TCM) image obtained by 
substracting a Digital Terrain Model (DTM) from the Digital Surface Model (DSM). The DTM 
was generated from last echo points while the DSM was generated from first echo points. 
The field data was collected at tree level and geolocated with differential GPS techniques. 
An image segmentation method and an object-oriented classification were performed using 
eCognition Professional 4.0 software. This method allowed us to measure canopy cover and to 
identify individual trees, via trial-error processing by iterating weight, scale, colour and shape 
parameters at different levels. 
 
The first tested results using DMC image interpretation and field data, present accuracies close 
to 70 % for tree density assessment with LIDAR data. 
 
Keywords: LIDAR, aerial image, individual tree identification  
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Abstract 
 
The combined analysis of lidar and image datasets for information extraction of forest structural 
attributes and composition requires that the image-to-lidar geometric correspondence be known 
accurately. We propose a series of methods for producing a 10 cm high quality true orthomosaic 
of Vexcel UltraCam images perfectly adjusted to the lidar digital surface model (DSM). First, 
we introduce a technique for filling the small cavities visible on lidar raster DSMs. We then 
assess the image-to-lidar registration using visualization and quantitative approaches. The small 
geometric discrepancy measured between the two datasets is then corrected. In the image 
overlap areas, the true orthomosaic is created by choosing the contributing image that has the 
smallest distance to the corresponding DSM pixel. Occluded pixels that can not be seen from 
any centre of perspective are then filled with synthetic values calculated according to their 
sunlit/shadowed state at the time the images were taken. The resulting true orthomosaic is 
perfectly registered to the lidar dataset, is complete (considering occluded pixels receive 
synthetic values), is not radiometrically altered, and shows no visible cut lines. The proposed 
process should greatly help the simultaneous analysis of lidar and image datasets. 
 
Keywords: orthorectification, co-registration, mosaicking, UltraCam, filtering  
 
1. Introduction 
 
There is currently a clear trend towards the combined use of lidar and digital aerial images to 
produce fine scale forest maps useful in resource, biodiversity, and carbon inventories. Typically, 
structural attributes (height, density, etc.) are derived from the lidar canopy height model 
(CHM) while species composition and health are extracted from the images. A basic approach 
consists of processing both data types separately and integrating the results later in the process. 
This way of doing is however far from exploiting all the synergies between the lidar and image 
datasets. A more sophisticated approach would be to analyse all data simultaneously by 
associating image reflectance values to lidar height measurements. This requires that the images 
be “perfectly” registered to the lidar surface model and that true orthorectification (i.e. including 
visibility calculation, as per Mayr 2002) be used. Moreover, in the case of low altitude digital 
aerial photography, the image resolution is so high that the texture of individual crowns could be 
used as an additional criterion for species identification. This brings the requirement that the 
image texture should be modified as little as possible by the orthorectification and mosaicking 
processes. What is more, radiometric analysis of an orthomosaic must not be affected by such 
things as image-to-image histogram balancing and feathering along cut lines. All these 
requirements are currently not met by commercial orthorectification software. In addition, small 
misregistration problems cause the image to drape imperfectly over the 3D surface, which 
produces geometric warping in the resulting orthoimage, thus modifying crown texture and 
shape. Therefore, this study’s aim is to: 
 

1. Achieve the best possible registration between high resolution aerial images and a lidar 
dataset so that each tree crown image is mapped exactly on the corresponding 3D lidar 
crown shape. 
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2. Create a seamless and complete true orthomosaic with the best possible preservation of 
radiometric and textural properties of the original aerial images. 

 
This brings us to solve the following problems: the removal of small artefact cavities in the lidar 
digital surface model (DSM) in order to create a better reference 3D surface for the 
orthorectification, the detection and correction of subtle misregistrations between the lidar and 
the images caused by small direct georeferencing (GPS and IMU) errors, to find a way to take 
advantage of the high aerial image overlap in order to fill as much orthoimage pixels as possible 
with no radiometric modification, and to fill the orthoimage’s empty pixels (resulting from 
occlusion) with plausible values. 
 
2. Study region and materials  
 
The study site falls within the Training and Research Forest of Lake Duparquet (TRFLD, 
79o22'W, 48 o30'N), in the Province of Quebec, Canada. It is characterized by small hills with 
elevations comprised between 227 m and 335 m. The mixed vegetation is composed of common 
boreal species, and dominated by balsam firs (Abies balsamea L. [Mill.]), paper birch (Betula 
papyfifera [Marsh.]), and trembling aspen (Populus tremuloides [Michx]). Most stands are 
mature or over-mature and reach heights of 25-30 m. 
 
The lidar data was acquired on July 12th 2007 using an Optech ALTM3100 flown at approx. 
650 m AGL. Strip overlap was sufficient to avoid data gaps. The density of the first returns was 
approx. 3.2 hits m-2 (single density, i.e. outside strip overlaps). The lidar Z data was delivered as 
ellipsoidal heights. The GPS antenna/receiver was a Novatel and the IMU an Applanix AV510. 
The GPS and IMU were integrated in a tightly coupled solution using the POS AV 1.6 and POS 
Pac 4.3 software by Applanix. The vertical datum used was the GRS80 ellipsoid. The reference 
height of the base antenna was obtained from a geodetic point which Z data was expressed in 
CGVD28 orthometric height, which was converted to GRS80 using the CGG00E geoid 
undulation value. 
 
The Vexcel UltraCam images were taken in full blue sky conditions on June 9th 2007 at approx. 
1000 m AGL resulting in a 10 cm ground pixel size. Image overlap was approximately 80%. 
Only the panchromatic images were used in this study. The calibrated internal orientation 
parameter values where obtained from the aerial survey provider. Base data was logged using 
NovAtel DL GPS receivers with NovAtel Model 600-LB GPS antennas while the airborne 
platform used the Applanix POSAV 510 system. One base antenna was placed on a monument 
distinct from the one used for the lidar survey. Another one was set up as a spike and operated 
simultaneously. The two ground survey points were processed as a network with the geodetic 
point held fixed. Data was delivered as CGVD28 orthometric heights. We have converted those 
to GRS80 ellipsoidal heights using the GPS-H software from Natural Resources Canada and the 
CGG00E undulation table. 
 
3. Methods and results 
 
3.1 DSM creation 
 
The design of the raster DSM creation process aims at producing a canopy surface grid that 
corresponds as closely as possible to reality in order to achieve a high quality of 
orthorectification. Because trees are not solid objects with a well defined surface but rather a 
hierarchical network of branches, twigs and leaves, the raster canopy surface is an abstraction of 
the true interface, along a vertical column, between the tree material and the medium in which 
the laser energy propagates. We here define the canopy surface, at the geoposition of a given 
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pixel, as the elevation at which all the tree material (within the spatial extension of the pixel) is 
found immediately below, and the open medium immediately above. The creation of the DSM 
involves gridding the first return elevations and then filling some of the surface cavities. 
 
3.1.1 Gridding 
 
The gridding procedure follows Vepakomma et al. (2008). First the pixels of an empty grid 
having a 10 cm resolution (equivalent to that of the images) are given the corresponding 
elevation values of the first returns. If more then one return falls into a given pixel, only the 
maximum value is retained. The remaining empty pixels are then filled by interpolated values 
obtained using the inverse distance weighed (IDW) method of ArcGIS 9.2 applied to the first 
return point data. A small portion of the resulting DSM in shown in figure 1a. 
 
3.1.2 Cavity filling 
 
Lidar DSMs of a tree canopy surface will normally show numerous small cavities (also reported 
in other studies, such as Leckie et al. 2003) of two types. “Drill holes” are caused by a near 
vertical laser shots penetrating in small openings of a crown and generating returns well below 
the generalized crown hull. They represent the true canopy surface elevation at a particular 
geoposition but cause a deep hole in the surface which may affect the orthoimage geometric 
quality. A more important problem is the presence of “overhang holes”, artefacts caused by 
oblique laser shots travelling close to the side of a crown and intercepting a first surface under 
the crown, close to ground level. The normal gridding process integrates these points to the 
canopy surface, generating deep cavities (easily visible in figure 1a) that must be removed. We 
propose a process that first detects cavities and then fills them with interpolated values. 
 

   
 
Figure 1 - a) Initial raster DSM showing cavities, and b) DSM after cavity filling. Image width is 64.4 m. 
 
A circular Laplacian filter with negative values near the centre and positive values on the 
periphery is used to produce scores that reflect the likeliness that a cavity is present. These 
scores are then thresholded to produce a binary map showing the cavity locations. The filter 
radius determines the size of the detected cavity while the threshold value controls the depth of 
detected cavities relative to the surrounding pixels. We have empirically chosen these 
parameters’ values such that the sharp elevation drop at the crowns’ edges is not considered a 
cavity. Once the cavities are mapped, they are slightly dilated to ensure that the full extent of the 
cavity is captured. Cavity pixels are then given an interpolated value (IDW interpolation using 
the closest valid DSM pixels). In this study, we processed the DSM in two passes with the 
following parameter values for the Laplacian filter and dilatation radii respectively, pass 1: 3 
and 2 pixels, pass 2: 1 and 0 pixel (no dilatation). The first pass removed most of the overhang 

aaa   bbb
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holes while the second pass removed many small drill holes. These algorithms were coded in C 
language (as all the other special purpose functions presented in this paper). The resulting DSM 
is presented in figure 1b. It can be seen that most cavities are filled, that the crown edges are not 
modified and that natural gaps between crowns are not filled. Note also that the rest of the 
canopy surface, including tree apex elevations, is not affected by the cavity filling process. 
 
3.2 Misregistration assessment and correction 
 
To ensure accurate orthorectification, the exact image to 3D scene correspondence must be 
established. Our goal is to first assess if systematic errors affect this correspondence, and then to 
apply the appropriate corrections. Various approaches have been proposed in the literature using 
area or feature based matching between the lidar surface and the images (e.g. Mitishita et al. 
2008). Many of these rely on the presence of buildings or man-made structures. In this study, 
the landscape is almost entirely covered by vegetation and devoid of buildings. We therefore 
propose alternatives for working in these conditions, i.e. two visualization techniques and one 
quantitative method. Visualization is used to detect and understand the nature of the 
misregistration problems. Various system or manipulation errors in the independent direct 
georeferencing of the respective datasets can translate into a systematic misfit taking the form of 
an XY translation (e.g. caused by a horizontal datum error), a Z translation (e.g. caused by a 
vertical datum error), rotations (e.g. caused by errors in the boresight matrix or IMU drift. The 
first visualization technique consisted of draping the CHM image onto the cavity-filled DSM 
and to project it onto the UltraCam image plane according to the uncorrected camera orientation 
parameter values. If this synthetic rendering is well adjusted to the corresponding real image, we 
conclude that the initial uncorrected orientation is correct. Otherwise, we study the amount and 
directions of the discrepancy to comprehend the nature and origin of the misfit. 
 
Figure 2 shows UltraCam image subsets and corresponding synthetic images in which 
brightness values are proportional to the CHM heights. The red contours correspond to the 
silhouettes of certain trees digitized according to the real aerial image. When transferred to the 
synthetic image, we see that for a subset located at the image centre (nadir view), the image 
contours (2a) correspond well to the projected CHM morphology (2c). However, for the subset 
taken near the corner of the image (2b), there is a clear displacement in the radial direction (2d). 
A similar misfit was visible at all image corners, for all inspected images. This strongly suggests 
that there is a scale problem, i.e., a Z offset between the image and lidar vertical datums. The 
other visualization technique consisted of orthorectifying a few overlapping images according to 
the uncorrected orientation and looking at the fit quality between the orthoimages over well 
defined and smooth surfaces (road segments). This analysis revealed that discrepancies existed 
(planimetric offsets in the corresponding patches of the orthoimages, not shown in this paper), 
corroborating the fact that a slight misregistration between the lidar and the images existed. 
 
The quantitative analysis was based on computing the XYZ position of image conjugate points 
and comparing the Z value to the corresponding lidar elevation. Thirty points were measured on 
a set of four consecutive images. Precise features (inflections in the shadow silhouettes visible 
on road segments, e.g. figure 6) were used. Individual points fell on two to four images. Spatial 
intersection was computed for all intersecting rays for each possible pair of rays. For example, a 
conjugate point falling on all four test images yielded six different estimates of XYZ (1-2, 1-3, 
1-4, 2-3, 2-4, 3-4). For each pair, the Y estimate was calculated based on Y01, Z01 (Y and Z of the 
perspective centre for first image) and Y02, Z02 according to Kraus and Waldhaüsl (1994), giving 
two different Y estimates. Conjugate point coordinates leading to Y discrepancies of more than 
20 cm were rejected, leaving only very accurate points. The average of the two Y values for 
each valid point was used as the Y estimate. The lidar elevation (ZL) was read from the DSM at 
the ray intersection position XY for all valid combination of rays for all 30 points and subtracted 
from the photogrammetric ZP, yielding 43 observations of elevation difference (ZP - ZL). The 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 559

average difference revealed a 1.41 m bias. The Z0 value of the centre of projection of all images 
was corrected for that bias. After this correction, new synthetic images were produced (figure 3). 
No significant change is visible on the centre sub-image (3a), but the red contours on the corner 
subset now fit exactly with the visible CHM morphology (3b). Using the second visualization 
technique, we observed that the individual orthoimages now overlap almost perfectly. This 
signifies that the image to lidar correspondence is now solved with great accuracy. 
 

  
 

  
 

Figure 2 - a & b: two Vexcel UltraCam subimages, respectively extracted at the centre and near the top 
left corner of the sample image; c & d: CHM image draped over the DSM and projected into the Vexcel 
image plane according to the uncorrected orientation. The red contours were manually digitized on the 

real images and overlaid afterwards on the synthetic ones. 
 

  
 

Figure 3 – Same as 2 c & d, after the absolute orientation was corrected. 
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3.3 True orthorectification and mosaicking 
 
The goal of the orthorectification was to produce an orthomosaic with the best possible 
geometric and radiometric quality. True orthorectification calculates pixel visibility based on the 
3D scene model (i.e. the lidar DSM) and leaves occluded pixels empty (Mayr 2002). In our 
proposed approach, a non-occluded ortho-pixel receives the value of the closest image. 
Proximity is established by retaining the image with the shortest distance between the DSM 
pixel and the centre of perspective, among all images encompassing this pixel. Visibility is 
computed using the classical z-buffer technique. This proximity approach has the following 
advantages: 1) the image with the most vertical view angle is always used (helping preserve the 
quality of the image texture and reducing BRDF effects), 2) a DSM pixel occluded in the closest 
image still receives a value if it can be seen from an other image, and 3) cut lines between 
images are optimal and automatically calculated. Moreover, we avoided inter-image histogram 
balancing as well as feathering along the cut lines (which are actually very complex due to the 
interspersed image contributions, e.g. figure 5b) between images to preserve the original 
radiometry. 
 
Figure 4 presents an overview of the orthomosaic of four overlapping images (4a) with the map 
of the contributing image identity (4b). We see that at this scale the image appears seamless, that 
the contributing images each have their “principal domain” but contribute locally outside their 
domain. Note that black pixels indicate that the corresponding DSM pixel could not be seen 
from any of the images. Figure 5 shows an enlarged orthomosaic subset (5a) centred on a 
principal cut line between two images (visible in 5b and as a red dashed line in 5a). Even at this 
large scale the transition between the two images is invisible and the integrity of crown shapes 
and texture is preserved. Similar quality can be found along all cut lines. 
 

       
 

Figure 4 – a) Orthomosaic created from four Vexcel UltraCam images, b) Color-coded identification of 
the contributing image. No data pixels (in black) result from occlusion or absence of image data. Note 
that the nearest neighbour resampling used to reduce the scale of 4b for this figure degrades resolution. 

 

a b
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Figure 5 – Enlargement of a portion of 4 a & b. The principal cut line visible in 5b (transition between the 

green and orange zones) is drawn as a dashed red line in a. 
 
3.4 Cosmetic filling 
 
After the true orthorectification and mosaicking is complete, the DSM pixels occluded in all images 
have a no-data value. Although this represents the image acquisition reality, no-data pixels may be 
detrimental to the visual analysis of the orthomosaic, or cause problems for certain automated tree 
delineation algorithms. We have therefore produced a cosmetically filled version of the orthomosaic 
based on the following process. First, a map of projected shadows was calculated based on the lidar 
DSM. The average time at which the four test images were taken was extracted from the Vexcel 
images’ GPS time stamps (images were taken at approx. 1.5 seconds intervals). The NOAA Solar 
Position Calculator was used to obtain the elevation and azimuth of the sun at the time of image 
capture. Shadows were computed based on the lidar DSM by modelling sun ray’s as parallel lines. 
No-data orthomosaic pixels received a synthetic value which depended on the sunlit/shadowed state 
of the corresponding DSM pixel. Observations led us to conclude that, as a first approximation and 
pending further developments, a constant value for sunlit tree pixels would be acceptable. The 
overall average image value of visible sunlit trees was calculated and assigned to the sunlit no-data 
(occluded) pixels. A more complex solution was sought for the shadowed pixels. The high 
radiometric sensitivity of the Vexcel UltraCam makes individual trees discernable even in the 
shadowed areas. It appears that an important factor affecting the shadowed tree pixel values is the 
amount of diffuse sky irradiance received by each pixel. This quantity depends on height of the 
target pixel relative to that of its neighbours. Again as a first approximation, we have calculated the 
volume of tree material above the target pixel elevation in a 400 m2 area centred on the target pixel. 
These volume values were regressed with all corresponding non-occluded shadow pixel image 
values, resulting in a model for predicting shadowed pixel brightness based on the 3D layout of its 
surroundings. This model was used to attribute a brightness value to occluded shadowed pixels.  
 

     
 
Figure 6 – a) raw orthomosaic (black pixel have no-data value), and b) orthomosaic after cosmetic filling. 
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As a final step, to remove small artefacts caused by the z-buffer technique used to calculate visibility, 
we have used a 3x3 Laplacian filter to detect anomalies (e.g. a single very bright pixel surrounded by 
dark values) and replaced their values by the 3x3 average calculated using the non-anomalous pixels. 
Only a very small portion of the orthomosaic is affected by this filtering. Figure 6 shows a subset of 
the “raw” orthomosaic (6a) and the corresponding cosmetically filled version. We observe that all 
pixels receive a value, and that for the most part, these values are sufficiently close to the plausible 
brightness levels as to improve visualization, and most probably, individual tree delineation. 
 
4. Concluding remarks 
 
The methods presented in this paper allow the creation of high quality complete and true 
orthomosaics with very few artefacts. As these orthoimages fit exactly with a lidar dataset, the 
simultaneous analysis of 3D and radiometric data at high resolution will likely be significantly 
improved. The cavity filling ensures that the image texture and crown shapes are not degraded 
during the rectification. The assessment of the misregistration between the datasets used in this 
study revealed a Z error of 1.41 m, despite all the care put in the positioning of the base GPS 
antennae, system mounting, direct georeferencing data collection and integration, and vertical 
datum transformations. Even such a small error affects the geometric quality of the orthoimages. 
Although the source of this error was not identified, the techniques presented here guarantee 
that the error itself can be detected and corrected. Moreover, note that using comparisons of 
ZP and ZL, other types of errors could be detected and empirically corrected. However, there is a 
limit to the registration between image and lidar data due to wind sway of the trees. In the 
presence of moderate or strong winds, the top of trees will sway by several decimetres such that 
the crown image and its 3D shape may not fit exactly even though the image and lidar datasets 
would be tightly registered. Improvements in the orthomosaic creation are still possible. We 
noted for example that the brightness values of a given crown viewed from two different 
consecutive images, although very similar, are significantly different. Radiometric calibration 
would therefore be a useful addition to the mosaicking process. What is more, rough radiometric 
approximations were made based on the sun and scene geometries to cosmetically fill occluded 
pixels. More sophisticated approaches involving rigorous radiometric modelling could be 
employed instead. Nevertheless, we have already achieved a level of image-lidar integration 
quality that should allow fruitful developments in the field of precise forest mapping.  
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Abstract  
 
To meet Kyoto Protocol obligations, New Zealand is required to estimate forest carbon stock 
change over the first commitment period (2008-2012). New Zealand has three categories of 
forest, namely: natural forest; forests planted prior to 1990; and forests planted in non-forest 
land after 31 December 1989. The forests planted after 31 December 1989 are called ‘Kyoto 
forests’. The Kyoto forest carbon inventory system involves use of discrete return airborne 
LiDAR covering circular plots located on a 4 km grid. The plots are 0.06 ha in area. This paper 
describes the quality assurance and quality control procedures being used to ensure that the 
LiDAR data meet contract specifications. To be fit-for-purpose for forest carbon inventory the 
key LiDAR quality characteristics include: positional accuracy; first return density greater than 
three points per m2; no data decimation; correct file naming; and consistent classification of the 
ground returns within the point cloud. 
 
Keywords: QA/QC, LiDAR, forest inventory, carbon, Kyoto Protocol 
 
1. Introduction 
 
New Zealand is a signatory to the Kyoto Protocol and the United Nations Framework 
Convention on Climate Change. A requirement under Article 3.3 of the Protocol is annual 
greenhouse gas reporting of carbon stock changes arising from land use, land-use change and 
forestry (LULUCF) activities. Reporting is required for the Protocol’s first commitment period, 
from 2008 to 2012. Good Practice Guidance (IPCC 2003) for LULUCF activities requires 
carbon stock changes be estimated in an unbiased, transparent, and consistent manner. Further, a 
process and plan for implementing QA/QC (quality assurance and quality control) procedures is 
necessary to meet good practice. 
 
To meet LULUCF reporting requirements, New Zealand is classifying forests into three 
categories: natural forest; forests planted prior to 1990; and forests planted after 31 December 
1989 into non-forest land. The latter category is referred to as ‘Kyoto forests’. Forests to be 
measured by New Zealand under the Protocol are defined by the following parameters: 
minimum area of 1 ha; at least 30 % canopy cover; at least 5 m in height (or the potential to 
reach this height under current management); and a width of at least 30 m. New Zealand planted 
forests are comprised predominantly (89 %) of radiata pine (Pinus radiata), with the remainder 
made up of other species, mostly (6 %) Douglas-fir (Pseudotsuga menziesii). 
 
A plot-based forest inventory system has been developed for the New Zealand Kyoto forests. 
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Circular plots, 0.06 ha in area, are being located within these forests on a systematic 4 km grid. 
As field access to these mostly privately-owned forests is not guaranteed, LiDAR is being used 
to characterise all plots. 
 
Airborne LiDAR provides a flexible data collection system. The laser signal can penetrate the 
forest canopy so that ground measurements can be made. Further, data collection is independent 
of sun angle and night collection is feasible. Over the past few years there have been 
considerable advances in LiDAR systems which have resulted in improved LiDAR positional 
accuracy and increased surface point density. This has resulted in cm-level ranging accuracies, 
significantly increased pulse rate frequencies (greater than 150 kHz) and provision for LiDAR 
intensity signals (as opposed to ranging observation only). The flexibility of airborne LiDAR, 
coupled with a high level of positional accuracy and point density, make LiDAR systems an 
attractive data acquisition tool for forest carbon inventory. 
 
Although field-based carbon estimation is still an essential element of forest carbon inventory, 
the integration of LiDAR into such activities provides an opportunity to reduce total inventory 
cost and the need for extensive field-based sampling. Investigations into the potential of 
airborne LiDAR for forest carbon inventory have been undertaken (Drake et al. 2002, Nelson et 
al. 2003, Patenaude et al. 2004, and Stephens et al. 2007). In temperate deciduous woodland, 
LiDAR metrics explained 74% of the variation in above-ground carbon estimates, and 85% of 
the variation in above-ground estimates at the stand level (Patenaude et al. 2004). For planted 
forests in New Zealand, a study by Stephens et al. (2007) determined that total carbon per plot 
could be predicted by LiDAR metrics with a reasonable level of precision (R2=0.87; RMS 
error=19 t (carbon) per ha (16%)). 
 
For greenhouse gas inventory, quality control is defined as the routine technical activities used 
to measure and control the quality of the inventory as it is being developed. Quality assurance is 
defined as the system of review procedures conducted by personnel not directly involved in the 
inventory compilation/development process (IPCC 2003). These definitions differ with those 
used in the remote sensing industry (ILMB 2006; Stoker et al. 2007). The IPCC QA/QC 
definitions are used in the paper, where QC activities take place before the LiDAR acquisition 
mission, and the internal and external QA activities occur largely after the mission. 
 
Emphasis on the development of QA/QC procedures for LiDAR data have been in support of 
topographic mapping. Csanyi et al. (2007) describe LiDAR ground targets designed for 
topographic mapping to support geodetic grade LiDAR surveys (digital surface mapping with 
very accurate elevations and horizontal positions). 
 
This paper describes the QA/QC procedures used to ensure that discrete return LiDAR data 
acquired of forest carbon inventory plots met the aerial survey contract specifications. 
 
2. Method 
 
2.1 Study area 
 
LiDAR data for this project was acquired across New Zealand, which is centered on 410 S and 
1740 E (Figure 1). A total of 758 inventory sites, located on a 4 km grid, were surveyed. 
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Figure 1: The location of the inventory plots across New Zealand.  

 
2.2 Project specifications  
 
The data acquisition specifications for this project included: 

• A total of 758 sites to be flown, each site covering a circular area with a radius of 85 m, 
where the site centre is the middle of a 0.06 ha circular forest inventory plot.  

• For each plot site the first return density for each site to be at least three points per m2 
• Digital colour imagery is to be collected concurrently with the LiDAR data 
• Data are to be acquired over a three month period (February to April 2008), with data 

supplied at regular intervals. QA to be undertaken within 10 days of receipt of data. 
• Both sensors (LiDAR and digital colour photography) to acquire data along the full 

length of all flight lines  
• Data to be in the NZ Transverse Mercator (NZTM) projection and NZGD2000 geodetic 

datum 
• Project report and metadata documents to describe the capture method, sensor 

calibration procedures, data processing, contractor QA/QC approach and the outputs 
supplied to the client. 

• No data decimation is to occur, except for atmospheric outliers. 
• Data and information to be supplied in specified file formats, with the LiDAR data to be 

delivered in the LAS 1.0 format.  
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2.3 LiDAR system and data processing overview 
 
The LiDAR survey was flown using a Cessna 207 aircraft. An Optech ALTM 3100EA LiDAR 
sensor was mounted in the aircraft, along with an integrated Rollei AIC digital camera. Table 1 
summarises the LiDAR and flight parameters used to achieve a target point spacing of 0.5m. 
The digital camera was used in tandem with the LiDAR sensor. The resulting colour 
photography had a ground resolution of 0.2 m and a forward overlap of 30 per cent. The system 
also utilised an Applanix 510 Position and Orientation System (POS) that uses the GPS and 
IMU sensors, and a GPS-based computer controlled navigation system. 
 

Table1: Summary of narrow beam, discrete return, LiDAR data and flight details 
 

System Wavelength Scan 
angle  

Pulse 
frequency

Scan 
frequency

Swath 
width 

Footprint 
diameter*

Ground 
speed 

Flying 
height** 

Optech 
ALTM 
3100EA 

1064 nm ± 6 deg 70 kHz 53Hz 170 m 0.27 m 105 knots 1200 m 

* beam divergence based on full width and half height of beam; ** height above ground level 
 
The POS data were processed using Applanix POSPac software and the LiDAR 3D point cloud 
generation was completed using DASHMap™ software. LiDAR point cloud classification, 
product generation and orthophoto production was accomplished using the TerraSolid suite of 
LiDAR processing software. 
 
2.4 QA/QC activities undertaken by contractor  
 
Data acquisition and pre-processing began with the application of rigorous sensor calibration 
procedures to ensure relative accuracy of the point cloud with absolute positional accuracy 
being maintained through adopting “procedures that have been demonstrated to produce data 
with particular horizontal and vertical accuracy values” (FGDC 1998). 
 
Sensor calibration was a key QC activity. LiDAR boresight alignment and scanner scale 
parameters were determined from LiDAR data collected over a calibration range located close 
to the aircraft operating base. The calibration range was flown at regular intervals during the 
aerial acquisition phase of the project. These data were used to confirm whether or not the 
boresight alignment and scanner scale parameters varied over time. The LiDAR point intensity 
data were also monitored by reviewing histograms of point intensity values within a subset of 
the calibration range, and checking for changes in their shape and statistical characteristics. 
 
The absence of a suitable network of continuously operating GPS reference network base 
stations in New Zealand, and the geographic extent of the project, made it necessary to use 
advanced Precise Point Positioning (PPP) algorithms during the post-processing of the POS 
GPS data. To monitor the performance of the PPP output, base stations were operated from time 
to time throughout the project. When collected, the base station data were used to generate 
differential GPS (dGPS) based sensor trajectories and these were then used in the QA of the PPP 
based sensor trajectories. 
 
Following the generation of the LiDAR point cloud with DASHMap™ software, QA of the 
collected data for swath width/site coverage and point cloud density was undertaken after 
loading the LiDAR data into TerraScan LiDAR processing software. The target outgoing pulse 
point density of four points per square metre (with a minimum of three points) in a single flight 
line required the aircraft pilot and sensor operator to be vigilant in maintaining correct ground 
speed, altitude and track over steeply undulating terrain. 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 567

 
Rigorous folder and file naming conventions built around unique site identifies and acquisition 
dates was used to track the data from its raw state after off-load from storage devices on the 
aircraft through to delivered products. The products were delivered in blocks created on the date 
of acquisition and were accompanied by ISO 19115 compliant metadata XML files containing 
both mandatory and optional field entries. 
 
2.5 QA activities undertaken by client 
 
QA activities undertaken by the client involved use of the FUSION LiDAR visualisation and 
analysis software (McGaughey et al. 2004) and ERDAS IMAGINE software. Batch processing 
of LiDAR data with the FUSION software was undertaken to assess data for all flight lines and 
all classified sites. The batch processing produced HTML QA reports, which contained numeric 
and image outputs. 
 
For each LiDAR flight line and each site datasets, FUSION was used to determine first return 
(pulse) density, return density, and to produce an intensity image of the area covered by the 
datasets. A ground surface model was also created with FUSION from the flight line and site 
LiDAR datasets. The ground surface model is generated by filtering the LiDAR point cloud to 
identify ground returns. The filtering method used is an adaptation of the iterative method 
developed by Kraus and Pfeifer (1998). The FUSION filtering method is described in Andersen 
et al. 2006. 
 
The FUSION LiDAR data viewer was used to visually assess the site point cloud LiDAR data 
classified by the contractor as ground surface. This was accomplished by comparing the 
classified data with the independently created (using FUSION) ground surface model, and by 
rotating the point cloud to establish if there were any points at an elevation less than those 
classified as ground surface. These assessments were undertaken for five per cent of the plot 
sites. 
 
The ground surface model for the flight lines were exported from FUSION as a Surfer ASCII 
grid file. In ERDAS the elevations along the centreline of the flight line ground surface models 
were adjusted by applying an elevation offset obtained from reference to a 10 cm contour Geoid 
separation model. Then the adjusted elevations were compared with elevations for the same 
centreline sampling area in a national 15 m digital elevation model. This model has a vertical 
uncertainty of ±10 m. Flight line elevation comparisons were to provide a ‘reasonableness’ 
check of LiDAR-derived elevations against a nation-wide digital elevation model. 
 
File names and geographic position of all ploy data were checked using ARCInfo software. This 
was accomplished by comparing post-processing plot location shapefiles with shapefiles (with 
file names and spatial location) of plots to be surveyed. 
 
3. Results 
 
3.1 Sensor calibration 
 
The LiDAR sensor calibration range was flown four times through the course of the acquisition.  
Height difference statistics between 600 ground surveyed points of the calibration range and the 
LiDAR point cloud were calculated following the checking of the boresight alignment and 
scanner scale parameters. Table 2 summaries these statistics and the range of return pulse 
intensity values for two of the calibration sorties. These are typical of the values obtained for 
each of the calibration flights. 
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Table 2: Summary of sensor calibration output for two calibration sorties 
 
Sortie Flightline Height difference 

mean (m) 
Height difference 

Std Dev. (m) 
Return pulse intensity range 

(min-max) 
080127 1 -0.002 0.06 1.4 to 6.8 
 2 -0.018 0.02 1.5 to 7.2 
080213 1 0.002 0.03 0.7 to 6.7 
 2 -0.05 0.02 0.6 to 6.6 
 
3.2 Precise Point Positioning 
 
The expected accuracy of the precise point positioning method is 10 to 40 cm, subsequent to the 
convergence of the processing algorithms. This expectation was tested on six occasions through 
the course of the project where a GPS base station receiver was operated. Table 3 shows typical 
positional difference statistics between PPP and dGPS processed sensor trajectories. These 
results are in accord with expectations and confirm the validity of using PPP for this project.  
 

Table 3: Summary of PPP v dGPS sensor trajectory for two sorties 
 

Sortie 

Duration 
of sortie 
(hr:min) 

Easting 
difference 
mean (m) 

Northing 
difference 
mean (m) 

Height 
difference 
mean (m) 

Easting 
difference
Std Dev 

(m) 

Northing 
difference 
Std Dev 

(m) 

Height 
difference 
Std Dev 

(m) 
080214 2:20 0.06 -0.19 -0.16 0.02 0.01 0.06 
080314 3:10 0.22 0.12 0.10 0.10 0.12 0.09 
 
All files were named in according to client specifications and the plot sites were found to be in 
the correct geographic position. 
 
3.3 Assessment of LiDAR first return (pulse) density 
 
A summary of the LiDAR return density results are provided in Table 4. In a few instances point 
densities were less than the minimum required. This occurred because of strong winds 
encountered by the aircraft, making it difficult to maintain the planned ground speed of 105 
knots. Sites with a density less than three were re-flown.  
 

Table 4: Summary of first return (pulse) LiDAR densities (returns per m2) 
 

Data delivery 
date 

Number 
of sorties 

Number of 
plots flown 

Maximum 
return density 

Minimum 
return density

Mean return 
density 

Plots to 
re-fly 

14-03-08 2 24 6.67 2.62 3.55 3 
31-03-08 2 69 7.55 3.00 3.66 0 
11-04-08 12 228 4.47 2.98 3.91 1 
17-04-08 8 178 6.41 3.06 4.09 0 
30-04-08 2 29 5.39 3.04 3.96 0 
14-05-08 4 87 5.87 3.12 3.99 0 
28-05-08 4 107 6.04 3.23 4.16 0 
11-06-08 3 36 5.23 3.68 4.22 0 

 
Intensity images (created with a dynamic range of 0-100) and the orthophotographs were of 
high quality. An example of the data acquired, and generated in this project, is illustrated in 
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Figure 2. 
 
3.4 Assessment of LiDAR-derived ground surface models 
 
Visual comparison of the contractor ground-classified data for the sites with the client created 
ground surface model showed no discernable difference between the two. Elevation profile 
differences for a typical flight line in steeply undulating hill country are shown in Figure 3. 
 

  
 
Figure 2: Left image shows an extract of a site orthophotograph. A circular plot site is located within the 

white rectangle. The two white points mark the ends of a transect through the site. The right image shows 
the client-produced ground surface model and a 5 m wide point cloud coloured using the height above 

ground along the transect. The first return density for the site is 3.46 points per m2. 
 

 
 
Figure 3: The top two lines show heights from Geoid-corrected LiDAR data and a corresponding profile 
from a national digital elevation model. The lower line shows the elevation differences between the two 

data sources. The large elevation difference is 25 m, 2.5 km into the flight line. 
 
4. Discussion  
 
Over the past decade many studies have demonstrated that airborne LiDAR can provide data 
appropriate for resource management, including forest inventory. Over this time LiDAR 
technology has been widely used for high-resolution terrain analysis and mapping. National 
QA/QC standards and guidelines for LiDAR data collection are well developed for terrain 
analysis and mapping (ILMB 2006; Stoker et al. 2007). However, standards and guidelines for 
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forestry applications are not as well advanced. McGaughey et al. (2006) described the 
requirements for LiDAR data for forestry measurements and highlighted the deliverables, 
specific to forestry applications that should be included in data acquisition contracts. 
 
This operational LiDAR forest inventory project involved 758 small forest sites, on land 
ranging from sea level and 940 m elevation, and located over a large geographic area. The 
QA/QC activities undertaken by the contractor were designed specifically for the project, with 
quality being maintained through the application of flying skill, rigorous processes and 
advanced technology. Further, the QA processes undertaken by the client and conducted within 
10 days of data delivery, were designed to provide rapid feedback to the contractor, and to 
ensure that the LiDAR data were appropriate for the intended purpose, namely forest carbon 
inventory. The QA/QC processes documented here provide a basis for establishing forestry 
standards and guidelines for airborne LiDAR data acquisition and processing. 
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Abstract 
 
Timber Volume is one of the most important quantitative parameters to characterize a forest 
stand. This article evaluates a combination of Airborne Laser Scanning and GIS data to estimate 
timber volume of forest stands using standard forestry yield models. The input parameters into 
the models are the stand height and canopy density which are both derived from a normalized 
digital surface model. For the selection of suitable yield models, information about tree species 
composition from digital stand maps was used. The method was verified in a forest area in 
Southern Germany with 313 circular inventory plots each with a size of 452m². The relation 
between estimated timber volume and the volume calculated from the inventory data reached a 
correlation coefficient of r = 0.74 when regarding all sample plots. The plot values were averaged 
within forest stands of the same age class and a correlation of r = 0.91 was achieved. The 
relation for averaged values only for single-storied stands reached a correlation of r = 0.98. 
 
Keywords: Airborne Laser Scanning, forestry, timber volume, yield models, inventory 
 
1. Introduction 
 
Airborne Laser Scanning (ALS) is an active remote sensing technique for the capturing of 
topographic data. Laser Mapping is based on a multi-sensor system whose main components are 
a laser scanner to measure the range/distance from the scanner in the aeroplane to the terrain 
surface, a Global Positioning System (GPS) and an Inertial Navigation System (INS). These 
components are usually mounted on a helicopter or an aeroplane. The survey area is scanned 
strip by strip and the range measurements are converted into a local coordinate system. The 
result is a point cloud, often referred to as “raw data”. Besides conventional ALS systems which 
record the first and last echo for each emitted laser beam, full wave scanners (which record the 
whole echo waveform) gain more importance (Wagner et al. 2008). In forests the laser pulses 
usually have multiple reflections from different vegetation layers and a certain amount of pulses 
will penetrate to the ground. Using a suitable filtering technique a digital terrain model - DTM 
(which represents the bare earth) and a digital surface model - DSM (which represents the 
height of objects on top of the bare earth like vegetation cover or buildings) can be derived from 
the point cloud. A large number of studies have shown the capability of ALS technology to 
accurately estimate important forest inventory parameters such as stand heights, basal area, and 
stand volume (Hyyppä et al. 2006, Koch et al. 2006, Hyyppä et al. 2004, Næsset 2002). A 
widely used approach is to relate laser-derived variables, representing canopy height and density, 
to ground-truth data from inventory plots for the calibration of regression models. The models 
are used in a second step to estimate forest inventory parameters e.g. timber volume for the 
entire study area (Hollaus et al. 2007, Næsset 2002, Means et al. 2000, Næsset 1997). 
 
In the following paragraphs a method is described which combines ALS and additional 
information from GIS data to estimate timber volume of forest stands using standard forestry 
yield models. Yield models were developed in the past from extensive field measurements and 
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are summarized into yield tables which give information about structural forest parameters like 
timber volume attainable under certain conditions. First ideas of the method are described in 
(Dees et al. 2006). 
 
2. Method 
 
2.1 Study Area 
 
The method, presented in the following paragraphs, was verified in a forest area with a size of 
9.24 km² in Southern Germany located north of the city of Karlsruhe (coordinates of the upper 
left corner in Gauss Krüger: 3456300 (easting) / 5436100 (northing)). The tree species 
composition is shown in table 1. 
 

Table 1: Tree species composition of the study site 
 

Tree Species Percentage 
Scotch pine (Pinus sylvestris) 51 % 
Oak (Quercus petraea) 14 % 
Beech (Fagus sylvatica) 10 % 
Red oak (Quercus rubra) 10 % 
Douglas fir (Pseudotsuga menziesii) 5 % 
Hornbeam (Carpinus betulus) 4 % 
Other species such as birch (Betula pendula), spruce 
(Picea abies), larch (Larix europaea), lime tree (Tilia 
cordata), sycamore maple (Acer pseudoplatanus) 

6 % 

   
2.2 Remote Sensing Data 
 
Full-wave laser scanner data and aerial images were acquired in August 2007 by TopoSys 
GmbH using the “Harrier 56” LIDAR system mounted on a helicopter. The scanner used in this 
system is the Riegl LMS-Q560. Important flight and system parameters are listed in table 2. 
 

Table 2: Flight and system parameters of the flight campaign in summer 2007 with the “Harrier 56” 
 

Parameter Value 
Range Capture Full waveform digitization 

Measurement rate 100 kHz 
Field of view 45° 
Swath width 370m 
Flying height 450m AGL 
Flying speed 30m/s 
Point density 16 points / m² 

Vertical accuracy < ±0.20 [m] 
Horizontal accuracy < ±0.5 [m] 

 
Both a terrain and a surface model with 1m resolution were derived from the point cloud. An 
“Active Surface Algorithm”, implemented in the software TreesVis, was used for filtering and 
interpolation. Details about the filtering technique can be found in (Weinacker et al. 2004). A 
normalized digital surface model (nDSM), in forests often referred to as canopy height model 
(CHM), was derived by subtracting the DTM from the DSM. True orthophotos (RGB and CIR) 
with 20 cm ground resolution were delivered by TopoSys GmbH. 
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2.3 Reference Data 

 
Forest inventory data from summer 2006 was provided by the Department of Forestry of the 
Federal State of Baden-Württemberg. Permanent georeferenced sample plots were distributed 
over the study area on the intersections of a regular 100x200m raster. For each of the plots trees 
were measured in the field within concentric circles using the following different radii: 2m, 3m, 
6m and 12m. Within each concentric circle trees with a diameter at breast height (DBH) greater 
than 7cm, 10cm, 15cm and 30cm were measured. Two top heights of the main crop and one top 
height of the dominated crop were measured using a Vertex® instrument. As an average top 
height for each plot the arithmetic mean of those height measurements was calculated. Stand 
height curves with the DBH as input parameter were used to estimate the heights of the remaining 
trees (Korn-Allan 2004). Based on these measurements the volume of single trees was computed 
and the timber volume in solid cubic meter per hectare (defined as the sum of all stems and 
branches with a diameter above 7cm) was derived for each plot. The position accuracy of the 
centre point of the sample plots was quantified in a current study with an average deviation of 
3,77m compared to very accurate measurements using a theodolite (Breidenbach 2008). 
 
2.4 Methodology 
 
Yield models, developed and recommended for the Federal State of Baden-Württemberg, 
Southern Germany (MLR 1993) were used to estimate timber volume with metrics from ALS 
and GIS data as input parameters. The models describe the development of a forest stand 
throughout lifetime based on a specific forestry concept (treatment of a stand like moderate or 
strong thinning) and were set up for 16 different tree species. For each species several yield 
classes are defined which describe the influence of environmental conditions (climate, 
topography and soil). They are given in a tabular form and provide forestry parameters such as 
tree number per hectare, top height, basal area, mean diameter or volume as a function of the 
age. Due to the fact that ALS data provides very accurate height measurements the yield models 
were used to estimate timber volume as a function of top height. In general the following 
information is necessary for the application of yield models: 
 

1. Tree species composition of a stand: Necessary for the selection of suitable models. Due 
to the fact that species classification from ALS data is still a challenge, except for the 
classification of coniferous and deciduous forest during leaf-off (winter) conditions 
(Straub 2006), tree species percentages of the forest management plan (formatted as 
GIS data) were integrated. For each species a separate function was derived from the 
yield tables. The species percentage was used as weighting factor. 

2. Yield class: Describes the influence of environmental conditions and is necessary for 
the selection of a suitable model. As described in (Mette et al. 2002) information on the 
site condition is very important if stem biomass is estimated by the age of a stand. If 
stem biomass is estimated by the forest height the site condition has only a small effect. 
The statistical relation between (mid) height and (stem) volume of a stand is also known 
as the “law of Eichhorn” (Pretsch 2001). Thus the yield class was not further considered 
in this study. 

3. “Degree of stocking”: The timber volume derived from a yield table is multiplied with 
the degree of stocking DS defined as the ratio of real basal area realBA to the 
corresponding basal area from a yield table tableBA  for moderate thinning (Kramer and 
Akça 1995): 
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table

real
BA
BA

DS =
       (1) 

The result is an estimate of the actual volume of the stand. According to (Huss 1984) 
the degree of stocking can be estimated with remote sensing data using the tree crown 
cover also referred to as canopy density. 
 

2.4.1 Top Height Estimation of Forest Stands using ALS Data 
 
Top height is defined as the height of the hundred trees with largest diameter per hectare within 
a stand (Burschel and Huss 1997). Due to the fact that trees with the largest diameter are usually 
the highest trees, the top height represents the height of trees in the upper canopy level which 
can be modelled with ALS data. Several variables both derived from the point cloud/raw data 
(after subtracting the ground surface height) and the nDSM were verified in order to determine 
the best estimate for the top height. Similar to earlier findings (Næsset 2002, Means et al. 2000, 
Rieger et al. 1999) several height percentiles were calculated for each inventory plot from the 
raw data ,60Raw  ,70Raw  ,80Raw  ,90Raw  maxRaw  (unlike previous studies no differentiation 
between first and last echo was made) and from the nDSM ,60nDSM  ,70nDSM  ,80nDSM  ,90nDSM  

maxnDSM . The correlations of the laser metrics with the field data (as shown in table 3) were 
computed for 305 inventory plots (all plots with actual tree height measurements). 
 

Table 3: Correlations of height percentiles from raw data and nDSM with height measurements  
from 305 inventory plots to estimate the top height of forest stands 

 
Height percentiles 

 from nDSM 
Correlation  

Coefficient (r) 
Height percentiles 

 from raw data 
Correlation  

Coefficient (r) 
maxnDSM  0.84 maxRaw  0.84 

90nDSM  0.87 90Raw  0.84 
80nDSM  0.84 80Raw  0.78 
70nDSM  0.80 70Raw  0.62 
60nDSM  0.74 60Raw  0.44 

 
The 90th percentile of the nDSM (

90nDSM ) showed the highest correlation with the field data. 
The regression is shown in figure 1: 
 

 
Figure 1: Estimation of the top height of forest stands from 90th percentile of the nDSM 
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2.4.2 Estimation of the Canopy Density from ALS data 
 
Canopy density is defined as the ground covered by a vertical projection of tree crowns. For 
each sample plot the canopy density was estimated based on the nDSM which represents the 
canopy heights for each xy position. A threshold operation (selection of pixels with height 
values within a defined interval) was used to extract potential crown regions. The threshold 
operation is defined as 
 

( ){ }maxmin: hnDSMhRxyCR xy ΔΔ ≤≤∈=     (2) 
 
where CR = Output region (crown regions) 

R = Region of Interest (ROI) 
xynDSM  = Height values of the nDSM for each xy position 

minhΔ  = Minimum height threshold 

maxhΔ  = Maximum height threshold 
 

Timber volume is defined by stems with a minimum diameter of 7cm. If a general relation of 
height = diameter · 100 is assumed (for young trees), the minimum height of trees to be 
measured will be 7m which was defined for minhΔ whereas maxhΔ was set to the maximum 
height value within the sample plots. The ratio of the size of extracted crown regions CR to the 
plot area was used as an estimate for canopy density. 

 
2.4.3 Tree Species Information from GIS Data 
 
A digital stand map was provided by the Department of Forestry. A total number of 101 stands 
are located in the study site. Tree species percentages of the forest management plan were 
assigned as attributes to the stands. The percentages are estimated in field based on the area 
covered by the crowns of each individual species in a stand and are given in units of 5 %. The 
accuracy of the estimation is not quantified but is assumed to be less than ±5 %. Finally the tree 
species percentages were allocated to all sample plots located within each stand. 
 
2.4.4 Estimation of the Timber Volume 
 
A polynomial of second order was used to estimate timber volume as a function of top height: 
 

²cHbHaV ++=       (3) 
 
where  V = Timber volume 

H = Top height 
c,b,a = Individual parameters for a tree species 

 
Different parameters were derived from the yield tables for eight species using regression 
analysis (see table 4). 
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Table 4: Parameters derived from yield tables to estimate timber volume as a function of top height 
 
    Range 

Tree species 
Number 
of yield 
tables 

a  
[m³/ha] 

b 
[m²/ha] 

c 
[m/ha] 

2R  
Min. 

Height 
[m] 

Max. 
Height 

[m] 
Scotch pine (Pinus 
sylvestris) 7 - 90.2971 18.0819 -0.0022 0.98 8.3 37.5 

Oak (Quercus petraea) 7 - 145.3082 16.4528 0.0684 0.99 7.8 40 
Beech (Fagus sylvatica) 8 - 160.3876 17.8205 0.0629 0.98 6.6 45.5 
Red oak (Quercus rubra) 5 - 88.6174 8.5654 0.2272 0.97 6 33.5 
Douglas fir (Pseudotsuga 
menziesii) 12 33.0444 0.3091 0.4372 1 9.5 51.1 

Spruce (Picea abies) 11 - 154.5544 21.5093 0.1245 0.97 6.9 43.1 
Larch (Larix Europaea) 5 - 17.7444 7.1107 0.2381 0.99 11.1 43.2 
Lime tree (Tilia cordata) 5 25.2515 8.2378 0.1333 1 13.2 32.6 
 
For some deciduous species no yield models were available and the parameters for beech were 
used. For each sample plot the timber volume was estimated in solid cubic meter per hectare. 
The estimation of timber volume as a function of top height, tree species composition and 
degree of stocking can be written as: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⋅++⋅= ∑

=
100

²)(
1

i
iii

n

i

P
HcHbaDSV

    (4) 

 
where  V = Estimated Timber volume in m³/ha 

 iii cba ,, = Parameters for different tree species ),...,1( ni =  
 H = Top height in meter (estimated from ALS and calibrated with field data) 
 iP = Percentage of tree species (from digital stand map) ),...,1( ni =  
 DS = Degree of stocking (derived from the estimated canopy density) 
 n = Number of different tree species within a stand 

 
3. Result 
 
Forest inventory plots (as described under 2.3) were used for verification. The comparison of 
estimated timber volume and inventory data was done for all sample plots as well as for 
averaged values which were derived from plots located within stands of the same age class. The 
age class was taken from the stand map. A correlation coefficient of r = 0.74 was reached when 
regarding all sample plots (a scatter plot with regression and RMSE is shown in figure 2). After 
averaging the estimated and the reference values for all stands with the same age class (both for 
single and multi-storied stands) a correlation of r = 0.91 was achieved (the scatter plot is shown 
in figure 3). The correlation with averaged values only for single-storied stands in the study site 
reached the highest correlation of r = 0.98 (the scatter plot is shown in figure 4). Information 
about the vertical stand structure was taken from the forest management plan. 
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Figure 2: Timber volume 
estimation regarding all 

inventory plots 

Figure 3: Timber volume 
estimation with averaged values 
for age classes (including both 
single and multi-storied stands) 

Figure 4: Timber volume 
estimation with averaged values 

for age classes (only 
single-storied stands) 

 
4. Discussion 
 
A method to estimate timber volume of forest stands based on ALS and GIS data using standard 
forestry yield models was presented. Inventory plots were used for verification. Top height of 
forest stands as one of the input parameter into the yield models was estimated from the 90th 
percentile of the nDSM. The relation of the height estimation on plot level reached a correlation 
coefficient of r = 0.87 and coefficient of determination of R² = 0.75. As second parameter the 
canopy density (tree crown cover) was estimated based on the nDSM by extracting all pixels 
with a height above 7m. The canopy density was used as an estimate for the degree of stocking 
to correct the timber volume derived from a yield model. For the selection of suitable yield 
models tree species information of the forest management plan (assigned as attributes to digital 
stand maps) were utilized. Parameter sets for eight tree species were derived from the yield 
tables as recommended for the Federal State of Baden-Württemberg, Germany. 
 
A relation of r = 0.74 (R² = 0.54) was reached for timber volume estimation when regarding all 
sample plots. The high scatter on plot level can be explained by local variations of the forest 
structure which have a high influence if timber volume is estimated for small regions like the 
sample plots used in this study with a size of 452m². However the variation was compensated 
when plot values were averaged for larger units (here: stands of the same age class). The 
estimation for all stands located in the study area (both single-storied and multi-storied stands) 
reached a very satisfying accuracy of r = 0.91 (R² = 0.84). The variance can be further reduced 
if plot values are averaged only for single-storied stands of the study site with a very close 
relation of r = 0.98 (R² = 0.95). This may emphasize that yield models were originally 
developed for pure even-aged stands (homogeneous structure with small differences in age 
among individual trees). 
 
Yield models attempt to quantify the development of a forest but nowadays higher growth rates 
are assumed than given by the models used in this study which were established between the 
years 1936 to 1992. Nevertheless the relation between height and volume will not change 
significantly (Mette et al. 2002). 
 
To improve the volume estimation further studies will concentrate on the extraction of 
additional forest parameters from the full wave data e.g. the vertical stand structure. Automatic 
or semi-automatic classification of optical data will be tested to replace species information of 
the forest management plan by remote sensing data. 
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Abstract 
 
This paper presents an assessment of the risk of windthrow for an area of ancient woodland of 
high environmental importance in Scotland, UK.  ForestGALES (Geographical Analysis of the 
Losses and Effects of Storms in Forestry) is a process-based model, which identifies wind 
vulnerability.  The collection of plot-level field data has previously permitted this model to be 
run for stand-level analysis.  In this study, airborne LiDAR data were used to produce a 
normalised canopy height model (CHM).  An algorithm was designed within Definiens 
Developer 7.0 object oriented analysis software in order to delineate individual tree crowns 
from the CHM.  The results of this delineation were used to develop regression equations 
using individual tree height and crown width to estimate diameter at breast height.  This aims 
to allow structural vegetation properties to be related to the spatial distribution of individuals.  
The spatial arrangement of individual tree heights and diameters at breast height were used to 
generate tree lists and use them as inputs to ForestGALES.  This allowed the stability of 
individual trees to be mapped by modelling the critical wind speed at which they are predicted 
to be overturned.  This offers a substantial improvement on previous model outputs and 
provides important data, which can inform forest management decisions. 
 
Keywords: Airborne LiDAR; high point density; canopy delineation; windthrow 
 
1. Introduction 
 
Topographic exposure, the degree of exposure to Atlantic storms, shielding from adjacent 
vegetation together with individual tree dimensions are factors that need to be considered when 
modelling susceptibility to wind.  Understanding these processes and site-specific risk will not 
only allow appropriate management of wind risk but also permit the optimum felling age of 
stands to be identified.  Airborne LiDAR data enables the locations, heights and canopy 
dimensions of individual trees to be mapped and therefore addresses many of the data 
requirements for assessing vulnerability to wind (Suárez et al 2008). 
 
Glen Affric consists of an area of lochs, moorland and mountains in the Scottish Highlands.  It 
contains one of the largest ancient Caledonian pinewoods in Scotland, consisting of species such 
as Scots pine, junipers, birches, willows and aspen.  This diverse landscape provides habitats 
for a wide range of plant, animal and bird species.  As a result, it has been designated a 
Caledonian Forest Reserve, National Scenic Area and National Nature Reserve.  Since the 
1960s, the core area of Glen Affric has been under conservation management by the Forestry 
Commission of Great Britain in recognition of its high environmental value (Forestry 
Commission 2008a, 2008b).   
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2. Aims  
 
Forest management plans contemplate a progressive transition from a traditional planting and 
clear-felling to a natural system characterised by a permanent presence of trees, selective 
cuttings and natural regeneration.  The ultimate goal is the progressive substitution of 
non-native species for those ones that define a Caledonia forest. 
 
However, this area is regularly subjected to storm events coming from the North Atlantic added 
to permanent waterlogged conditions, which makes it vulnerable to wind damage during those 
storm events.  This study was conducted as part of the EU-funded Interreg project StormRISK.  
The aim was to test the capabilities of LiDAR analysis to provide more accurate information 
than that routinely gathered in the field by the forest district.  In particular, this work looked at 
mapping structural differences within the forest stands such as the spatial distribution of 
individual trees, distance between neighbours, individual tree heights and stem diameters.  All 
this information has been used to generate tree lists that were subsequently input into the 
ForestGALES model (Geographical Analysis of the Losses and Effects of Storms in Forestry) to 
make predictions of the Critical Wind Speed required to overturn each tree.  
 
ForestGALES is a process-based model which enables risk of wind damage to be assessed for 
different management scenarios and with changing conditions due to stand growth (Gardiner et 
al 2004, Forestry Commission 2008b, Suárez et al 2008).  Given local site characteristics, the 
model therefore identifies the wind speed at which windthrow will occur.  Risk is expressed as 
the reoccurrence period of the critical wind speed calculated to overturn an average tree within a 
stand.  These return times have been mapped for Britain using wind strength scores called 
DAMS (Detailed Aspect Method of Scoring). 
 
 
3. Data  
 
Airborne LiDAR data were acquired for an area of 58 km2 on 9th, 11th and 13th June 2007 by The 
Environment Agency Science Enterprise Centre on behalf of Forest Research.  The Optech 
ALTM 3100 LiDAR system was used recording up to four return echoes per laser shot at 
approximately 0.25m resolution.  This resulted in an average pre-processed point density of 
approximately 12-16 points/ m2 producing good energy penetration throughout the canopy 
(Figure 1). 
 

 
 

Figure 1. LiDAR point cloud cross section of Glen Affric, Scotland.  Image produced with Terrascan.  
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4. Methods 
 
A subset of airborne LiDAR data was used for a 1km x 2km area representing the range of 
surface and vegetative characteristics present within Glen Affric (Figure 2).  This study area 
comprises stands of Scots Pine (Pinus sylvestris), Birch (Betula spp.), European Larch (Larix 
decidua), Douglas Fir (Pseudotsuga menziesii), mixed conifers, Sitka Spruce (Picea sitchensis), 
Norway Spruce (Picea abies) and Lodgepole Pine (Pinus contorta) in order of occurrence. 
 
Scots Pine formed the oldest and youngest stands of 208 and 8 years old respectively.  For the 
purposes of this study, field measurements and models for stands of Scots Pine (Pinus sylvestris) 
are to be used for validation.  The LiDAR data were processed as outlined below. 
 

 
 
 
 

 
Figure 2. (left) 0.5m resolution digital terrain model of a 1km x 1km area produced with Golden Software 

Surfer 8. (right) Canopy height model of the same area using ArcGIS 9.1 
 
A ground return class was determined from last return echoes using Terrascan 007.008 Software 
an extension application for Bentley Microstation V8 2004.  This ground class and all first 
return data were subsequently exported and converted into regular 0.5m resolution raster 
geotiffs using Delaunay triangulation with linear interpolation.  A canopy height model (CHM) 
was calculated as the difference between the digital terrain model (DTM) created from the 
ground class and the digital surface model (DSM) from the first return data using ArcGIS 9.1. 
 
An algorithm was designed within Definiens Developer 7.0 to delineate individual tree canopies 
solely from the LiDAR-derived 0.5m resolution canopy height model.  Firstly the CHM was 
smoothed with a kernel of 3x3 and local maxima were located and classified as tree tops.  
Areas of ground or understorey vegetation, plus canopy ‘edges’ were identified and used as 
boundaries to prevent further canopy growth.  Tree tops were subsequently extended radially 
until either meeting an adjacent canopy or designated boundaries and a mask was applied to 
limit irregularly shaped polygons.  Tree top locations were then saved as point shapefiles and 
polygons representing individual canopies were also exported with associated maximum canopy 
height, area, maximum and minimum radii, width and polygon centroid co-ordinates. 
 
An allometric relationship between canopy width and height with diameter at breast height 
(DBH) was developed using the Forest Research Environmental Database (FRED) containing 
field measurements for more than 15,000 trees over the entire country.  This model allowed the 
estimation of stem diameters for each individual tree.  
 
Thus, stand information obtained form the FC sub-compartment database was used to generate 
mean wind conditions inside the forest canopy for each stand in ForestGALES.  Tree lists 
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generated from LiDAR were used to calculate resistive factors at tree level.  Finally, edge 
effects were estimated from the distance between each individual to its neighbours (Figures 
3-5).  
 

  
Figure 3. Estimation of individual tree heights (in m). 

 

  
Figure 4. Estimation of individual DBH (in cm). 

 

  
 

Figure 5. Critical wind speed for overturning each tree (in ms-1). The most stable trees are depicted in 
green. 

 
5. Results and Discussion 
 
The canopy delineation method produced a better description of the influence of stand structure 
on the risk of wind damage.  This is a substantial improvement compared to the normal way of 
operating ForestGALES, with just mean stand parameters, because it allows the most vulnerable 
parts of the stand to be located.  This is true for those individuals that are not properly 
sheltered by neighbours or present lower taper values.  In Figure 5, the most vulnerable trees, 
depicted in red, are around the edges of the stand or inside the forest canopy if their taper 
relationships are below 80.  On the contrary larger canopy dimensions, high taper values and 
sheltered trees are more stable and require higher critical wind speed values for overturning.  
Most of those trees, depicted in orange, require wind speeds between 10 and 20 ms-1. 
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The practical consequences for future management plans will contemplate the choice of 
thinning practices (normally ruling out thinning), the degree of exposure to certain parts of the 
stand when clearfelling neighbouring stands, the location of forest roads (normally avoiding the 
sudden exposure of vulnerable individuals), etc. 
 
The limitations of the ForestGALES method come from the modelling of the adaptation of trees 
to changing exposure conditions.  In this case, most of the trees around the edges of the stands 
or those trees growing in open stands or in total isolation are already very well adapted to wind 
conditions.  In particular, those individuals that form part of the remnants of the ancient 
Caledonian pinewood have been growing in isolation for more than 100 years without being 
affected by windthrow (top left of Figure 5).  Therefore, this method seems to be more useful 
for new plantations (like the one than occupies most of the image) than for isolated individuals.  
More research will be required in the future for parameterising this adaptation to wind.  
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Abstract 

 
Multi-spectral imagery and multiple-return light detection and ranging (LIDAR) data were used 
to assess forest composition and structure for determining habitat suitability for red-cockaded 
woodpecker (Picoides borealis; RCW).   Object-oriented classification of the imagery yielded 
covertype and distinguished between loblolly (Pinus taeda) and longleaf (Pinus palustris) pine 
with an accuracy of 80.8% when combining both pine species into one class and 73.7% when 
classifying pine species separately.  The average stem diameter for pine areas was estimated 
using LiDAR data to identify and estimate individual stem heights.  Field-derived 
height-diameter relationships were used to estimate diameter distribution.   LiDAR-estimated 
mean basal area (BA - square meter/hectare) for canopy trees (14.05 m2/ha) and canopy trees in 
the top quartile of height (7.03 m2/ha) was not significantly different from field measurements 
of basal area for all trees (15.6 m2/ha) and top quartile trees (8.05 m2/ha) for 69 plots distributed 
across three sample areas (α = 0.05).  The density of midstory/understory hardwoods derived 
from LIDAR in 4 height strata; 0.5 – 2.1 m, 2.1–4.6 m, 4.6 m to height to live crown (HLC), 
and canopy, were correlated with field measurements of total cover, resulting in an R2 of 0.0, 
0.26, 0.36 and 0.60 for each stratum, respectively. 
 
1. Introduction  
 
The endangered red-cockaded woodpecker (Picoides borealis; RCW) of the Southern United 
States is the only species of woodpecker to excavate nest cavities within the trunks of living 
pine trees (preferably mature longleaf pine (Pinus palustris)) old enough to have developed 
sufficient heartwood (Zwicker and Walters 1999).  Midstory and understory vegetation height 
and composition are important in characterizing the quality of RCW habitat.  Rudolph et al. 
(2002) found that RCWs prefer to forage on trees where there was low density midstory 
vegetation and that foraging occurred at greater heights above ground on sites with greater 
midstory heights and densities.  Zwicker and Walters (1999) stated RCWs were found to have 
preferences for pines >23 cm diameter at breast height (dbh) and avoided pines <13 cm dbh.     
 
The basic information required for describing forest type and structure is often expensive and 
time consuming to collect in the field and requires periodic updates to remain valid (Xiao and 
McPherson 2004). Detailed identification of individual tree species or species groups has been 
demonstrated in analysis of digital multi-spectral imagery (Knight et al. 2004; Casey 1999; 
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Batten and Evans 1997; Hughes et al. 1986). Fusing spectral with light detection and ranging  
(LiDAR) data can take advantage of the strengths of both sensors for the purpose of improving 
estimates of forest stand characteristics (Leckie et al. 2003; McCombs et al. 2003).  
 
Modern LiDAR systems generate x,y,z coordinate data from aerial platforms by laser ranging, 
operating at pulse rates of up to 200 kHz as noted in recent technology specifications from data 
providers.  The spatial resolution, measurement accuracy and spectral response of these 
systems to vegetation have lead to a significant body of research on the use of LiDAR data for 
forest assessments.  There are a variety of different approaches taken towards tree recognition 
and height determination (Popescu and Wynne 2004; Brandtberg et al. 2003; Persson et al. 
2002; Zimble 2002; Eggleston 2001).  The approach used in this project is based on the one 
described by McCombs et al. (2003).  Tree locations with heights derived from LiDAR have a 
number of possible uses in defining the structural character of a stand, and thus the habitat 
suitability for different wildlife species (Hinsley et al. 2002; Zimble et al. 2003; Hill et al. 
2004).  
 
The overarching goal of this research was to demonstrate the use of high resolution 
multi-spectral imagery and LiDAR remote sensing technologies to generate a landscape-scale 
habitat preference variable expressed as geospatial layers available for habitat suitability 
modeling for the RCW.  Specifically, the objectives were to:  1) determine pine and hardwood 
canopy species composition within forest stands, 2) determine the average size (diameter 
distribution) of pine dominated stands, and 3) assess the spatial distribution and total cover of 
midstory/understory hardwoods and other ground cover. 
 
2. Methods 
 
A 30 km2 study area was selected for analysis that encompasses three separate forest tracts 
located along a corridor between 2 populations of RCWs in Hoke County, North Carolina. The 
tracts include: a private forest land managed partly for pine straw production, a state owned 
conservation area, and the southwest corner of a federally managed military base.  The area is 
located within the Coastal Plain which is characterized by flat land to gently rolling hills and 
valleys. The vegetation of this region includes: grassland and early-successional habitats, pine 
woodland, and river bottoms. Elevation ranges from sea level near the coast to about 183 m in 
the Sand Hills of the Southern Inner Coastal Plain (Outcalt and Sheffield 1996, North Carolina 
Geographical Survey 2005).  
 
2.1 Data Acquisition 
 
LiDAR data were acquired July 13, 2005 at a nominal posting density of 4.0 points per m2 and 
recorded as first, only (only 1 return was recorded), second, and third returns in Universal 
Transverse Mercator (UTM; NAD83, GRS80) x, y, and z coordinates.  The data were used to 
generate canopy and ground elevation raster models at a resolution of 0.5 m for each of the 
study tracts. These models were used to determine locations of trees and their associated heights 
for evaluation of stand structure. 
 
Airborne multi-spectral (CIR) imagery was acquired July 26, 2005 at 0.25 m resolution in four 
spectral channels: blue (450 nm), green (550 nm), red (650 nm), and NIR (850 nm).  The 
individual frames were ortho-rectified to a ground digital elevation model (DEM) and mosaiced 
for each of the three study area tracts.  
 
Field data were collected in November/December 2006 for training and validation of 
classifications made with the multi-spectral data and analysis of measurements calculated from 
the LiDAR data. Coordinates for 69 plot centers were randomly generated  and circular plots 
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were established at these points using a radius 11.3 m and nesting an inner plot of radius 8 m.  
These plots were distributed across all three study areas and their location recorded with 
real-time differential GPS. Within the larger plot, total number of stems and total tree height, 
dbh, location, height to live crown (HLC), crown diameter, and species of each 
overstory/midstory stem were recorded.  Overstory/misdstory trees were defined as those trees 
with dbh greater than 2.54 cm.  In the inner nested plot, understory vegetation measurements 
of total height, location, crown diameter, whether they were single or multiple stems, and 
species were recorded.  The plot data were used to assess the accuracy of individual stem 
identification with LIDAR and to develop height-diameter relationships for prediction of stem 
diameters on LiDAR-detected pine trees.  The midstory/understory observations were assessed 
for area coverage and coupled with LiDAR point densities to predict total cover of the 
vegetation under the main canopy (see section 2.4). 
 
2.2 Canopy Species Classification 
 
Field site inspections indicated that much of the longleaf pine tended to occur as either 
open-grown individuals or in small groups that could be readily distinguished from other targets.  
Broadleaf hardwoods tended to occur in clumps either in gaps between pine crowns or in 
contiguous stands at lower slope positions and along drainages.  Because each target of interest 
occurs as a group of pixels rather than an individual pixel, a segmenting (object-based) image 
classification rather than pixel-based image classification technique was applied using 
eCognition 4.0. 
 
The segmentation process was interactively guided to utilize scale, color, and shape parameters 
to generate image objects that covered individual tree crowns or groups of trees visible in the 
imagery.  Member functions to separate shadow objects from non-shadow objects were 
instituted first followed by member functions to distinguish between vegetation objects and 
non-vegetation objects in the non-shadow areas.  Member functions to ascertain longleaf, 
loblolly, hardwood, and other vegetation were subsequently applied to the vegetation objects.  
All multispectral bands and a Normalized Difference Vegetation Index (NDVI) were input into 
the classifier.   
 
Classification accuracy was assessed using 552 points, including 109 samples for each of the 3 
tree species and 75 samples each for shadow, bare ground, and low vegetation.   
Classification accuracy was calculated from samples based on commonly reported methods of 
error matrix calculations (Congalton and Green 1999). 
 
Due to the misregistration between LiDAR and the imagery, the final classification was 
generalized by calculating the majority class present in an aggregation window size of 
6m-by-6m.  This facilitated the ability to match vegetation types to LiDAR derived trees.  
This was an important step in determining the dominant stand type by size class in the RCW 
habitat evaluation process.  
 
2.3 Pine Size Class Determination 
 
Individual pine tree data from all field plots were analyzed to determine the relationship 
between tree height and stem diameter using regression procedures. This regression function 
was then applied to LiDAR-identified trees to estimate a diameter for each stem.   
 
All probable canopy trees were identified and mapped within the three study tracts by use of the 
LiDAR elevation models and modified procedures adopted from those first described by 
McCombs et al. (2003).  One difference between this procedure and that described in 
McCombs et al. (2003) was that spectral data were not incorporated into the identification 
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function due to spatial misregistration between the multispectral and LiDAR data.  The second 
and most important difference is that the new procedure introduces stem density and crown size 
dependent functionality in tree identification and therefore is more adaptable to ranges of 
conditions over which the model is applied.   
 
The procedure consisted of two spatial process models which identified and estimated heights of 
probable tree locations in the main canopy of forest stands using the canopy and bare ground 
LiDAR surfaces.  A smoothing filter was used to eliminate pits where LiDAR points 
penetrated the main canopy.  The model identified clumps of pixels in the canopy height 
surface that were higher than a set percentage of neighboring pixels.  Identification of these 
clumps of pixels was determined by using a focal rank utility with a variable search filter size 
keyed to the size of small, medium and large target tree crowns based on relative stem density.  
The resulting clumps were subjected to a sieving operation based on the estimated smallest tree 
crown to eliminate small groups of pixels that were not likely trees.  The output clumps from 
this model, as well as the canopy and bare ground surfaces, were passed to the second model, 
which extracted the location and height value of the highest pixel in each clump as a tree 
location.  A distance function was used to delete trees adjacent to, but shorter than nearby 
neighbors (probable false tree identified) based on tree height.  Short trees were allowed to be 
closer together than tall trees.  These geospatial data were used to develop the size class 
analysis for all pine areas. 
 
The classification developed from the multi-spectral data was used to label all LiDAR-identified 
trees as to tree type (pine or hardwood). The diameter at breast height (dbh) to height 
relationship developed from the field data was applied to all LiDAR-identified pine trees to 
attribute those tree locations with estimated dbh.  The last step was to examine the relative size 
of LiDAR-identified pines on a unit area basis to generate a geospatial layer of tree sizes 
grouped by the three diameter size classes: < 24.5 cm, 24.5 to 35 cm, and > 35 cm and pine type 
(loblolly or longleaf).  These three pine size classes, along with evaluations of hardwood 
competition and midstory/understory total vegetation cover form the basis for identification of 
either areas currently suitable for RCW habitat or areas that, through proper management, could 
be made suitable for use by RCWs.  
 
2.4 Midstory/Understory Density Analysis 
 
Density of LIDAR returns in the canopy, > 4.6 m and > HLC, and three understory/midstory 
strata, 0.5 m to  2.1 m, > 2.1 m to 4.6 m,  > 4.6 m and < HLC, were used to estimate 
understory/midstory vegetation total cover. The ground elevation value was subtracted from 
each LiDAR return height to determine height above terrain for each LiDAR point.  The 
number of LiDAR returns in each height stratum were summed on 1.0 m grid cells to assign cell 
values representing return density by stratum.  Total LiDAR shot density (first and only 
returns) was utilized to normalize the point densities at each level for changes in total shot 
density due to flight line overlap and scan line expansion and compression due to variable flying 
conditions.  The normalized LiDAR density values were compared to field measurements of 
understory/midstory vegetation cover for all field plots.   
 
An analysis of the field data indicated the mean HLC occurred at 10.5 m for all 
dominant/co-dominant pine tree observations.  However, HLC varies spatially, so a method 
was developed to characterize the spatial variation in HLC and adjust the threshold that 
separated understory/midstory and canopy returns accordingly.  
 
The LiDAR detected trees with associated heights were first attributed for the height to base of 
live crown using a regression relationship derived from field measurements of total height to 
HLC .  The HLC values at tree locations were then spatially “grown” in all horizontal 
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directions using a focal analysis kernel to create a continuous raster layer that characterized the 
canopy cutoff height based on the spatial variation of crown base height.  This was then used 
to classify all points as either canopy or subcanopy points.  Establishment of a raster surface 
that characterized spatial variation in HLC  allowed the threshold height separating the 
midstory from canopy to be varied  across the terrain rather than using a constant HLC to 
establish the threshold height. The comparisons of field  measures of understory/midstory total 
cover and LiDAR return density was performed for the modified definition of height classes as 
described in the previous section. 
 
 
3. Results and Discussion 
 
3.1 Canopy Species Composition 
 
The overall accuracy of the resulting classification after separating the pine cover type into 
loblolly and longleaf was 73.73%, with an overall kappa statistic of 0.682. The overall 
classification accuracy increased to 80.80% when loblolly and longleaf were combined into one 
pine cover type, and the overall kappa statistic increased to 0.737.   
 
3.2 Pine Size Class Determination 
 
The tree identification model identified most canopy trees and some smaller trees in canopy 
gaps and open areas.  The comparison of dominant/co-dominant plot trees to LiDAR-identified 
trees revealed some inconsistencies in this procedure’s ability to detect all trees.  Due to 
imprecision in the ground based GPS measurements, tree matching of field measured trees was 
difficult. This was largely attributed to assumed errors in GPS fixes on plot locations and the 
field measurement errors in tree location establishment relative to these GPS positions.   
 
LiDAR derived trees were matched to the overstory/midstory field measured observations 
where possible in order to assess the accuracy of the tree finding model.  Some adjustment for 
plot location was necessary to match LiDAR derived trees with field observations.  These 
procedures produced 476 matched trees (65 hardwood and 411 pine) from a possible 730 trees 
for a detection rate of 65.21%.  The privately managed area (71.96% agreement) and state 
managed tract (65.66% agreement) performed better than the federally managed tract (58.96% 
agreement).  Overall, this is theorized to be due to the variations in growing conditions and site 
qualities.  As expected, LIDAR detection of pine trees (54.0% agreement) proved more 
successful than hardwood detection (13.0% agreement). 
 
After assessing the performance of the tree finding model using all field measured trees as 
validation, a subset of the field measured trees was selected in an attempt to identify dominant 
and co-dominant stems in the canopy.  For each plot, the limiting height for the upper quartile 
(top 25%) was determined and was used to subset the field data by only retaining stems with 
height in the upper quartile.  This subset provided a total of 335 possible trees (70 hardwood 
and 278 pine) of which 28 hardwood and 195 pine were matched for an agreement of 66.57%.  
Again the privately managed tract (76.09% agreement) and state managed tract (68.52% 
agreement) performed better than the federally managed tract (58.52% agreement) (Table 1). 
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Table 1.   Site and overall accuracy results of the pairing of LiDAR derived trees with field observations 
of trees in the upper quartile of total tree height by plot. 

 
  Privately Owned   
Field Samples LiDAR Samples 
 Hardwood Pine Loblolly Longleaf  Model 
Matched 7 63 4 59 Matched 70 
Omission 23 21 3 18 Commission 22 
Total 30 84 7 77 Total 92 
% 
Matched 23.33 75.00 57.14 76.62 % Matched 76.09 
% 
Omission 76.67 25.00 42.86 23.38 % Commission 23.91 

  
 
Federally Managed   

Field Samples LiDAR Samples 
 Hardwood Pine Loblolly Longleaf  Model 
Matched 16 63 4 59 Matched 79 
Omission 15 54 8 44 Commission 56 
Total 31 117 12 103 Total 135 
% 
Matched 51.61 53.85 33.33 57.28 % Matched 58.52 
% 
Omission 48.39 46.15 66.67 42.72 % Commission 41.48 

  
 
State Managed   

Field Samples LiDAR Samples 
 Hardwood Pine Loblolly Longleaf  Model 
Matched 5 69 31 38 Matched 74 
Omission 4 8 4 4 Commission 34 
Total 9 77 35 42 Total 108 
% 
Matched 55.56 89.61 88.57 90.48 % Matched 68.52 
% 
Omission 44.44 10.39 11.43 9.52 % Commission 31.48 

  
 
All Three Tracts Combined   

Field Samples LiDAR Samples 
 Hardwood Pine Loblolly Longleaf  Model 
Matched 28 195 39 156 Matched 223 
Omission 42 83 15 66 Commission 112 
Total 70 278 54 222 Total 335 
% 
Matched 40.0 70.1 72.2 70.3 % Matched 66.57 
% 
Omission 60.0 29.9 27.8 29.7 % Commission 33.43 

 

The tree finding model assigned the LiDAR measured height for each tree location.  Using the 
LiDAR height measurement, it was possible to attribute each tree with an estimate of its 
diameter using the diameter height relationship developed from all field measured pine:  



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 592

 
ln (dbh) = -0.640235 + 1.0165769 * ln (Total Height)  (1) 
 
with an R2 of 0.73  and RMSE of 0.26.  This equation was developed from 689 intact pine 
trees greater than 7.62 cm in dbh.   After assigning a height and dbh attribute to each LIDAR 
identified pine stem, LIDAR derived estimates of basal area were determined.   
 
Comparisons between LiDAR derived estimates of height, dbh, and basal area and field 
measurements of these variables showed height estimates derived from LIDAR to be highly 
correlated with field measurements (R2=0.91).  LIDAR derived estimates of dbh and basal area 
(BA– square meter per hectare) were not as highly correlated with field measures   (R2=0.54 
and R2=0.46 respectively).  Diameter estimates were based on height-diameter relationships 
which partially explain variations in diameter as a function of height.   Therefore, errors 
associated with diameter estimates derived from height were compounded when these diameter 
estimates were used to estimate basal area.      
   
Errors in omission and commission with the tree finding model also contributed to the errors in 
stem density and BA estimation, although omission and commission errors tended to cancel 
each other thus resulting in a fairly accurate estimation of stem density.  The effects of the 
omission and commission trees on basal areas estimates were examined by evaluating the 
average of field measured BA compared to the average of LiDAR estimated BA by site for all 
overstory/midstory  pine trees.   These were separated into relevant dbh classes as defined in 
the RCW recovery guidelines (USFWS 2003).  Significant differences were seen between the 
LiDAR estimates and the field measurements for the privately managed tract and the federally 
managed tract but across all the sites, there were no significant differences found.  The analysis 
was repeated using only trees in the top quartile of height for each plot.  Although significant 
differences can be seen in some of the diameter classes, field measured mean pine BA was not 
significantly different from mean LiDAR derived estimates of pine BA for each site separately 
and for all sites combined (LiDAR estimate = 14.03m2/ha vs. field measurement = 15.59 m2/ha).  
The errors in BA calculations by diameter classes can be attributed to the effect of the bias in the 
LiDAR estimated height on the calculated dbh value as well as the inclusion of omitted and 
committed trees into each diameter class.  
 
3.3 Midstory/Understory Density Analysis 
 
All returns from the LiDAR data were used in the midstory/understory density analysis.  For 
each return, a ground elevation value and a HLC value was determined.  The ground elevation 
value was required to calculate height above ground for each LiDAR return.  The ground value 
was determined by matching the coordinates of each LiDAR return with the ground elevation 
model. The HLC value for each LiDAR return was determined by matching the coordinates of 
each LiDAR return with a raster model that characterized the spatial variation in HLC.  The 
raster model of HLC was created using a two step process.  First, HLC values for individual 
stems identified with LIDAR in the raster stem map were estimated using the regression 
relationship derived from field measurements of total height to HLC:  
 
HLC = 0.69415 * Total Height – 1.51926 (2) 
 
with an R2 of 0.78 and RMSE of 2.50. Next all tree locations in the raster stem map with total 
heights 4.6 m or less were removed. Moving a 3.5 m X 3.5 m  kernel across the raster stem 
map, the HLC values estimated for each stem location were extended from the stem location to 
pixels in close proximity to the stem (areas under canopy and between stems) by assigning the 
lowest HLC value for any stems in the kernel to all remaining pixels in the kernel.  In order to 
accurately characterize the spatial extent of the canopy while not extending the spatially 
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variable HLC surface into open areas with no canopy, the algorithm was repeated three times   
These values and the ground elevation values were added as attributes for each LiDAR data 
point. 
 
All LiDAR points were categorized into the height class bins in which they occurred.  The 
height classes used in this portion of the study to create each bin were 0.5 m to  2.1 m, > 2.1 m 
to 4.6 m,  > 4.6 m and < HLC, and  > 4.6 m and > HLC. For each height class, the number of 
returns per 1.0 m pixel were summed and assigned to the pixel value.  LiDAR returns below 
0.5 m were not included in the analysis to eliminate confusion between near ground and ground 
returns.  
 
For each field plot and for each height class, the sum of total area coverage for each 
midstory/understory tree canopy was calculated using the zonal sum statistic.  All pixels 
representing coverage were summed for each plot yielding the zonal sum of coverage by plot.  
The number of pixels for each field plot was converted to square meters to determine total 
vegetation cover in each midstory/understory height class.  Additionally the sum of the number 
of LiDAR returns intercepted in the same height class strata was summed for each plot.   
 
The relationship between the sum of area for midstory/understory canopy coverage for each plot 
and the number of LiDAR interceptions for each height class was positively correlated.     
The correlations were greatest in the HLC to top of canopy (R2=0.60) and second highest in the 
> 4.6 m to HLC strata (R2=0.36).   On the privately owned sited and the state managed site the 
second highest stratum (> 4.6 m to HLC) (R2=0.82 - private and R2=0.94 - state) performed 
better than the higher stratum (HLC to top of canopy) (R2=0.68 - private and R2=0.70 - state) 
(Table 2). 
 

Table 2.  Results of midstory/understory analyses between percent area coverage observed (square 
meters) and LiDAR interception density for each midstory/understory height class. 

 

  
Privately 
Owned  

Federally 
Managed 

State Managed 
  

All Combined 
  

 
R 
square RMSE 

R 
square RMSE 

R 
square RMSE 

R 
square RMSE 

         
0.5 to 2.1 
meters 0.04 27.42 0.06 8.51 0.26 27.42 0.00 26.37 
         
2.1 meters to 
4.6 meters 0.31 12.38 0.65 7.86 0.20 15.64 0.26 13.02 
         
4.6 meters to 
HLC 0.82 6.10 0.41 33.90 0.94 6.43 0.36 37.14 
         
HLC to 
Canopy Top 0.68 17.10 0.47 32.24 0.70 21.05 0.60 23.94 
                  
 
3.4 Landscape-scale Habitat Model 
 
The results from this study outline methods to utilize multi-spectral imagery and  
LiDAR data to evaluate a series of forest stand parameters associated with RCW habitat that can 
not be feasibly assessed across extensive landscapes with traditional inventories alone.  Not 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 594

only do these methods provide detailed habitat information at landscape scales and at reduced 
costs, but they also provide the capability to assess and monitor RCW habitat suitability in areas 
that are inaccessible to field surveys, including impact area safety zones on military installations 
and adjoining private land.  Synoptic assessment and monitoring of RCW habitat suitability 
across a variety of land uses and ownership provides vital information to wildlife management 
professionals and other stakeholders in efforts to manage and monitor habitat conditions at 
regional and landscape scales.  Information is also valuable to military land managers as they 
strive to manage pine forest to sustain the primary training mission while also managing forest 
conditions to maintain or improve habitat suitability for the species.   
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Abstract  
 
The combination of various data sources has been demonstrated to be more effective than using 
them separately. Information retrieval is significantly improved by synergies between laser 
scanner and optical imagery. Digital photography relies on traditional orthorectification methods 
in order to accomplish an accurate spatial correspondence with Lidar products. We investigated 
combinatorial techniques in a high pine forest situated in mountainous relief in the Guadarrama 
Range (Spain). Results have shown critical inaccuracies in the integration of these data, even 
when obtained simultaneously. We propose the use of Lidar-derived DSM in the process of 
orthorectification of aerial imagery. We hypothesised that the use of true-orthophoto techniques 
for improving the planimetric accuracy of VHR can be reliable for forestry applications. The 
methodology slightly improved the geometrical results obtained, though radiometric results 
might be useless. Consequently, other possible solutions are also discussed. 
 
Keywords: LiDAR, color infrared, true-orthorrectification, forest management. 
 
 
1. Introduction 
 
Very High Resolution (VHR) optical imagery and Lidar have synergic capabilities for providing 
reliable data in operational forestry. For this reason, the integration of these data allows a 
cost-effective combination of techniques. Methodologies can benefit from the possibilities of 
both sensors: the potential of VHR imagery for thematic classification and index calculation 
(St-Onge and Cavayas 1997), and the accuracy of tree height information retrieved from Lidar 
(Lefsky et al. 1999). Extraction of Digital Elevation Models (DEM) from simultaneous Lidar 
can improve the automation of VHR imagery orthorectification. Estimation of forest parameters 
from Lidar can also be assisted by VHR. For instance, individual trees can be recognized and 
segmented from VHR imagery and their height and crown shape properties calculated from the 
Lidar point cloud (Leckie et al. 2005; Suárez et al. 2005). 
 
Lidar can be used for improving traditional photogrametric methods. It has been demonstrated 
that tree height retrieved from Lidar is more reliable than photogrammetry, since shade often 
obscures bare soil on aerial images (Hyyppä et al. 2008). Correlation of image pairs for mass 
point detection is time-consuming because it requires the quality control of a technician. Thus, 
correlation has been demonstrated inefficient in forest areas with high dense canopy, though 
other automated matching techniques are being developed (Zhang and Gruen 2004). For this 
reason, traditional photogrammetry has been demonstrated insufficient for large scale forest 
monitoring (St-Onge and Achaichia 2001). Waser et al. (2008) used Lidar data for normalizing a 
DEM retrieved from correlation of Colour Infra Red (CIR) aerial images. 
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In order to integrate the information derived from diverse sensors, a correct adjustment of the 
spatial features obtained should be achieved (Honkavaara et al. 2006). The precision offered by 
both VHR and Lidar has to be accompanied by a proper accuracy assessment in order to be 
reliable for forest applications (Hyyppä et al. 2000). Otherwise, the integration of these data 
cannot be properly accomplished, and such synergies will not emphasize meaningful indices, 
classifications or forest stand parameters. Some authors have encountered difficulties when 
combining both sources since the accuracy of Lidar is highly superior compared to aerial 
imagery (Packalen and Maltamo 2007). While a Lidar point cloud is orthogonally projected, 
VHR imagery has to be orthorectified. 
 
The process for orthorectifying imagery produces a metrical scale document in a homogeneous 
orthogonal projection. VHR aerial photographs acquired on-flight with a matricial sensor 
present a pronounced conical perspective depending on the flight height and the Field of View 
(FOV). In order to change from conical to orthogonal projection and formulate the topographic 
correction, internal and external image orientation and a DEM are required (Baltsavias and 
Käser 1998). Two types of corrections are applied during the orthorectification process of an 
aerial image: the displacement due to the conic perspective of the original photography and the 
topography correction. The first component depends on the focal length of the image, radial 
distance from the projection centre to the object and the height of the vertical element over a 
given datum. The topographic correction is carried out by using the DEM.  
 
Displacement due to the different height of the elements is therefore affected by the DEM 
utilized. A complete and exact correction is achieved when a rigorous model is used; but the 
object shift is not accurately corrected if the model is non-rigorous. Most frequently, the bare 
earth is used as reference surface, by means of a Digital Terrain Model (DTM). As a result, 
elements situated above the ground surface are located in a wrong position. In the traditional 
process of orthorectification of aerial imagery of forest areas, tree presence is consequently not 
modelled in the DEM. For this reason, trees might show in the orthophoto leaning over canopy 
gaps and tree tops are moved from their true location (see Figure 1; note that a’≠ a’’). In some 
areas, the usefulness of imagery can be severely affected. Overlaying Lidar and VHR products 
can be ineffective if, for example, a tree crown is located in the orthophoto where bare soil is 
shown in a Canopy Height Digital Model (CHDM). In this way, matching different sources of 
information can be in some cases impossible. 
 
A theoretical orthoimage of ideally straight trees should locate tree tops in the same position 
where tree bases are; usually, trees appear to lean instead. Lean observed in aerial picture can be 
caused by many factors: 

1. the height of the tree; 
2. DEM slope in radial direction outwards from the centre of the projection;  
3. natural lean of tree trunks. 

 
Factors 1 and 2 are caused by the use of a non-rigorous DEM for orthorectifying. The latter does 
not depend on remote sensing procedures, but is the cause of a large amount of variability which 
should be distinguished from the previous. 
 
Significant displacement of tree tops might be observed when the trees are very tall. This lean 
can be determined as a planimetric distance between where the tree top should be and where it 
actually appears, in meters outwards from the centre of projection. Lean due to tree height can 
be theoretically calculated as follows (formulae adapted from Molina 2008): 
 

dp = h · tg α      (1) 
 
This illustrates how the planimetric displacement (dp) of a feature above the DEM used in the 
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orthorectification is a function of the height of the feature from the DEM (h), and the FOV (α). 
Lean is therefore depending on the height of the elements in the picture, but also on camera and 
flight parameters: focal length, height of flight and maximum Euclidean distance from the 
centre of projection. 

O

DTM

Orthophoto
b’’

Aerial Photo a b

B ≡ b’

a’’

A

a’

Tree Image

h

α

H

r

Tree Orthoimage

dp

 
Figure 1: Lean caused by tree height when orthorectifying with a Digital Terrain Model (DTM). 

 
Equation (1) assumes flat terrain, but object lean observed in the image also depends on the 
slope (s) of the DEM used for the correction. Objects upslope from the nadir point appear less 
leaned than calculated in (1), while those downslope appear more leaned (see Figure 2). This 
increase or decrease of the observed lean can be added to (1) as a slope component of lean 
(adapted from Molina 2008): 
 

∆p = – dp · ks      (2) 
 

ks = tg s / (tg s + tg α)     (3) 
 
Hence, displacement is augmented or reduced (∆p) depending on the slope at the position of the 
tree. The ∆p component will be positive for upslope positions, while negative for elements 
situated downslope. Its value is dependent on the slope correction factor (ks) calculated in (3). 
 

O

b’’
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B ≡ b’

a’’
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dpΔpDTM

Orthophoto
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Tree Orthoimage
 

Figure 2: Lean increase due to a downwards slope of the Digital terrain Model (DTM). 
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Another source causing lean observed in pictures is the real natural lean of tree trunks. This can 
become significant in a high multi-structured forest. The topography of the study area can make 
tree trunks to be leaned systematically in a certain forest stand. The soil conditions and the 
relative position of trees themselves are factors affecting random trunk leaning. Random and 
systematic behaviour of variables describing image lean should therefore be analysed in forest 
environments.  
 
Lean problems can be solved by generating a so-called true-orthophoto. Orthorectification of 
aerial photography over urban areas usually rely on these techniques, since they are highly 
necessary for avoiding occluded areas when features represented are significantly taller than 
wider, as buildings are (Schickler and Thorpe, 1998). However, studies using true-orthophoto in 
forested areas and natural landscapes are scarce (Küchler et al. 2004; Waser et al. 2008). We 
hypothesised that employing true-orthophoto when integrating Lidar and digital camera in forest 
stands with presence of tall trees will improve the results obtained with traditional orthophoto.  
 
Generation of true-orthophoto is based on the use of a Digital Surface Model (DSM) instead of 
a DTM for correcting the planimetric position of each pixel. When the orthorectifying process is 
made using a DSM, every pixel of the resulting orthoimagery has the digital number captured 
from its real point of view from the sensor. Then, every element is located at its truly orthogonal 
position (Figure 3). By doing this, whenever a tree crown is repositioned properly, a blind spot 
occurs. The mosaicking procedure fills these hidden areas from another picture. An analysis of 
visibility defines the quality of each pixel from the slope relative to the viewing angle, the 
distance to the centre of projection and the distance to a blind spot. Flight parameters are 
therefore critical in improving the quality of this process, since better overlapping increases the 
quality of every pixel and reduces the possibilities of finding areas completely hidden in all 
pictures (Shiren et al. 1989). 
 

O

DSM

a’’ ≡ b’’

a b

B ≡ b’

A ≡ a’

True-Orthophoto

Aerial Photo

Tree image

Tree Orthoimage  
 

Figure 3: Lean correction by using a Digital Surface Model (DSM) in the orthorectification process. 
 
A comparison of Figure 1 and Figure 3 illustrates how the tree top (a’’) is located in the 
orthoimage in a wrong position when using the DTM, but it is spatially coincident with the tree 
base when using an unrealistically perfect DSM.  
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2. Material and Methods  
 
2.1 Study area  
 
The study area includes a portion (latitude, 40º53'31'' - 41º15'22''N; longitude, 3º59'33'' - 
4º17'34''W) of the state-owned Scots pine (Pinus sylvestris L.) forest of Valsaín, situated in the 
province of Segovia (Spain). The landscape of the site is characterized by steep slopes, ranging 
between 10-30%, since it is located in the Central Mountain Range, with elevations between 
1265 and 2015 m above sea level in Alicante, Spain. The research has been carried out in a 
dense forest compartment with tall trees and pronounced relief, factors which are still 
challenging for assessing Lidar accuracy (Hyyppä et al. 2008), and which complicate the 
orthorectification process as well. 
 
2.2 Airborne sensors and dataset 
 
Stereocarto S.L. captured Lidar and imagery simultaneously using the same airborne platform. 
Both sensors were carried by a CESSNA 404-Titan with double photogrammetric window. The 
flight was performed on September 10, 2006 over a surface area of approximately 800 ha. Flight 
height was 1500 m above ground level. 
 
Lidar scan was made using an ALS50-II sensor from Leica Geosystems, Switzerland. Laser 
pulse rate was 55 kHz measuring an average of two points per m2, with footprint diameters of 
0.51 m at nadir. A FOV of 25º rendered a 665 m scan width with 40% side lap. Airplane ground 
speed was 140 knots. A value of intensity was captured for each one of a maximum of four 
discrete returns per pulse. Recording height accuracy was 0.15 m. 
 
Panchromatic, RGB colour, and near infrared images were captured using a DMC camera from 
Zeiss-Intergraph, Germany. DCM camera has a focal length of 120 mm with a system of frame 
Charge-Coupled Device (CCD) array sensors. Forward overlap was 60%, while sidelap was 
40%. The result was three strips with 55 VHR images of 15 cm ground sample distance and 12 
bit of radiometric resolution.  
 
The trajectory and altitude of each sensor was calculated independently using different Global 
Positioning and Inertial Navigation Systems (GPS/INS). The differential GPS solution was 
obtained using three reference stations: SGVA (designated by Technological Agricultural 
Institute of Castilla y León Region (ITACYL); latitude: 40º 56' 57,44''N; longitude: 4º 7' 
13,21''W), YEBE (designated by Spanish National Geographic Institute (IGN) network; latitude: 
40º 31' 29,63''N; longitude: 3º 5' 19,06''W), and MAD2 (designated by NASA worldwide 
network; latitude: 40º 25' 38,03''N; longitude: 4º 14' 57,08''W). The final positioning trajectory 
solution was combined from these three reference stations. The spatial reference system was the 
European Terrestrial Reference System 1989 (ETRS89). Planimetric coordinates were 
represented using the Universal Transverse Mercator (UTM) projection, zone 30 north. The 
altimetric datum was the mean sea level in Alicante, Spain. Elevations were described using 
orthometric altitudes. The Ibergo95 geoid model was used to transform from elevations over 
GRS80 ellipsoid to the geoid. 
 
Lidar elevation differences between overlap strips were under sensor tolerance, so that the point 
cloud was georeferenced without additional adjustments. The external orientation parameters 
from the images were obtained using a combined method of direct georeference and 
aerotriangulation using seven control points. Finally, the consistency of both datasets was 
checked using stereoscopic methods, by viewing the point cloud superimposed over the 
photogrammetric models of image pairs. 
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2.3 Lidar products 
 
Prior to obtaining state-of-the-art primary Lidar products such as DTM, DSM and CHDM, the 
raw cloud point was processed using Terrascan software from Terrasolid, Finland. The first 
classification step was to remove low and air points. Then, ground points were classified by 
using the geometric conditions of maximum terrain slope of 75º, iteration angle of 12º and 
iteration distance of two metres. A filter was applied in search for building points (Axelsson 
1999), as some small houses were located in the study area. Finally, unclassified points were 
considered as vegetation class. Quality control of classification was made by an operator using 
the imagery as a reference data layer. 
 
A one metre regular grid DTM was obtained using a triangulated model from the ground class 
Lidar points. Intermediate points and last of many returns within 1x1 m cell were removed from 
vegetation class as a previous step for DSM generation. DSM was then obtained using a 
triangulated model from ground class points and the remaining vegetation class points. CHDM 
was finally obtained subtracting DSM minus DTM models. 
 
2.4 Very High Resolution orthoimagery 
 
Traditional orthophoto was obtained from RGB and CIR images by using the Lidar DTM. 
Co-linearity method was applied for correcting the position. The digital number of each 15 cm 
pixel was assigned with a bilinear resampling method. The seam line of a final mosaicked 
product was optimized by selecting the most nadir area from each photograph. 
 
True-orthofoto was obtained as well from RGB and CIR images by using the Lidar DSM. 
Besides the topography correction, visibility algorithm was also utilised for detecting occluded 
areas. Nearest neighbour was used for resampling. Mosaicking was performed for the most 
nadir areas and for occluded areas too. In the true-orthophoto, no digital number was assigned 
for pixels not showing information from any of the images, so that they remained as no-data 
gaps. 
 
2.5 Reference data 
 
A total of six rectangular inventory plots of 40x60 meters were placed in the study area, 
measuring every tree height with a laser vertex hypsometer. We placed 2-3 landmarks so that 
every trunk in the plot was able to be aimed at with a Total Station NIKON DTM-332 from 
Trimble, California. To avoid the obstruction of vegetation, phase differential GPS 
measurements were taken in October 10, 2007 at nearby positions in absence of canopy cover. 
Simultaneous GPS observations were also taken at a ground control station in Coberteros 
(designated by IGN; latitude: 40º42'5,08''N; longitude: 3º57'23,67''W) for differential correction. 
Static observations were taken with HiperPro receiver from Topcon Positioning Systems Inc., 
California, and their own software was used for post-processing. The position of tree trunks was 
finally deducted from a polygonal itinerary between the landmarks and the dGPS occupations. 
We applied the same transformations described for flight dataset, assuring a proper equivalence. 
The uncertainty of these measurements was demonstrated to be under a tolerance of ±0.30 m in 
all cases. 
 
3. Results 
 
A comparison of the Lidar-derived products and the field reference information showed 
significant correspondences. A pair-wise analysis showed an average difference of 0 ± 0.15 m 
between the altimetry of the reference dataset and the elevations of the DTM product; the 
accuracy of georeferencing processes and the precision of the sensor were therefore confirmed. 
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When validating the inventory, CHDM tended to underestimate tree height, since the presence 
of outliers showed few planimetric mismatches in a discrete tree-by-tree comparison without 
any correlation algorithm for spatial matching. This is explained because the real orthogonal 
projection on the ground of some tree tops is not coincident with the tree base, due to the 
presence of naturally leaned trunks in the study area. This leads to a high presence of random 
noise in every planimetric tree-by-tree analysis. Nevertheless, no systematic lean tendencies 
were found in the study area. 
 
Contrary to the other two information datasets, orthorectified aerial imagery showed important 
displacements of planimetric information. This led to significant mismatching of Lidar products 
with imagery products, i.e. indices, classifications and photo-interpreted features. This was of 
critical importance, since integration of sensors was therefore unsuccessful in many cases. In 
order to distinguish displacements caused by random tree trunk lean from picture lean, the 
spatial distribution of planimetric errors was compared to the theoretical lean of trees calculated 
from (1) and (2). According to the parameters shown in Figure 1, the Euclidean distance to the 
centre of the projection (r) and the flight (H) and tree (h) heights; equation (1) can be 
reformulated as: 
 

dp = h · r / (H – h)      (4) 
 
The theoretical spatial distribution of lean errors was calculated (see Figure 4) for every position 
in the study area by using the calculated CHDM elevation as tree height in the equation (4), and 
the DTM for deducing the terrain slope at each pixel in radial direction outwards from the 
projection centre in (2) and (3). Real displacements were measured as the planimetric Euclidean 
distance between the tree base reference data and the tree top interpreted at the orthoimage. 
Observed lean showed a significant correlation with theoretical lean, presenting the same spatial 
distribution pattern. This demonstrated that the mismatching was provoked by the perspective 
itself, and not just by randomly distributed natural trunk lean. 
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Figure 4: Raster model showing the spatial pattern distribution of lean suffered by each pixel. 
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Tree tops observed from true-orthophotography were also compared with the reference position 
of their corresponding base. Planimetric shift was significantly reduced compared to traditional 
orthophoto. True-orthoimagery was verified as a reliable methodology for improving 
geometrical accuracy of aerial information, as shown in Figure 5. Errors were distributed 
randomly and showed no spatial pattern, so that they can be assumed to be dependent on other 
factors than the Euclidean distance to the projection centre of the picture. However, individual 
tree shapes were found distorted in many cases, so that true-imagery is less practicable for 
photo-interpretation purposes than traditional DTM-derived orthophoto.  
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Figure 5: Comparison of mismatching between planimetric positions of tree base measured in the field 
and tree top position interpreted from false colour infrared orthophoto (left) and true-orthophoto (right).  

 
4. Discussion 
 
Simultaneous acquisition of Lidar in a photogrammetric flight notably increases the automation 
of the procedures and reduces processing time and costs for orthoimagery production. Lidar 
obtains mass points automatically, therefore reducing the need for quality control and 
minimising error occurrence. Thus, traditional photogrammetric correlation was still 
challenging in densely forested canopies, so Lidar introduced an exceptional advantage 
concerning DEM calculation from photogrammetric flight. VHR imagery needs to rely on 
precise data that only Lidar can nowadays offer. 
 
In order to integrate information simultaneously obtained from different sensors, a proper 
geometric correspondence between them has to be accomplished. Terrain slope and tree height 
were deemed important factors regarding the difficulties in achieving the orthogonal location of 
features in aerial imagery. It was demonstrated that lean of tree tops in orthoimagery was caused 
by the presence of tall trees and steep terrain. 
 
True-orthorectification of aerial imagery has significantly improved the planimetric adjustment 
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of tree tops. Nevertheless, radiometric properties have suffered numerous deficiencies. The 
consistency and usefulness of the radiometric information in true-orthophotos is yet to be tested. 
Thus, DSM-derived orthophoto contained numerous artefacts and no-data gaps, due to the 
visibility analysis’ process. Photo-interpretation of features is more difficult than those in 
traditional orthophoto. Isolated tree crowns showed more deformities than stands presenting 
continuous canopies; these results are coherent with those obtained by other authors (Leckie et 
al. 2003). Distortion of tree crown may reduce the possibilities of any analysis of texture or 
crown shape. 
 
Alternative possibilities for solving lean problems in future flights over high canopies in 
mountainous areas concern changes in: 

1. the digital camera; 
2. flight parameters;  
3. alternatives for orthophoto calculation; as those discussed in this article. 

 
The displacement of the vertical objects in the photographic images can be reduced by using 
larger focal length, or using linear array sensors with pushbroom technology instead of CCD 
array ones, where vertical displacement is bidirectional instead of radial. Linear array would 
accomplish lean errors to be distributed transversally to the flight line direction. Flight 
parameters should be modified by increasing the sidelap in order to optimise mosaicking 
procedures. Changes in flight height are not considered since spatial resolution would be 
reduced. 
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Abstract  
 
The Terrestrial Laser Scanner (TLS), the Laser-camera and the Laser-relascope were used to 
measure tree diameter at breast height (dbh) in boreal forest conditions. Reference diameters 
were measured with steel calipers, which are the most common measuring equipments for 
diameter. The data consisted of 122 trees from six forest sample plots in Nuuksio National Park 
and the Saunalahti area in southern Finland.  
 
The results showed that the TLS and the Laser-camera are about as accurate as traditional means 
in diameter measurements, where as using Laser-relascope the same accuracy was not obtained. 
The standard errors for the TLS, Laser-camera and Laser-relascope were 8.3 mm (4.5%), 8.5 
mm (4.9%) and 17.5 mm (10.1%), respectively. The bias in the TLS measurements was only 0.5 
mm (0.3%) and in the Laser-camera measurements 0.6 mm (0.3%). The Laser-relascope's bias 
was overall 9.1 mm (5.2%).  
 
The TLS and Laser-camera were determined to be accurate methods of measuring dbh. These 
methods also enable the measurement of other characteristics, such as diameters at multiple 
heights, which can improve volume or tree quality estimates. These possibilities need further 
research. 
 
Keywords: Forest mensuration; stem diameter; accuracy; Terrestrial Laser Scanning; laser 
 
 
1 Introduction 
 
The most important variable in forest management planning at a single tree level is stem 
diameter at breast height (dbh). With dbh, tree height and tree species, all the important stand 
characteristics, such as growing stock and basal area, can be estimated. Forest management 
planning will increasingly utilize more remote sensing methods due to their improved 
cost-efficiency and the enhanced accuracy of some new remote sensing methods, such as 
airborne laser scanning (ALS). In Finland, the accuracy of the stand characteristics estimated by 
ALS is as accurate as the stand characteristics assessed by the traditional ocular field inventory 
(Suvanto et al. 2005). Still, a single tree's dbh cannot be measured directly by ALS data and is 
estimated based on laser-derived tree height and other laser information, such as crown size. 
Such estimates needs proper reference data to decrease the bias in it. Thus, there is also need to 
develop improved field techniques to measure stem diameters and stem volume cost-effectively 
and reliably.  
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Traditional means of field measurements are labour intensive and time consuming. Additional 
measurements, such as diameter measurements from multiple heights, would enhance the 
accuracy of volume estimation in preharvest measurements or of modelling growth in forest 
management planning, but such additional field measurements have in practise been limited due 
to a lack of efficient means. There are also many other exploitable stand or tree characteristics, 
where there exist no effective traditional means to measure. These characteristics include e.g. 
biomass, leaf area, crown characteristics or quality of stem. The development of field measuring 
devices has not been very intensive in recent years, although there have been some attempts to 
develop and test new efficient and easier to use devices for forest measurements (e.g. Carr 1992; 
Carr 1996; Williams et al. 1999; Kalliovirta et al. 2005; Varjo et al. 2006), but these new devices 
are not yet widely used. Developed new devices have been inaccurate, expensive or hard to use 
in the field. The reasons for the slow development of easy-to-use field measurements are e.g. 
variable forest environments, which are challenging for all measuring devices, and a limited 
market. Field measuring devices in the future must be precise, quick, user friendly and water- 
and shockproof. Furthermore, the device should enable the efficient measurement of all the 
basic tree characteristics from the centre of a sample plot, and the price of the device should be 
reasonable (Kalliovirta et al. 2005).  
 
As stated earlier, there is an urgent need for development of new, terrestrial remote 
sensing-based techniques, which can produce diameter-type information not achievable by 
means of airborne remote sensing. Such new methods should be preferably more cost-efficient 
and accurate than traditional field measurements. New laser-based techniques have showed 
some promises for that kind of use (e.g. Danson et al. 2007; Hopkinson et al. 2004; Watt and 
Donoghue 2004; Kalliovirta et al. 2005). Terrestrial laser scanning is an efficient and objective 
option to collect accurate field data. It uses the same range-finding measurement technologies as 
ALS to derive the 3D position of objects within the scanner field of view by collecting 3D data 
clouds of several million data points in a few minutes. Applications of terrestrial laser scanning 
for forestry have not been widely studied, although its potential for forest related measurements 
have been more understood in recent years. Watt and Donoghue (2005) scanned two forest 
sample plots with a terrestrial laser scanner (TLS) and compared the results to field 
measurements. The results demonstrated that accurate measurements of tree diameters can be 
derived directly from the laser scan point cloud return in instances where the sensor’s view of 
the tree is not obstructed. Hopkinson et al. (2004) also accurately measured stem location, tree 
height and density from the TLS data. Danson et al. (2007) studied with promising results how 
the forest canopy gap fraction could be determined with TLS. Canopy-related characteristics 
have been hard to measure by other means. 
 
Kalliovirta et al. (2005) used a Laser-relascope, which was also used in this study, to measure 
tree diameter, height and location. They reported the Laser-relascope's standard error for tree 
diameter, height, and position of 8.2 mm, 49 cm and 32 cm. Although the Laser-relascope was 
accurate enough, the results were observer-dependent and the most time-consuming part of the 
measurements was the diameter measurement. Juujärvi et al. (1998) and Varjo et al. (2006) have 
studied digital cameras (Canon PowerShot) applicability for measurement of stem diameter 
from different heights. They developed a method where a laser-rangefinder, digital photograph 
and calibration stick were used to determine stem diameter for the desired height of the stem. 
Interpretation of the digital photograph was controlled with taper curve models (Lappi 1986). 
The accuracy of stem diameter determination varied from 7.0 to 9.4 mm (RMSE) with a bias of 
0.6-2.8 mm. The height of the measurements varied from 2.5 to 6.5 meters. 
 
This study concentrates on the accuracy of measuring stem diameters by different means, 
because of the importance of that variable in forest management planning and calibration of 
ALS-based estimates. Stem diameters were measured by four different methods: By 1) TLS, 2) 



SilviLaser 2008, Sept. 17-19, 2008 – Edinburgh, UK 
 

 608

Laser-camera, 3) Laser-relascope and for reference by 4) traditional means with steel calipers. 
The aim of this study was to test the new measuring devices in typical forest conditions. The 
accuracy (i.e. bias and precision) of the diameter estimates were examined.  
 
 
2. Methods and materials 
 
2.1 Study area 
 
The data for this study were collected from the Nuuksio and Saunalahti areas in Espoo in 
southern Finland. Six circular sample plots were measured for the study by different means. The 
plots included altogether 122 Scots pines (P. sylvestris), Norway spruces (P. abies), birches (B. 
pendula and B. pubescens) and other deciduous trees. The stand development classes were 
advanced thinning stands or mature stands and site conditions varied from grove-like moor to 
rocky cliff top. The radius of sample plot used in Nuuksio was 7.98 m and in Saunalahti 10.0 m. 
The sample plots in Nuuksio (3) are located in a national park and the plots in Saunalahti (3) are 
in an urban forest. The variation in tree level in one plot was obviously more diverse than in 
economically managed forests in Finland, because the stands were uneven-aged. The reference 
measurements in the study areas were carried out in fall 2007 and winter 2008. General 
information about the diameter measurements in the sample plots is presented in table 1. 
 

Table 1. General information about the diameter measurements (mm). Measured with reference device, 
steel caliper. 

 
 N min max mean s.d. 

Pine 26 44 465 194 112 
Spruce 52 54 265 137 58 
Birch 25 50 404 225 91 

Other deciduous 19 47 478 171 124 
Total 122 44 478 173 96 

 
2.2 Measurement methods and equipment 
 
2.2.1 Reference measurements 
 
The traditional measurements, which were used as reference, included all the plots general 
information, such as forest site conditions and the stand's development class. In the traditional 
measurements, tree species and diameter at breast height (dbh) was determined. Dbh was 
measured using a steel caliper, and the breast height was marked on the tree. The measurements 
were always carried out from the same direction of the trees to minimize unwanted error 
sources.  
 
2.2.2 Terrestrial Laser Scanner 
 
A Faro 880HE80 TLS was used to scan the sample plots. FARO LS 880 HE80 is based on phase 
measurements with maximum measurement speed of 120000 points/sec, laser wavelength of 
785 nm, vertical field of view 320°, horizontal field of scan view 360°, beam divergence of 0.25 
mrad (0.014°) and linearity error of 3 mm (at 25 m and 84 % reflectivity). Only one scan per 
sample plot was used for manual dbh measurements. The scanner was stationed in or near the 
centre of the plot. The same measurement resolution was used for all scannings, producing a 
point spacing of 6 mm at the distance a 10 metres. 
 
In Nuuksio the scannings were carried out in November 2007. In Saunalahti, scannings were 
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performed two growing periods prior reference measurements, in November 2005. Stands in 
Saunalahti were mature, thus, diameter growth was expected to be slow. Still this may cause 
minor errors in results for trees located there. 
 
Faro Scene software was used for all measurements. First the ground level at the tree stem was 
determined in the scanned data by using a 3D-view of the scanned laser points (Figure 1, left). 
From the ground level a height of 1.3 metres was measured and marked in the intensity image 
(Figure 1, right). At the marked height, the intensity image was used to measure the horizontal 
angles to the left and right side of the stem and the distance to the middle of the stem. These 
values were used to compute the radius of the tree, thus obtaining the dbh of the tree.  
 

 
Figure 1. Scanned laser points of one tree stem, side view on the left, intensity image on the right. Ground 

level and 1.3 metre height are shown on both images. 
 
2.2.3 Laser-camera 
 
A Laser-camera consists of a Canon EOS 400D digital reflex camera with an integrated 
Mitsubishi ML101J27 laser line generator. The measurement of the tree diameter is performed 
by using the length and relative position of the laser line on the image. The method is developed 
by Ojanen (2005). The device enables the measurement of tree diameter from any desired height, 
in this study diameters were measured at dbh. Image interpretation was performed with 
specifically designed computer software in a data processing unit. The diameters could be 
measured automatically or semi-automatically. When using the semi-automatic method, digital 
images were checked in the field or afterwards. If errors are located in the digital photo, the 
markers that define the outline of a tree stem can be set manually. When images were checked 
immediately, the data processing unit was also used at the site. Afterwards, semi-automatic 
corrections were made when measurement errors were detectable from the digital photo. In 
future, the data processing unit is planned to be integrated into the camera. For a more detailed 
description of the Laser-camera, readers are referred to Kivilähde (2008) or Melkas et al. 
(2008). 
 
2.2.4 Laser-relascope  
 
The Laser-relascope is functionally a combination of a relascope and a dendrometer. It uses 
distance and angle information to determine the diameter of a tree. The distance between the 
device and a tree is measured with a laser instrument. In addition to a laser rangefinder, it also 
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includes an electronic compass for determining the position of the tree (bearing and distance 
from the centre of a sample plot), and an electronic inclinometer is included for height 
measurements. For a more detailed description of the Laser-relascope, readers are referred to 
Kalliovirta et al. (2005). 
 
2.3 Calculating the accuracy of diameter measurements 
 
Plot measurements taken by traditional means were used as a reference. The differences 
between the reference values and the values measured with different means were calculated to 
examine the accuracy, i.e. both the bias and precision of the measurements. The first assumption 
was that the values measured in reference measurements were the true values. However, all the 
reference measurements with steel calipers also include measurement errors. For purpose of 
comparison, those errors were taken into account by using information from previous studies 
(Hyppönen and Roiko-Jokela 1978; Päivinen et al. 1992). Previously reported standard errors 
were used as the standard errors for the reference methods when estimating the accuracy of 
different methods. If it is not mentioned separately that steel caliper errors have been taken into 
account, the reference measurements are assumed to be correct. Student's paired t-test was used 
to test were the diameters measured by different means were statistically different from one 
another. 
 
The diameter measurement error for different measurements was defined as 
 
 e_d = d−d0,        (1) 
 
where d0 represents the reference diameter and d the diameter measured with different means.  
 
The reliability of the measurements was examined with the estimation of mean square error 
(MSE). Because the true values of the variables were assumed to be known, the MSE can be 
divided into the variance and the square of the bias (Cochran, 1977). The estimate of the bias 
(mean error) was given by 
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where n is the number of observations and x is the diameter (measured by the reference and the 
method under observation). 
 
When calculating standard errors for different methods and the measurement errors are 
independent, the standard error of reference method can be taken into account as follows:  
 

 [ ] [ ] [ ]22 ___ referencemethod xesxesxes −=     (4) 

 
where s[e_x]reference  is the standard error for steel calipers. 
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3. Results 
 
The precision and bias of diameter measurements were studied. The actual accuracy of the 
devices in measuring dbh was calculated from the data measured in the reference measurements 
with a steel caliper. The most accurate method of measuring dbh was the TLS (Table 2; Figure 
2). The Laser-camera had nearly the same accuracy. Both methods had a bias of only 0.3%. The 
overall standard errors of TLS and the Laser-camera were 8.3 mm (4.5%) and 8.5 mm (4.9%), 
respectively. The accuracy (standard error) of steel calipers is reported to vary between 2.7 mm 
and 6.9 mm (Hyppönen and Roiko-Jokela 1978; Päivinen et al. 1992). The standard error 
calculations for TLS and the Laser-camera taking the standard errors of steel calipers into 
account enhances the accuracy of these two methods. In our calculations, the standard errors for 
TLS varied from 4.6 mm (2.5%) to 7.9 mm (4.2%) and for the Laser-camera from 5.0 mm 
(2.9%) to 8.1 mm (4.7%). Student's paired t-test was used to test were the diameters measured 
by different means were statistically different from one another. It revealed that there 
were no statistically significant differences between the reference method and the TLS 
(t=0.56) or the reference method and the Laser-camera (t=0.75). Differences in 
measurements between reference method and Laser-relascope were significant (t=5.65). 
On the basis of these results, we can state that in practice TLS and the Laser-camera are as 
accurate as the reference method.  
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Figure 2. Errors in the diameter measurements with different means. 
 

Table 2. Accuracies of diameter measurements (mm), bias and standard error proportioned to the mean 
diameter in parenthesis. 

Method n bias SE SE* SE** 
TLS 82 0.52 (0.28) 8.31 (4.46) 7.86 (4.21) 4.64 (2.49) 

Laser-camera 120 0.58 (0.34) 8.51 (4.94) 8.09 (4.69) 5.02 (2.91) 
Laser-relascope 119 9.06 (5.24) 17.49 (10.11) 17.28 (9.99) 16.07 (9.29) 

*SE without steel calipers SE as reported in Hyppönen and Roiko-Jokela 1978 (2.7 mm). 
**SE without steel calipers SE as reported in Päivinen et al. 1992 (6.9 mm). 

 
The Laser-relascope's accuracy was relatively poor compared to these other two methods. The 
bias was 9.1 mm (5.2%) and the standard error was 17.5 mm (10.1%), varying by 16.1-17.3 mm 
(9.3-10.0%) if the standard error for steel calipers is taken into account. Kalliovirta et al. (2005) 
have reported a standard error of 8.2 mm for the Laser-relascope and variation with it among 
measurers (8.0-16.1 mm). Those results show that the accuracy of this method is really 
dependent on the measurer. The Laser-camera, which is actually an improved version of the 
Laser-relascope, is easy to use and does not need such an experienced measurer. Kalliovirta et al. 
(2005) also noticed that a diameter measurement with the Laser-relascope is not easy enough to 
use in actual field work and the measurements are subjective. Those were main reasons to start 
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the development of the Laser-camera. 
 

The accuracy of measuring the three main tree species in Finland, pine, spruce and birch, vary 
slightly between the methods (Table 3). The variation in accuracy for the three main tree species 
was with TLS 6.1-9.8 mm, with the Laser-camera 8.2-10.5 mm and with Laser-relascope 
16.4-20.6 mm. With TLS or the Laser-camera all the main tree species were measured 
accurately enough for practical use. What is most important is to obtain observations from every 
tree in a sample plot with these methods. For some reason deciduous trees (birches and other 
deciduous) were measured the most inaccurately in this study, although, with laser-based 
methods, it is easily assumed that trees with many under story branches, such as spruces, would 
be the most inaccurate to measure. One guideline for all of these laser-based methods is that 
visibility to the stem must be clear.   

 
Table 3. The Accuracy of diameter measurements (mm) by tree species, bias and standard error 

proportioned to the mean diameter in parenthesis. 
 

Method n bias SE 
TLS    

Pine 16 0.11 (0.05) 6.14 (2.88) 
Spruce 35 3.07 (2.08) 7.64 (5.18) 
Birch 21 0.20 (0.09) 9.78 (4.53) 
Other deciduous 10 -7.08 (-3.21) 11.23 (5.09) 

Laser-camera    
Pine 26 0.96 (0.49) 8.26 (4.25) 
Spruce 51 0.94 (0.68) 8.16 (5.92) 
Birch 25 -0.44 (-0.20) 10.45 (4.64) 
Other deciduous 18 0.44 (0.27) 7.72 (4.62) 

Laser-relascope    
Pine 26 10.81 (5.44) 16.36 (8.24) 
Spruce 47 8.53 (6.47) 16.37 (12.42) 
Birch 25 8.44 (3.75) 20.56 (9.14) 
Other deciduous 21 8.81 (5.13) 18.60 (10.83) 

 
 
4. Discussion 
 
In this study new measuring devices were tested in forest conditions. The accuracy (i.e. bias and 
precision) of diameter measurements were examined. Based on this study, it seems that with 
new laser-based methods, TLS and the Laser-camera, stem diameter can be measured as 
accurate as it is measured in traditional field measurements with steel calipers. This study 
concentrated on stem diameter measuring accuracy, because of the importance of that variable 
in forest management planning and calibration of ALS-based estimates. The accuracy of the 
measurements of other variables need further studies. 
 
TLS measurements in Saunalahti's three plots were completed in 2005 (two growth periods ago). 
This may cause bias in the TLS results for those plots, although the stands were mature, thus, 
the diameter growth is expected to be slow. All the other measurements were performed in 2007. 
It was impossible to get an observation from every tree in a plot with the TLS, because there 
was only one scan per plot. That problem should be fixed with more scannings per plot before 
accurate plot level estimates could be calculated. If several scannings are needed, it will add the 
amount of field work and post-processing notably. 
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Traditional methods are labour intensive and time consuming. Steel calipers can provide 
accurate diameter measurements and a useful reference data, but now it can be noted that there 
are other similarly accurate options with a wide range of other possibilities that traditional 
measurements do not offer, e.g. the measurement of diameters at multiple heights, which would 
improve volume estimates and give valuable information about tree quality. The Laser-camera's 
principle for diameter measurement has been significantly improved from its previous prototype, 
the Laser-relascope. Laser-relascope's functionalities besides measuring diameter - including 
measuring tree heights and producing tree maps - made the device promising itself, but 
Laser-camera's principle for diameter measurements is a major improvement and should be 
added on to it. The Laser-camera has given promising results and, thus, should be developed 
further together with the Laser-relascope. The price of the Laser-camera would be on a totally 
different scale than the price of an expensive TLS.  
 
In earlier studies laser technology has been used to measure stem diameter in multiple ways. 
The accuracy of measuring diameters have varied from 8 mm to 16 mm with Laser-relascope 
(Kalliovirta et al. 2005) and from 8.8 mm to 14.3 mm with laser dendrometers (Skovgaard et al. 
1998; Parker and Matney 1999). With a camera-based system Varjo et al. (2006) obtained an 
accuracy varying from 7.0 mm to 9.4 mm. Achieved accuracies in this study are within the same 
level, 8.3 mm with TLS, 8.5 mm with Laser-camera and 17.28 mm with Laser-relascope. Laser- 
camera was in first test under forest conditions in this study and in the study of Melkas et al. 
(2008). When Ojanen (2005) developed Laser-camera's measuring method, the aim was to 
create a method that is able to measure stem diameter with an accuracy of +-5 mm. Results from 
this study are promising for Laser-camera, although such level of accuracy was not quite 
achieved. 
 
Based on results in this and earlier studies, it can be noted that the achieved accuracies with 
laser-based methods are already in acceptable levels considering steel caliper's accuracy, which 
is reported to vary between 2.7 and 6.9 mm (Hyppönen and Roiko-Jokela 1978; Päivinen et al 
1992). In this kind of comparison studies, results obtained by using steel caliper are often taken 
as an absolutely truth. With laser-based measuring methods, it is more important to concentrate 
on developing these new methods that can be used in daily field work and help to automatize 
measured data's possible post-processing. 
 
TLS and the Laser-camera can both provide new and useful methods for producing accurate 
diameter measurements for reference data for research and forest inventories on different scales. 
The Laser-camera is easy to use, the price would be reasonable, and the diameter measurements 
are accurate. If the primary interest is classic stand characteristics, the Laser-camera would be 
an efficient and accurate option after other functionalities from the Laser-relascope have been 
added to it. On the other hand, TLS gives totally new possibilities for the measurement of forest 
stands. Although this study only compared the diameter measurements, TLS can provide a wide 
range of objective measurements of different stand characteristics (e.g. Hopkinson et al. 2004; 
Watt and Donoghue 2005; Henning and Radtke 2006; Danson et al. 2007). The TLS method 
does not depend on plot size, and larger plots or whole stands could also be measured at a 
reasonable cost, which has been almost impossible with traditional means. TLS applications in 
forestry need further studies.  
 
In general, there is a need for devices that make forest field inventory easier. New laser-based 
methods are promising for this. Still, further studies are needed in order to develop these 
methods to be able to displace traditional methods in practical work. 
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Abstract 
 
Crown base height (CBH) is an important factor in relation to several characteristics of the tree 
stock. This paper introduces approaches for estimating tree-level CBH from airborne laser 
scanning (ALS) data that employ features of computational geometry. For that purpose, the 
concepts of Delaunay triangulations and alpha shapes were applied and compared with 
approaches based on analysing return frequencies and predicting CBH by linear regression. 
These approaches were evaluated using test data on a total of 133 sawlog-sized Scots pine trees 
detected and delineated from ALS data with a density of approx. 4 returns m-2. The results 
suggest that variables based on cross-section area and the frequencies of crown returns within 
predefined height bins are the most accurate for estimating CBH. By combining the best CBH 
estimate with the estimated tree height in linear regression, an RMSE of 1.5 m (14%) was 
achieved. Although the accuracy of estimating CBH was lower using the 3D geometry 
approaches presented here, they were considered to have potential for further development. 
 
Keywords: LIDAR; computational geometry; Delaunay triangulation; alpha shape 
 
1. Introduction 
 
Previous studies have shown that it is possible under Scandinavian conditions to detect 40-70% 
of all trees using the individual tree delineation approach with airborne laser scanning (ALS) 
data (Persson et al. 2002; Maltamo et al. 2004). Although the tree detection rate and 
segmentation accuracy are highly dependent on forest structure, the trees that are detected are 
highly representative of the dominant tree layer, which is the most significant part of the forest 
for many applications. The individual tree information could be used either as such or as a 
complement to area-based approaches in applications such as characterising the growing stock 
(Persson et al. 2002; Holmgren and Persson 2004), monitoring its development (Yu et al. 2004) 
and planning timber procurement (Peuhkurinen et al. 2007). The rapid developments currently 
taking place in ALS technology will enable the necessary point density to be achieved with 
lower data acquisition costs in the near future, whereupon more interest will obviously be 
shown in single-tree methods. 
 
Besides tree height, the height of the tree crown is an important characteristic obtainable from 
tree-level ALS data, since the crown base height (CBH) is related to tree growth, forest health, 
timber quality, the need for silvicultural operations and their optimal timing, for example. Due 
to the laborious measurements involved, CBH is seldom measured in the field, however, and it 
is also difficult to model using more commonly recorded field observations (e.g. Hynynen 
1995). Some approaches that employ ALS data for estimating CBH have been presented in the 
last few years. Maltamo et al. (2006), comparing variables based on both ALS and field 
measurements, concluded that the accuracy of predicting the CBH was in practice similar at 
both the tree and plot level regardless of the source of the predictors. Plot-level approaches have 
usually been based on analysing the height distribution of laser returns (Næsset and Økland 
2002; Andersen et al. 2005; Maltamo et al. 2006), whereas at the tree level various properties of 
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the delineated 3D point clouds have been used to derive CBH (Pyysalo and Hyyppä 2002; 
Holmgren and Persson 2004; Maltamo et al. 2006; Solberg et al. 2006; Holmgren et al. 2008; 
Popescu and Zhao 2008). 
 
Pyysalo and Hyyppä (2002) developed polygon models for extracting features from individual 
tree ALS data with a density of app. 10 returns m-2 and claimed that the upper canopy could be 
described in detail but parameters extracted from the lower parts were less accurate. The CBH 
was overestimated by 3 m. Holmgren and Persson (2004) divided a dataset of approx. 5 returns 
m-2 into 0.5 m height layers and defined the CBH as the distance from the ground to the lowest 
point above the highest layer that contained less than 1% of the non-ground points. This gave a 
correlation of 0.84 between estimated and measured CBH and led to an overestimation of 0.75 
m. In a later study, Holmgren et al. (2008) approximated the tree crown using the alpha shape 
technique, calculating the area of the shape in voxel height layers and determining the CBH as 
the smallest area, within certain limits, below the maximum shape area. They now achieved a 
higher correlation between the estimated and measured CBH values (0.91), but were not able to 
determine whether this was because of the more efficient algorithm or the considerably higher 
density of approx. 50 returns m-2. In this case the CBH was underestimated by 0.61 m. Solberg 
et al. (2006), for one, examined the deciles calculated from the first return height distribution. 
CBH was set at the upper of two neighbouring deciles having the largest height difference in 
between. This approach resulted in an overestimation of 3 m (RMSE 3.5 m). Recently Popescu 
and Zhao (2008) used ALS data with a density of 2.6 returns m-2 to extract pulse frequency and 
intensity data with height bins defined in terms of 0.5 x 0.5 x 1.0 m voxels. They fitted the 
resulting vertical profile to a polynomial and defined the CBH as the height corresponding to an 
inflection point in the polynomial. Overestimations of 0.36 and 0.12 m in the frequency and 
intensity approaches, respectively, were removed in Popescu and Zhao (2008) by obtaining the 
final CBH estimate by means of linear regression. In that way the RMSE was approx. 2 m for 
the frequency approach and slightly more for the intensity-based approach. 
 
Most of the previous approaches seem to require the operator to define the essential parameters, 
such as the division of the height bins. As an individual tree is quite a small sample unit, it is 
crucial for estimation accuracy that the predefined parameters should be in the correct relation 
to the density of the data, for example. An approach that was capable of adapting to the 
properties of the source data could also reduce the need for field reference material. 
Computational geometry is a branch of computer science that deals with the study of algorithms 
and data structures for solving problems stated in terms of basic geometrical objects, such as 
points, line segments and polygons. As major attention is paid to the computational efficiency of 
the algorithms, the use of these could be advantageous for dealing with high density ALS data. 
So far it is mainly the concept of Delaunay triangulation that has been used in preprocessing the 
data (e.g. Hyyppä et al. 2001), while alpha shapes, for example, have recently been introduced 
for the later analysis (Holmgren et al. 2008; Vauhkonen et al. 2008). Here it is assumed that by 
employing suitable computational features it could be possible to estimate CBH independently 
of the properties of the ALS data. 
 
The purpose of this study was to apply the concepts of Delaunay triangulations and alpha shapes 
to the prediction of the CBH for sawlog-sized Scots pine trees (Pinus sylvestris L.), bearing in 
mind the importance of this metric with respect to several attributes of this tree species in 
particular. The methods developed here were compared with alternative approaches adopted 
from earlier studies. 
 
2. Material 
 
Altogether 14 30 x 30 m square plots typically located in pure Scots pine stands on less fertile 
soils were established in the southern part of Koli National Park (lat. 63°1'19''N, long. 
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29°53'10''E) in North Karelia, eastern Finland, during the spring of 2006. All trees with a 
diameter at breast height of more than 5 cm were mapped and the attributes of each were 
recorded. Differentially corrected Global Positioning System measurements were used to 
determine the positions of the four corners of each of the plots. The accuracy of the positioning 
in the XY direction was approx. 1 m. Tree locations within a plot were measured using one 
corner as the origin and projecting the trees onto the same coordinate system as in the ALS data 
by affine transformation using the measured corner positions as reference points. 
 
Georeferenced ALS point data were collected from an area of approx. 2500 ha in Koli on July 
13, 2005, using an Optech ALTM 3100 scanner. Three Differential Global Positioning System 
receivers were employed to record the carrying platform position: one on the aircraft and two on 
the ground (the first as the base station and the second for back-up). ALS data was acquired 
using a mean altitude of 900 m above ground level, resulting in a nominal sampling density of 
about 4 returns m-2. Elevations within the test area varied from 95 m to 350 m (local zero sea 
level), resulting in a varying sampling density across the target. The divergence of the laser 
beam (1064 nm) was 0.26 mrad. The data were captured using a scanning angle of ±11 degrees, 
which resulted in a swath width of about 350 m. The last pulse data were employed to generate 
a digital terrain model (DTM) by the method explained in Axelsson (2000) using a grid of 1 m. 
Height values for the laser points were obtained by subtracting the corresponding DTM values. 
Points with a value over 0.5 m were classified as vegetation hits. The canopy height model 
(CHM) was interpolated to a grid of 0.5 m using canopy heights by taking the maximum value 
of the laser measurements within a radius of 0.5 m. 
 
The individual trees were detected from the CHM using a method described by Pitkänen et al. 
(2004) in which the CHM was first low-pass filtered using Gaussian kernels with the size of the 
smoothing window and the intensity of the smoothing increasing as a stepwise function of the 
heights of the CHM. Local height maxima were searched for from the filtered CHM (Pitkänen 
et al. 2004), and all the pixels were classified in the binarization as belonging either to the tree 
canopy or to the background area. Finally, watershed segmentation was performed to create the 
crown segments. A crown segment was linked to a field-measured tree if 1) only one field tree 
was met inside the segment and 2) the difference between the maximum height value within the 
segment and the field height was less than 2 m. The study was further focused into sawlog-sized 
(diameter at breast height over 17 cm) Scots pine trees (N=133). The heights measured in the 
field for the study trees ranged from 12.1 to 27.2 m, with an average of 19.5 m, and the CBH 
values from 4.8 to 18.8 m, with an average of 11.1 m. 
 
3. Methods 
 
The main attention here was focused on extracting information from tree-level ALS data using 
Delaunay triangulation (Figure 1c), a widely known technique in the literature of computer 
science, while another computational geometry technique that was also applied was the concept 
of alpha shapes (Edelsbrunner and Mücke 1994). An alpha shape can be regarded as a weighted 
Delaunay triangulation from which all the simplices which have an empty circumsphere with a 
squared radius larger than the defined alpha value have been removed. Although illustrated in 
2D (Figure 1c), the computations regarding both concepts were performed in 3D using the 
functionality of the Open Source library CGAL (http://www.cgal.org). The reference methods 
employed information on the vertical profiles of trees (Figure 1a and b). The methods based on 
return frequencies (Holmgren and Persson 2004; Solberg et al. 2006; Popescu and Zhao 2008), 
cross-section area (Holmgren et al. 2008) and linear regression (Maltamo et al. 2006; Popescu 
and Zhao 2008) were adapted slightly for the present purpose. Thus, the variables considered in 
the estimation were obtained by 

1. constraining Delaunay triangulation by average triangle size (avgtri) and alpha value 
(alphatri); 
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2. extracting connected alpha shape components from the tree base (comp); 
3. analysing layered (A_bins) and incremental (A_incr) accumulation of 2D area; 
4. analysing vertical profile based on return frequencies (freq); and 
5. linear regression based on tree height (h) and the previous variables. 

 
The first approach was based on detecting discontinuities in the 3D triangulation in terms of 
large tetrahedra (see the 2D representation in Figure 1c). Two alternative methods were applied 
for classifying a tetrahedron as unacceptably large. In the average triangle (avgtri) method, the 
highest 50% returns were first triangulated and the volume of an average tetrahedron was used 
as this criterion. In addition to the volume, metrics such as circumradii and different edge 
lengths were considered for the same purpose with more or less the same result. In the alphatri 
approach, a predefined alpha value was used for the same purpose. Efforts were made to link an 
alpha value with the tree size by means of the estimated tree height, but as the same result could 
be obtained using different alpha values, this was found troublesome. Here α=4 was chosen with 
respect to the reference data. In the actual algorithm, the neighbouring cells of the highest 
tetrahedron were traversed and if a cell was considered small by the given criterion, its 
neighbours were also traversed, this being repeated for as long as possible. The crown base 
height was then defined as the height of the lowest vertex in the obtained structure. 

 

 
Figure 1: Possibilities for extracting information from ALS data. The ALS profile of an example tree (a), 
normalised return frequencies within 10% height bins (b), and Delaunay triangulation performed using 

the point data (c), illustrated in 2D for ease of visualization. The field-measured CBH is illustrated using a 
dashed line and ground hits using grey circles. 

 
In the comp approach, connected components were removed from the lowest parts of an alpha 
shape generated with the full point data (Figure 2). An alpha value with one connected 
component was used as a starting point and the alpha values were traversed in descending order 
until a new component was split or the minimum height value of the highest component was 
changed. The first split component was allowed to intersect the previous, but otherwise the 
removal was accepted only if the component was located below the current main component. If 
not, the procedure was stopped and the CBH was defined as in the previous paragraph. 
 
Third, the vertical profile of the point cloud (Figure 1b) was analysed. A 2D area approximated 
by the convex hull technique (A_bins) and return frequencies (freq), both extracted using 
overlapping 10% height bins with bin values of 5, 10, …, 95% of the tree height, were 
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considered in the analysis. The value within a height bin was normalized using the largest bin 
value, resulting in values between 0 and 1. Values less than 0.1 were considered to be zeros. The 
CBH was defined as the lowest point within the first of 2 sequential zero bins below the 
maximum. The height bins had some overlap and 2 zero classes were considered in order to be 
sure not to detect a false CBH caused by the height bin division and the low pulse density. In a 
variation utilizing the 2D area (A_incr), the maximum area of the point cloud was first 
calculated and the point cloud was then traversed from the 20% tree height towards the top. 
While traversing, the area including the traversed point was calculated, and the crown base was 
defined at the point where the area calculated in this way exceeded a threshold of 20% of the 
maximum area. 
 

 
Figure 2: The first and last two steps of the comp algorithm in the case of an example tree. From left to 
right, 1, 2, 5 and 6 connected components illustrated using different symbols were separated from the 

point cloud during the traverse of alpha values. When the last split component (cross (+) symbols in the 
right-hand figure) overlapped the main component, the procedure was stopped and the previous main 

component was output as the result of the algorithm. The CBH measured in the field is illustrated using a 
dashed line. Note that the result was obtained in 3D and, thus, differs from 2D interpretation. 

 
Finally, the CBH was predicted using linear regression. First the tree height alone was used as 
the independent variable, second all previous estimates were added to the model and any 
variables that were insignificant at the 95% confidence level according to the t-test scores were 
removed. The final CBH prediction was produced using leave-one-out cross validation, i.e. by 
fitting the regression model to all the observations except for the target tree itself. 

 
The reliability of estimating the CBH was measured in terms of RMSE and bias: 
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where n is the number of trees, CBHfieldi the reference and CBHpredi the predicted CBH for 
tree i. The relative RMSEs were calculated by dividing the absolute RMSE values by the mean 
reference CBH. 
 
4. Results 
 
The 3D geometry methods presented here were slightly poorer than the reference methods with 
respect to estimation accuracy (Table 1), with RMSE values ranging from 2.77 to 3.88 m as 
opposed to approx. 2 m for the other methods. The estimation accuracy with all methods seems 
to slightly decrease as tree size increases (Figure 4). 
 
The differences in output between the methods are illustrated in Figure 3. The 3D methods 
actually produce a subset of the initial point cloud that is adjusted from the lower parts of the 
crown, whereas the other methods only output a vertical CBH boundary. Compared to other 
approaches, the 3D methods are slightly more vulnerable to gaps in the vertical profile above 
the field-measured CBH (e.g. Figure 3b). Thus, the lower accuracy of the 3D methods is mainly 
caused by several clear outliers (Figure 4), although the average results (Table 1) are, however, 
fairly close to each other. 
 

Table 1: Estimation accuracies of the different methods. 
 

CBHpred = RMSE, m RMSE, % bias, m 
avgtri 3.88 34.9 0.522 
alphatri 2.77 24.9 0.115 
comp 2.83 25.4 -0.945 
A_bins 1.84 16.6 0.411 
A_incr 2.17 19.5 -0.738 
freq 1.81 16.3 0.004 
-0.68 + 0.62 × h 2.03 18.2 -0.001 
-0.51 + 0.29 × h + 0.57 × A_bins 1.54 13.9 -0.006 

 

 
Figure 3: Differences in output between the methods – CBH as measured in the field (thick line), CBH 
estimate with the freq approach (dashed line), output of the comp method (black filled dots), and other 

laser returns (circle symbols). 
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Figure 4: CBH estimates produced by different methods vs. CBH measured in the field. 
 
5. Discussion 
 
It was assumed here that by employing a 3D computational geometry approach new information 
could be obtained for estimating CBH. The results show that this estimation could be done more 
accurately using simpler methods. In previous studies, for example, Popescu and Zhao (2008) 
obtained RMSEs of around 2 m with a very similar sample arrangement. In fact, when 
predicting from tree height, their results practically equalled those obtained here, although the 
best result obtained here (RMSE 1.5 m) was slightly more accurate. The present results, in 
common with those of Popescu and Zhao (2008), show that it is possible to obtain accurate 
CBH estimates with modest pulse densities. Considering the pulse densities used in estimation, 
the accuracy of the developed 3D methods is also comparable with figures reported elsewhere 
(e.g. Pyysalo and Hyyppä 2002, Holmgren and Persson 2004). It should be noted, however, that 
only Scots pine trees were considered here. In the study of Popescu and Zhao (2008), for 
example, the difference between pine and deciduous trees was of significance. 
 
An objective for this study was to develop methods that could be adapted to the properties of 
ALS data. The methods introduced here make use of 3D triangulations of point clouds, which in 
principle do not need a priori knowledge. The main error source consisted of several outliers, so 
that it is likely that by using higher density data the true discontinuities in the point clouds could 
be detected more accurately and, thus, the number of potential outliers could possibly be 
reduced. On the other hand, a priori knowledge of the extremes in the data, e.g. not allowing the 
CBH to be closer than 15% to the tree height at both ends, could possibly reduce the inaccuracy 
with lower density data. Speaking of pulse-level analysis, a higher density would increase the 
computational burden, which on the other hand could be constrained by using the efficient 
structures of computational geometry. Computation was very straightforward with the density 
considered here, although the code had not yet been optimized at all. 
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It can also be noted that, interpreted visually, the CBH values measured in the field may differ 
considerably from the point profile (Figure 3b-c). One reason for this is that the field 
measurement is made to the base of the lowest branch, whereas the scanner records reflections 
mainly from the top of the branch. The level of correspondence between the ALS-based CBH 
estimate and the ground truth is thus dependent on the technical definition of the CBH (see also 
Solberg et al. 2006). In view of this, the 3D measurements may in fact also produce a fair 
approximation of the living crown, but as the linear models are fitted to the field reference data, 
they logically generate better results in terms of the RMSE and bias figures. 
 
With respect to the accuracy of certain applications, such as species recognition based on the 
properties of the point cloud (Holmgren et al. 2008; Vauhkonen et al. 2008), it may be crucial 
that the tree crown returns are accurately separated from those representing other trees and the 
undergrowth. The tree detection rate may vary in mature forests (Persson et al. 2002; Maltamo 
et al. 2004), and where the canopy is closed, better results may in general be gained using 
area-based approaches (e.g. Næsset and Økland 2002). However, given suitable conditions for 
the single-tree approach, the new methods presented here could be further developed towards 
3D segmentation, which would be of help in providing accurate input point data for the 
applications of the ALS technique. 
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Abstract  
 
This study presents an approach for semi-automated derivation of forest attributes (area, 
composition, stands) by fusion of medium point density LiDAR data with ADS40 and RC30 
images to support tasks of the National Forest Inventory (NFI). In a first step, two different 
canopy height models (CHMs) are generated using a LiDAR DTM with two DSMs derived 
from the LiDAR data and RC30 images. In a second step, forest area was obtained using a 
logistic regression approach and explanatory variables from both CHMs. Based on the forest 
area, tree composition and main tree species are modelled again using logistic regression models 
and explanatory variables derived from both the ADS40 and RC30 aerial images. In a third step, 
forest stands are extracted by combining homogenous parts of the CHM with tree species 
information. Generally, results based on LiDAR CHM produced less satisfactory results due to 
lower quality. High accuracy for the extraction of forest area, main tree species (kappa = 0.7 to 
0.9) is obtained. Further research is needed for the extraction of forest stands. The present study 
reveals the potential and limits to derive forest attributes and highlights possibilities of their 
usage for tasks of the Swiss National Forest Inventory. 
 
 
Keywords: Canopy height model, DSM/DTM, Forestry, high-resolution, multisensor  
 
1. Introduction  
 
Extraction of forest attributes from airborne remote sensing data have grown over time and will 
continue to do so in the future since exact information on forest extend, structure and 
composition is needed for many environmental, monitoring or protection tasks. The present 
study focuses on the extraction of these attributes and was carried out in the framework of the 
Swiss National Forest Inventory (NFI) and the Swiss Mire Monitoring Program (Brassel and 
Lischke, 2001).  
 
Recent progress in three-dimensional remote sensing mainly includes digital 
stereo-photogrammetry, radar interferometry and LiDAR (Watt and Donoghue 2005, Baltsavias 
et al. 2007). E.g. by subtracting a digital terrain model (DTM) from the corresponding digital 
surface model (DSM), canopy height models (CHMs) can be calculated that serve as basis for 
other forest attributes. Using digital photogrammetry, DSMs are generated via image matching, 
often using cross-correlation (Hyyppä et al. 2000) or less frequently multi image-matching 
approaches (Zhang and Gruen 2004). Meanwhile several LiDAR systems are commercially 
available (Naesset and Gobakken 2005), enabling the derivation of DTMs from such data as 
well (Baltsavias 1999). Several studies have integrated LiDAR with optical remotely sensed 
data to estimate forest attributes such as stand composition, tree height, crown diameter, basal 
area, and stem volume (e.g. Straub 2003; St-Onge et al. 2004, Hollaus et al. 2006, Baltsavias et 
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al. 2008). Combining some of these attributes can be used to evaluate extent of forest area 
(Waser et al. 2008a), detect changes in forest stands (Waser et al. 2008b), and determine 
tree/shrub species (Holmgren and Persson 2004). According to Scott et al. (2002) modern 
regression approaches have proven particularly useful for modelling spatial distribution of tree 
species and communities. Thus, high-resolution remote sensing data in combination with 
regression analyses are promising for modeling forest composition and tree species (e.g. 
Lamonaca et al. 2008). The objective of this study is to develop a methodology for derivation of 
fractional forest cover, detection of main tree species and derivation of forest stands.  
 
2. Method 
 
2.1 Study area 
 
Models have been developed and tested for four forest ecosystems in the northern Pre-alpine 
zone of Switzerland. In this paper we present a representative test site (approx. 47°18’ N and 
9°14’ E) which has an extent of approx. 3 km2 and is characterized by a varying terrain, mixed 
land cover and deciduous and coniferous forests with a core mire area (see Fig. 1). 
 

 
 

Figure 1: Test site with typical mixed forests 
 
 
2.2 Remote sensing data 
 
To ensure that this study is also of practical relevance for the NFI, only remote sensing data 
which are available for large areas or for entire Switzerland have been used.  
 
2.2.1 ADS40 RGB images 
 
Leica airborne digital sensor (ADS40 first generation) images Level 1 (un-rectified) of August 
2005, RGB bands (16 bit), and ground sample distance 0.25m. An orthoimage was generated 
using the LiDAR DSM described below. Main advantage: The image data is available for the 
area of entire Switzerland every three years. 
 
2.2.2 RC30 CIR images 
 
Leica RC30 frame camera, 4 CIR (colour infrared) aerial images (1 strip) of July 2005, bands: 
red, green, near-infrared, scale 1:5,600 and an orthoimage that was generated with a spatial 
resolution of 0.25 m. Main disadvantage: The images are only available on request and do not 
cover entire Switzerland. Orientation of the CIR aerial images was performed in LPS (Leica 
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Photogrammetry Suite) and the following accuracies were obtained: the aposteriori sigma 0 was 
0.32 pixel and the RMSE for the control points: X=0.06 m, Y=0.06 m, Z=0.17 m and RMSE for 
the check points are X=0.06 m, Y=0.06 m, Z=0.24 m. Main disadvantage: The image data is 
only acquired on request and not available for entire Switzerland. 
 
2.2.3 RC30 DSM derived from CIR images 
 
High-resolution DSM data is indispensable since accurate surface information of the forest area 
is very important for modelling forest composition, e.g. tree species. Thus, for the four RC30 
CIR images a matching method was applied that can simultaneously use any number of images 
(> 2). It is implemented in the operational, quasi-complete photogrammetric processing package 
Sat-PP which supports satellite and aerial sensors with frame and linear array geometry (for 
further details see Zhang (2005) and Zhang and Gruen (2004)). In principle, the matching 
method consists of three mutually connected components: an image pre-processing, a multiple 
primitive multi-image matching (MPM) and a refined matching procedure. This automated 
DSM generation provides high accuracy and enables to produce very dense (grid spacing = 3-4 
x GSD) and detailed DSMs that allow a good 3D modeling of trees and shrubs (see Fig. 2). 
 

 
 
Figure 2: DSM derived from the RC30 CIR images generated by the SAT-PP matcher. The DSM is coded 

in color from light green (light In BW) to cyan (dark in BW) for lowest and highest elevations. 
 
2.2.4 LiDAR DSM and DTM data 
 
National LiDAR DSM and DTM data from 2003, leaves-on was used. The data was acquired by  
Swissphoto AG / TerraPoint using a TerraPoint ALTMS 2536 system with an average height 
above ground of 1200 m. From the LiDAR data (first and last pulse), both a DTM and DSM 
were generated by the Swiss Federal Office of Topography (SWISSTOPO). The average density 
of the DSM data was 1-2 points / m2 and the height accuracy (1 sigma) 0.5 m for open areas and 
1.5 m for vegetation. The DTM has an average point density of 0.8 points / m2 and height 
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accuracy (1 sigma) of 0.5 m (Artuso et al. 2003). The raw LiDAR data provided by 
SWISSTOPO were converted using SCOP++ V5.3 (INPHO) to a raster with 1 m resolution.  
 
2.3 Training and reference data-sets 
 
A ground survey was carried out in summer 2006 and 2007. In total, for 480 trees we collected: 
i) tree positions using a sub-decimeter GPS with differential correction, ii) tree heights using a 
tachymeter and iii) determination of eight tree species. These are: alder, maple, birch, beech, 
ash, sorbus (all deciduous trees) and white fir, spruce (coniferous trees). This information was 
used for calibration and validation of the models. 
 
2.4 Forest area 
 
The forest / non-forest decision is based on several steps: In a first step, two canopy height 
models (CHM) were produced (CHM1 = RC30 DSM – LIDAR DTM; CHM2 = LiDAR DSM – 
LiDAR DTM). Then both CHMs were used to extract potential tree areas according to the > 3 m 
tree height and minimum tree area of 500 m2 definitions by the NFI (Brassel and Lischke 2001). 
In a second step, non-tree objects (buildings, rocks etc.) of both CHMs were removed using 
normalized difference vegetation index (NDVI) information (low values) obtained from the CIR 
aerial images. In a third step, based on the two canopy covers two fractional shrub/tree covers 
were produced using a logistic regression approach (McCullagh and Nelder 1983) with a 
probability (0 to 1) for each pixel to belong to the class “forest”. The explanatory variables 
consist of six commonly used topographic parameters derived from the CHMs (aspect, 
curvature, slope and three local neighbouring functions) as described in detail in Waser et al. 
(2008a). The result is a fractional forest cover of the test site with a probability for each pixel to 
belong to the class “forest”. Various cover strata with different probability ranges for forest are 
computed (see Table 1). 
 
2.5 Distinction of main tree species 
 
Since distinction of tree species is based on the fractional forest cover – all pixels with a forest 
probability of less than 0.2 were skipped. 
 
In a first step, individual tree or groups of tree have to be extracted before modelling tree 
species. For better segmentation the ADS40 images and CIR aerial images were smoothed using 
ArcGIS focal functions. In a second step segmentation of the RC30 and ADS40 images was 
applied using the Definiens developer 7.0 software (Baazt and Schaepe 2000). This 
segmentation provides groups of trees and single trees with similar shapes and spectral 
properties. For each pixel within a segmented tree group or tree object, probability belonging to 
one of the eight main tree species was calculated using logistic regression models. As 
explanatory variables we used 12 parameters derived from the ADS40 images and the RC30 
images: original bands of RGB (3 variables) and CIR (3 variables), the ratio of each CIR and 
RGB band divided by the sum of the corresponding 3 bands (6 variables). These parameters 
have shown best performance based on empirical tests and step-wise methods. 240 tree 
individuals (half of the field data) were used as training data. The usage of parameters from the 
CHMs as explanatory variables didn’t further improve the results. 
 
2.6 Forest stands 
 
According to the Swiss NFI a stand can be defined by the three parameters composition, 
diameter at breast height (dbh) and structure (multi-layers of tree cover). Composition can be 
determined using the distinction of coniferous / deciduous trees and classification of the eight 
tree species as performed in 2.5. Since it is not possible to obtain the diameter at breast height 
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from the input data-sets tree height information and minimum tree area (500 m2) was used 
instead. Tree height is indirectly linked with the diameter of a trunk. Four tree height classes 
according to the definition by the NFI were built using the CHMs: 3-8 m, 8-15 m, 15-25 m and 
> 25 m. Minimum tree area and the dominating tree heights per segment (tree group or tree 
object) were calculated using different moving window approaches.  
 
3. Results  
 
3.1 Forest area 
 
The predicted forest area was validated using a pixel-to-pixel comparison on 240 randomly 
sampled reference field measurements. For this validation the corresponding pixel clusters (5x5 
pixel window) of the measured 240 tree/shrub samples and 150 non-tree samples, respectively 
were used. Table 1 presents the correspondence between the pixels of randomly sampled 
shrubs/trees > 3 m and the five modelled individual shrub/tree cover strata. A tree/shrub cover 
stratum of e.g. 10–100% (0.1–1) means that all pixels with a probability higher than 10% are 
assigned to forest. The following statistical measures were used: correct classification rate 
(CCR), consumer’s accuracy, producer’s accuracy, kappa coefficient and correlation coefficient 
(r2). The accuracies for five different tree/shrub cover strata are given for both CHMs in table 1. 
Higher accuracies are obtained by using the topographic parameters from the RC30 DSM as 
explanatory variables. Best correspondence between the models and field data is obtained for 
cover stratum 20-100% when using the RC30 DSM variables, and 30-100% when using the 
LiDAR DSM variables. 
 
Table 1. Accuracies of both canopy covers for five different strata. 1st lines are based on the LiDAR DSM 

variables, whereas second lines were obtained from the RC30 DSM variables. 
 

Cover stratum 10-100% 20-100% 30-100% 40-100% 50-100% 

CCR 0.841 
0.923 

0.883 
0.971 

0.902 
0.958 

0.891 
0.935 

0.863 
0.921 

Cons. Ac. 0.801 
0.817 

0.861 
0.965 

0.922 
0.954 

0.865 
0.956 

0.836 
0.938 

Prod. Ac. 0.842 
0.924 

0.863 
0.934 

0.897 
0.912 

0.857 
0.881 

0.835 
0.834 

Kappa 0.721 
0.802 

0.786 
0.915 

0.843 
0.903 

0.782 
0.883 

0.761 
0.856 

r2 
0.765 
0.832 

0.782 
0.924 

0.821 
0.908 

0.812 
0.891 

0.747 
0.864 

 
Fig. 3 clearly shows the different extent of canopy covers with tree height classes when a) using 
the LiDAR CHM and b) using the RC30 CHM. For comparison purposes the DSMs were 
resampled to 1 m. The varying extent of forest area is due to quality differences of the LiDAR 
data and the RC30 DSM but also due to deforestation between 2003 and 2005. 
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Figure 3a. Extracted forest area and tree height classes based on the LiDAR CHM of 2003. 
 

 
 

Figure 3b. Extracted forest area and tree height classes based on the CHM of the RC30 DSM of 2005. 
New deforestation is visible in the left part of the area. 

 
3.2 Tree species 
 
In general, best distinction is obtained when combining both ADS40 and CIR data as 
explanatory variables. Low CCR is obtained when considering all eight tree species. Therefore 
the focus was laid on five main tree species (spruce, white fir, ash, beech, birch). Table 2 reveals 
the accuracies using either CIR images, ADS40 images or a combination of both data-sets and 
shows that best results are obtained from the latter. Table 2 also reveals that this improvement is 
less pronounced for deciduous trees. 
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Table 2. Correct classification rate (CCR) values of the five main tree species as obtained by logistic 
regression. Kappa (K) values are the average for all five species. 

 
based on spruce white  

fir 
ash beech birch K 

CIR 0.75 0.64 0.81 0.80 0.76 0.68 
ADS40 0.86 0.85 0.84 0.82 0.78 0.75 
CIR+ ADS40 0.92 0.88 0.91 0.86 0.84 0.86 

 
3.3 Forest stands 
 
Fig. 4 shows that forest stand classes are obtained by a combination of tree heights and forest 
composition. Tree height classes were used as equivalence to diameter at breast height 
according to the Swiss NFI. However, since no forest stand maps exist from this region, the 
quality control of the different forest stands was performed visually using stereo-image 
interpretation. In general, the typical stand classes are well represented when accepting some 
discrepancies especially in stand classes with lower tree heights (3-8 m).  
 

 
 
Figure 4. Forest stand classes as obtained by combining tree heights and dominant tree type according to the 

Swiss national forest inventory (NFI). 
 
4. Discussion  
 
This study highlights the potential of combining airborne remote sensing data with logistic 
regression models to obtained forest attributes such as area, tree species and stands on sub-pixel 
level. The first objective, the extraction of forest area, was achieved semi-automatically with 
high accuracy using either LiDAR or RC30 DSM data. Generally, the usage of explanatory 
variables from the RC30 DSM produced better accuracies. Highest correspondence between 
fractional canopy cover and field data was obtained for the fractional canopy cover strata of 
20-100% using the RC30 DSM and 30-100% using the LiDAR DSM, respectively. However, 
this validation is based on trees > 3 m and it has to be kept in mind that accuracies may vary 
when considering also shrubs/trees < 3 m for validation. But detailed visual stereo-image 
interpretation confirmed that most small trees are then within the forest area when using the two 
canopy cover strata. Since this study clearly reveals that accuracy of fractional canopy covers 
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strongly depends on the accuracy of the DSM data, newly developed, high-quality matching 
methods are indispensable. The usage of a dense and accurate DSM is an absolute prerequisite 
in order to be able to derive accurate topographic parameters which in turn are used to derive 
the fractional canopy covers. Although the LiDAR DSM in this study has a lower point density 
than the RC30 DSM the obtained results for extraction of forest area are yet useful, and will be 
applied for larger forest areas on regional or national level. Moreover, in near future, we will be 
able to produce high-quality DSMs also from ADS40 data. 
The second objective, the distinction of main tree species, was achieved semi-automatically and 
mediocre to high accuracies were obtained. First, simple distinction between deciduous trees 
and coniferous trees revealed higher accuracies than the distinction of several tree species. 
Second, better results were obtained when using ADS40 data, especially for coniferous tree 
species. Anyhow, distinction of tree species based on CIR aerial image information at least 
produced satisfactory results for spruce, ash, beech and birch and partly satisfactory for white 
fir. Best results were obtained when combining both sensors as input for the logistic regression 
models. However, both sensors failed to distinguish further deciduous trees with good quality.  
Possible reasons are that alder, maple and sorbus are often grouped have smaller crowns, are 
partly covered from each other or from other more dominant species and also have very similar 
spectral properties. Tests revealed that an implementation of variables derived from both 
LiDAR and RC30 DSM didn’t improve the results. Therefore distinction of tree species only 
depends on the spectral information. 
Two final remarks are given here: i) advantages of this approach are that only few training data 
is needed and this method can be applied semi-automatically – also for larger regions; ii) an 
important disadvantage is the availability of both image data, whereas the CIR aerial images are 
only available on request for selected areas within Switzerland. Unfortunately, with this first 
generation ADS40 sensor, the NIR line CCD is placed far away from the RGB CCDs and thus 
the NIR image looks very different and cannot be combined with the RGB images. Therefore, in 
near future the focus will be laid on single usage of the 2nd generation ADS40 sensor where all 
four spectral CCDs have the same position. This will improve the results, by using also the NIR 
information. Another advantage will be the availability of newest ADS40 imagery for entire 
Switzerland every three years. In this case, the dependence on image on request will cease to 
exist. To make this approach more valuable and applicable for e.g. entire Switzerland it is also 
planned to test other tree species of different geographical regions (e.g. Central and Southern 
Alps). Another approach will be the usage of tree texture properties and of the seasonal 
variability of tree species using multi-temporal data. 
The third objective, the extraction of forest stands, produced visually satisfactory results but 
still suffers from some limitations. Structure, the third necessary parameter to define a stand, 
had to be ignored since it can only be derived from full-waveform LiDAR data. Another 
drawback is that we used tree height classes supposing a relation to the diameter at breast 
height. Nevertheless, with the fusion of national LiDAR data and spectral information we are 
able to extract semi-automatically stand classes that will help for a better understanding of the 
structure of forest.  
To summarize, this study clearly shows the potential and the limits of the fusion of medium- 
footprint LiDAR data and ADS40 imagery (and also CIR aerial images) to extract the forest 
attributes: area, composition and stand. These forest attributes will help to support some tasks in 
the Swiss NFI (e.g. stereo-image interpretation, field surveys) and might be useful for updating 
existing forest masks, forest management and protection tasks on a regional level and in future 
also on a national level. The study also reveals that the use of nation wide available LiDAR data 
is obvious, but in case of Switzerland restricted due to operational constraints. In Switzerland 
the medium footprint LiDAR data does not meet the requirements for single tree detection and 
accurate derivations of forest parameters as performed in many case studies and in forest 
inventories. Additionally, the LiDAR data acquisition time is not focused on single specific 
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questions the data has to serve for different purposes. A future alternative would be to derive 
DSMs from ADS40 data for entire Switzerland with at least the accuracy of the LiDAR data. 
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Abstract 
 
The work illustrates a practical and economical way to combine airborne laser scanning data 
(ALS) and spectral information from Quickbird satellite imagery or digital orthophotos with 
regional yield models in order to assess the stand volume and other relevant forest parameters. 
New methods to integrate Laser Scanning and Remote Sensing into the traditional stand wise 
forest taxation are shown on examples of (a) state owned and mainly even-aged forests in 
Saxonia and Poland and (b) privately owned all-aged plenter woods (Plenterwald) in the Black 
Forest in Baden-Wuerttemberg. The automatic detection of trees from Quickbird Satellite 
images and true-orthophotos by means of Object Based Image Analysis (OBIA) as well as the 
detection of trees purely based on laser point data is shown. Tree height, location, density, 
distribution and tree type of each of the more than 165000 automatically detected trees, all 
stored in a GIS database, are used as input information to apply different regional yield models. 
For even-aged forests, homogenous stands and/or tree groups have been defined to assess the 
volume of the growing stock considering tree species, age (if known), density and stand 
openings. For all-aged and nature-like plenter woods (Plenterwald), the assessment of the 
growing stock is based on single tree information, and on specific auxiliary yield tables for 
plenter woods. The LiDAR and spectral measurements and volume estimations have been 
compared with the actual field taxation. The results are discussed and critical issues such as the 
potential of satellite and ALS data to derive relevant forestry parameters, or the possible costs 
for such an analysis, are addressed and recommendations for an economic workflow and system 
integration are given. 
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Abstract 
 
The purpose of the study was to determine the usefulness and improve understanding of ALS 
technology in acquisition of selected parameters of canopy layers for individual trees and whole 
stands. This approach based on ALS data (TopoSys fiber scanner) was compared to reference 
data from forest inventory (432 Scots pines). The results of our study indicate the following: (1) 
height for single trees derived from ALS data leads to underestimation (mean difference -0.90 m 
or +0.12 m depending on CHM generation algorithm); (2) mean height for a stand was higher 
(+0.85 m) than the height from SILP database what can results in whole Milicz Forest district in 
underestimation of the wood volume; (3) mean height of a stand (understanding as 95th 
percentile of the FE point cloud) was +0.46 m higher than the height from SILP inventory 
database; (4) it was possible to estimate the base of crown with underestimation of 0.52 m; (5) 
length of crown measured during the forest inventory was +0.42 m higher if compared to ALS 
data (analysis of histogram); (6) crown surface area was slightly greater and crown volume was 
slightly smaller than the reference; (7) homogeneity of an even-aged-pine stand is questionable. 
In the very near future the new approach of forest inventory supported with ALS data is 
expected as a list of the new parameters and guidelines.   
 
Keywords: tree height, base of crown, tree crown length, surface area and volume, homogeneity 
 

1. Introduction  
One of the most significant parameters used by foresters is the tree stand height. The definition 
of timber volume of a single tree or stand is based on formulas which use mainly the diameter at 
breast height (DBH) and tree height, thus the accuracy in the estimation of the timber stock is 
directly linked with the quality of these parameters. In management forests, particularly 
single-species and even-age tree stands, artificially renewed from homogenous genetic material, 
height should not vary too much, provided the forest site conditions are the same and human 
treatments (e.g. thinning) are identical. The traditional measurement of tree height with 
hypsometer is affected by the instrument error and subjectivity in pointing the tree top by the 
operator. In some situations, high density of the stand, windy weather or a small number of 
leaves may cause additional errors. Methods using the remote sensing technologies (e.g. 
photogrammetry) have been known for decades, but they have always been work intensive. 
Nowadays these methods become more and more competitive due to the technology of digital 
airborne cameras and the process of automatic stereo-matching (Baltsavias et al. 2008). Other 
technologies, such as radar or LiDAR offer a completely new approach in forest practice in the 
measurement of selected parameters. LiDAR is not limited to the circular inventory plot, on 
which foresters used to describe the whole stand, but validation studies are generally performed 
at the plot level or at the tree level (Means et al. 2000) because of the reference data. The 
measurements of the stand height with ALS have already been studied by many authors (Næsset 
1997, 2004, Kwak et al. 2007). Given that the accuracies of the estimation of tree stand height 
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(h) are usually different, there is a general trend towards underestimation of this feature 
(Hyyppä et al. 2004, Maltamo et al. 2004, Rönnholm et al. 2004, Yu et al. 2004). Only few 
studies (Næsset and Økland 2002, McGaughey et al. 2004) show a reverse trend of 
overestimation. ALS data is also used in the definition of other parameters, such as: base of 
crown (Næsset and Økland 2002, Hall et al. 2005, Popescu and Zhao 2008), crown depth/L 
(Næsset and Økland 2002, Maltamo et al. 2006), crown diameter (Popescu et al. 2003), density 
of stems in a stand (Riaño et al. 2003, Hall et al. 2005), biomass (Lim and Treitz 2004, Popescu 
2007) or timber volume (Næsset 2004, Hollaus et al. 2007). 
 

2. Method 
2.1 Study area 

For this study we chose forest stands located in a central-west part of Poland (51°27' N; 17°12' 
E) belonging to the Forest District of Milicz and owned by the Wroclaw Regional Directorate of 
the Polish State Forest National Holding. In this area different GI technologies (ALS, TLS, 
photogrammetry) are tested in terms of their usefulness in forest inventory (Wezyk et al. 2007). 
In this paper we present the results from our studies based on 21 inventory plots covered with 
Scots pine. Depending on the stand age, the plot size varies from 50m2 (26 years) to 500m2 (107 
years). 
 
2.2. Reference data 

The reference data used in this project came from several sources. One of them, the most often 
quoted, is later on referred to as forest inventory. This measurement, based on the Polish State 
Forests inventory guidelines (IUL PGLP 2003), was carried out in August 2006 by the company 
Taxus SI Ltd. The inventory campaign delivered the selected tree taxation parameters like: tree 
species, position on the inventory plot (polar measurement), height of tree (ht), base of crown, 
DBH, diameter at 5.0 m, centre of the crown position and shape of the crown. Height of tree and 
base of crown were measured using the hypsometer Vertex III (Haglöf, Sweden) with 0.1 m 
accuracy. Another set of reference data comes from the SILP database (the descriptive database 
of the Polish State Forest) and was updated in year 2005 (regular forest inventory). However, 
SILP database provides information for a whole stand as an average height, DBH, volume and 
other parameters. The centres of the plots were determined with dGPS survey (Trimble 
Pathfinder ProXRS). Data collected with Terrestrial Laser Scanning (TLS; FARO LS 880) was 
also used (Wezyk et al. 2007).  
 
2.3. ALS data 

The airborne campaign was carried out in July 2007 using the TopoSys glass fiber scanner Falcon 
II with a so called “swing mode”. The mean relative height of flight was about 550 meters above 
the ground. The mean point density was ca. 14 pts/m2 (varied from 9 to 18 pts). Single scans were 
delivered in ASCII format (raw data) and raster format data as well (DSM and DTM).   
 
2.4. Hardware and software 

In this project Terrascan and Terramodeler (Terrasolid Ltd.) software was used in the processing 
and classification of the point cloud (ASCII XYZ) and DTM generating. In calculating of the 
canopy metrics, the FUSION (McGaughey 2007) was used. The LASEdit (Cloud Peak) 
software was used to control the correctness of the file structure *.LAS, the ArcViewGIS 9.1 
(ESRI) in 3D GIS analyses (GRID) and Statistica 8.0 (StatSoft Inc.) for statistical purpose.  
 
2.5. Canopy surface and height  

Surfaces representing the forest canopy were generated using the FUSION software 
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(McGaughey 2007). Two different crown models (called: CHM1 and CHM2) were saved in 
*.dtm format. The CHM1 surface was generated without preserving the local maxima from 
point cloud but with two filters - median and smoothing filter. The CHM2 surface was generated 
with the additional option of “preserve the local maxima and minima”. The canopy surfaces 
were exported to the ASCII GRID (ESRI) and in this environment the 3D analyses, like 
calculating the volume and surface area of the canopy layer, were performed. The heights of 
single trees (ht) were defined by GIS analysis overlaying the polygons representing the outline 
of the crown with layer CHM2 (GRID zonal statistic). For the needs of the vertical structure 
analysis (histogram generation) and the prediction of base-of-living-crown, ALS was used as 
point cloud XYZ. Similarly, the mean height for selected compartments was calculated as 95th 
percentile (FUSION software) of the ALS point cloud and not from the modelled CHM1 and 
CHM2 surfaces. In this case we accepted size of pixel representing the tree crown as 10 by 10 
meters. 
 
2.6. Estimation of the base-of-crown based on the ALS histograms  

Based on the percentage distribution (above 1%) of the number of LiDAR impulses from the 
point cloud in height gradient (0.5m intervals) the histogram of the base of crown for individual 
tree and for the whole compartment was made. These results were compared to the visual 
interpretation made by 7 operators. The length of green crown may be defined as the vertical 
distance from the tree top to the lowest living branch. While the upper limit (tree height) can be 
objectively defined, the base of crown is often very subjective to ascertain.  
 
2.7. Tree crown shape 

The centre of the crown and the edges of 8 opposite sites of the crown were projected vertically 
to the ground by forest inventory in July 2006. Some trees between forest inventory (2006) and 
LiDAR flight (2007) were cut down (thinning) so authors decided to use the crown shapes 
collected from TLS (2006), which had more accurate outlines. Crown TLS outlines were used in 
defining e.g. density of points in individual crowns, maximal high point inside the crown 
polygon or the crown base, with the methods available in FUSION program and 3D GIS spatial 
analysis. 
 
2.8. Tree crown surface area and volume 

Crown surface area and volume can be approximated by assuming that the crown is a regular 
geometric solid like a cone or paraboloid. If we assume that a cone is a reasonable 
approximation for the Scots Pine crown, the surface area (Eqauation 1 after Avery and Burkhart 
2002) and volume (Eqauation 3 after Avery and Burkhart 2002) can be computed. However, if a 
paraboloid is chosen, then crown surface and volume would be computed using different 
formulas Equation 2 after Laar & Akca (1997) and Equation 4 after Brack (2008) respectively. 
In each equation the same crown width value (CW) was used, determined on the TLS data. 
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where: CSA – crown surface area [m2]; CV – crown volume [m3]; CW – crown width [m]; CL – crown 
length [m] 
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3. Results and discussion 
3.1 Height  

Firstly the results of height measurements obtained with different methods (SILP descriptive 
data base, forest inventory = F.INV, TLS, CHM1 and CHM2) were subdued to a statistic 
variance analysis. The significance of differences was tested with a non-parametric Friedman’s 
(ANOVA) test for many variables and a Wilcoxon test for two variables. Analyzing all the 432 
pines, high and highly significant differences were found in comparison of two groups of 
methods: traditional measurement with hypsometer (forest inventory 2006) with TLS and ALS 
methods (CHM1 and CHM2) as well as SILP (2005). The analysis in age groups up to 60 years 
and above 60 year old trees showed significant differences (0.01<p<0.05) in comparison with 
CHM2 and forest inventory/TLS/CHM1 (up to 60 years old), and additionally for older tree 
stands (above 60 years old) with the pairs of forest inventory methods and TLS/CHM1.  
 
Generally, a typical trend was observed in the comparison of traditional field measurements 
(Vertex; Haglöf) and ALS technology.  Graph (Fig. 1) and Tab1 clearly shows that ALS 
(CHM1 and CHM2) method of individual trees height measurement result in underestimation 
up to -0.90 m (SD=1.77 m) in case of CHM1 surface and -0.12m (SD=1.81 m) for CHM2, 
respectively. The difference of height read from two surfaces: CHM1 and CHM2 were on 
average 0.75 m (CHM2 was generated with option “preserve local maxima”). The additional 
analysis on the ALS point cloud were made of first echo (FE) points to defining the highest 
point within the crown. This analysis showed that the CHM2 canopy surface was closer to 
highest points (+0.20m) than CHM1 (-0.50m). 
 
The mean height of the Scots pine read from the SILP (2005) data base was 1.14 m lower than 
gathered during the forest inventory (2006), which could indicate inaccuracies of the previous 
measurements (the localizations of the inventory plots of 2005 are unknown). Yearly mean 
height increment was only about 0.15÷0.20 m in those pine stands. Mean difference between 
forest inventory (2006) and TLS showed -0.98 m value, which could indicate the 
underestimation of terrestrial laser scanner, however only assuming full correctness of reference 
data. This convinces the authors that the tree height reference, based on quite a subjective 
measurement, should not necessarily be taken as unquestionable, even when the state-of-the-art 
hypsometer was used. Considering the quality of height (ht) from ALS, one should keep in mind 
that reference data are collected with a basically unknown error (estimated 5-10%). Therefore 
additional test was made in the field using the same hypsometer and 6 observers. The 
comparison was made on three conifer trees and its result confirms that height measurement is 
very subjective (st. dev. 0.56m, maximum difference from mean: +0.67m and -0.79m). The only 
reliable way to measure tree height, requires cutting down the tree or applying very accurate 
surveying with total station (Andersen et al. 2006). 
 
A key factor in defining the tree height with ALS methods seems to be the selection of the 
algorithm to generate DTM. In case of the occurring understory or a small number of points 
(LE) on the ground due to a very dense forest canopy - the underestimation of tree height can 
take place (Pyysalo 1999). Another important step is generating the canopy surface model 
(CHM). The result of the comparison to the highest point within the crown indicates that CHM2 
presents the reality rather accurately (-0.12m) then CHM1 surface, what results in a greater 
difference between CHM2 and the SILP database (+0.85 m; R2=0.95; SD= 1.02 m; Tab.1). 
Concurrently, it has to be remembered that SILP data base (2005) values does not necessarily 
have to be reliable for a whole compartment.  
 
The carried out regression analysis for all the pairs of measurement methods showed that the 
lowest value of the determination coefficient (R2=0.73) was find for the group of variables: 
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SILP – forest inventory (Tab.1). Satisfactorily high indexes R2=0.95 were obtained in the 
regression analysis for both variables CHM1 and CHM2 based on data obtained from ALS, in 
the relation to explanatory variable SILP. 
 
There were not high differences between our results and other projects regarding the height 
determination of deciduous forest stands. In most papers, the mean error of the estimation of 
height took values below zero, indicating the underestimation of tree height based on ALS 
(Hyyppä et al. 2004, Maltamo et al. 2004, Rönnholm et al. 2004, Yu et al. 2004, Andersen and 
Breidenbach 2007) or close to zero; i.e. equal to the reference (Næsset 2004). Only results were 
obtained only by Næsset and Økland (2002) and McGaughey et al. (2004), show relatively 
small “overestimation” to the reference (respectively +0.18m and +0.29m). 

 

Tab. 1 - Statistics of tree height (ht) measured by selected methods. (**) – very high significant differences, 
p<0.01; (*) – significant differences, 0.01<p<0.05; (n) – not significant differences; all 432 trees 

  F. INV SILP TLS CHM1 CHM2 
mean difference [m] -1.14 (**) -0.98 (**) -0.90 (**) -0.12 (n) 

R2 0.73 0.81 0.81 0.80 F. INV 
SD of difference 

 
2.15 2.18 1.77 1.81 

mean difference [m]  0.02 (n) 0.13 (n) 0.85 (*) 
R2  0.96 0.96 0.95 SILP 

SD of difference  
 

1.01 0.94 1.02 
mean difference [m]   0.08 (n) 0.83 (**) 

R2   0.95 0.94 TLS 
SD of difference   

 
0.86 0.94 

mean difference [m]    0.75 (**) 
R2    0.98 CHM1 

SD of mean    
 

0.58 
 
 
3.2 Base and the length of crown 

Mean difference between the base of crown determination using the traditional forest inventory 
method and ALS data was +0.52 m, indicating the underestimation by LiDAR (SD=1.5 m). The 
analysis of histograms on 0.5m slices of the point cloud ALS, e.g. for 214c (19.89 ha) showed 
that 82,30 % points (of over 2.5 million) remained in the layer, and only 12.5% of all impulses 
reached the ground. Regression analysis (R2=0.65) indicates relation between field and ALS 
measurements (Fig. 2). Further analyses of the point cloud ALS showed that in compartment 
214c (plots no.: 25, 27, 28 and 29) mean base of crown read from histogram by 7 operators was 
15.9 m and thus was lower (-1.59 m) from that calculated automatically (17.49 m) for individual 
trees. It was found that mean base of crown differed by +1.65 m from the value defined for the 
whole compartment. There can be many causes for the problem of correct definition of the base 
of crown. First of all, the compactness of foliage conditions as well as the occurrence of dead 
branches on stems (underestimation +1.4 m above reference (Chasmer et al. 2006). Næsset & 
Økland (2002), Hall et al. (2005) and recently by Popescu & Zhao (2008) obtained similar 
coefficients R2 equalling: 0.53, 0.80 and 0.79, respectively.  
 
Additional test done during the field campaign on three conifer trees by the same 6 operators, 
showed that the base of crown measurement can vary from +1.11m to -0.76m (st. dev. 0.69) 
from the mean value. This result confirms that also the base of living crown measurement is 
very man-dependent. 
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Fig. 1 - Regression analysis for the height (ht) of the 
single tree for the CHM2 variable explained by the 

forest inventory ground truth data. 
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Fig. 2 - Linear regression for the base of living 
crown estimated form ALS (reference = Forest 

inventory) 

 

The accuracy of the definition of crown length (L) was probably affected by the base of crown 
rather than the tree height estimation using ALS. Mean difference in the lengths (L) of crowns 
compared to reference data (forest inventory) was -0.42 m, which generally mean 
underestimation for the ALS method. For younger tree stands (<80 years) the difference in 
crown length (L) was only -0.22 m, while in older trees  (>80 yr) as much as -0.56 m. 
Regression analysis showed relatively low value of coefficient R2=0.28 The higher explaining 
value R2=0.51 for crown lengths estimated from ALS was obtained by Næsset & Økland (2002) 
in their studies. 
 
3.4 Crown area surface and volume of the tree and canopy layer 

Carried out analysis of the crown surface area and crown volume were based on formulas (1, 3) 
for cone and (2, 4) for paraboloid.  
 
Results for crown surface area indicate differences of about 15.1% and 36.6% (for cone and 
paraboloid method respectively) in the surface of the individual tree crowns. Crown surface area 
defined in GIS analyses for CHM (surface 3D + projection on a 2D surface) showed the 
differences reaching from 17.4% (cone) to 26.5% (paraboloid) compared to the sum of the 
crown areas of individual trees. Generating the canopy surface (CHM) makes the area of canopy 
layer differ by c.a. 11% to 28.6% compared to the sum of crown surface area calculated for 
individual crowns. Clear declining trend in crown surface area value with the age of the stand 
was also noticed.  
 
The volume of the forest canopy defined from ALS surface is slightly smaller than the sum of 
individual crowns defined by the forest inventory (on average -9.0% for cone and -38.5% for 
paraboloid). The difference in volume between the solid generated from CHM (3D) with its 
base (2D) with the sum of individual crowns understood as paraboloid reached the average 
value of -38.7% (ALS) and -38.5% (forest inventory). Such differentiation resulted from the 
structure of the crown, difference in defining its length (L), and the CHM interpolation errors.  
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3.5 Homogeneity of the stand 

Mean height of tree stands in analysed compartments, defined by authors as the 95th of the point 
cloud (FE only), varies from SILP data base (+0.47m; SD=0.60). It should be added that 
possibly the growth of tree stands from year 2005 to 2007 would partially equalize this 
difference. The authors did not know the localization of the sample plots used in defining the 
SILP height used in 2005. The differences in measured taxation features can be relatively high. 
This can result from the differentiation of a soil micro-site, cultivation procedures carried out 
during the forest stand lifetime, and random phenomena (breaking of the trees, pest invasion 
etc). Mean difference between height defined for the whole compartment and the mean height 
of the inventory plots was -0.37 m (SD=0.95). The spatial distribution of height (mean value 
H=20.96m) in a selected forest compartment 232b is presented in Fig. 3. 
 
It is well known that the distribution of the DBH in the forest stand is close to normal, therefore 
there are also differences in the tree heights. However, in many cases, the spatial distribution of 
tree height in a single compartment indicates that the borders do not contain homogeneous 
stands (as it is shown in Fig. 3) because of diversity of the soil, humidity, solar radiation, wind 
etc.   
 

 
Fig. 3. Spatial distribution (a) and standard deviation (b) of height in compartment 232b. 

 

4. Conclusions 
Presented study addressed different questions related to the 3D spatial distribution of laser 
beams within a canopy of Scots pine stands using a different set of ground truth data, like forest 
inventory measurements, TLS, SILP databases, and ALS data. Seeking alternative methods of 
defining the base of crown height is encouraged by the fact that traditional methods are very 
time consuming and subjective. ALS technology for the first time gives the opportunities of 
describing the whole tree stand and not only its fragments represented by forest inventory plots. 
The results of our study indicate the following: (1) height for single trees derived from ALS data 
leads to small underestimation depending on CHM generation algorithm (e.g. 0.12 m for 
CHM2); (2) mean height for a stand was higher (+0.85 m) than the height from SILP database 
what can results in whole Milicz Forest district in underestimation of the wood volume; (3) 
mean height of a stand (understanding as 95th percentile of the FE point cloud) was +0.46 m 
higher than the height from SILP inventory database; (4) it was possible to estimate the base of 
crown with slight underestimation (-0.52 m) using the histogram of the ALS data; (5) length of 
crown measured from ALS was lower compared to reference data (0.42 m); (6) crown surface 

a b
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area was slightly greater and crown volume was smaller than the reference; (7) spatial 
homogeneity of height in the even-aged pine stand is questionable and lead to the urgent 
revision of the compartment borders. In the very near future new approaches of forest inventory 
supported with ALS data is expected as a list of new parameters and guidelines. Paper shows a 
need of further studies on ALS integration with other data sources (like TLS, digital aerial 
imageries) as a potential cost-effective operational forest inventory method for estimation of 
whole stand biomass. Future studies based on the single-tree approach should lead to precise 
forestry and to the optimization of forest inventory, like the new methodology in forest 
sampling. 
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