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Abstract 
 
The mean and standard deviation of lidar-derived height data have shown to be important 
variables with which to summarize forest structure. However, lidar data has a limited spatial 
extent and a very high economic cost. Landsat data provides useful structural information in the 
horizontal plane and is easily accessible. The integration of both data sources offers an 
interesting opportunity to aid sustainable forest management. Different spectral indices (NDVI 
and Tasseled Cap) were obtained from three Landsat scenes (March 2000, June 2001 and 
September 2001), and the mean and standard deviation of lidar height measurements were 
calculated in 30 m square blocks. Correlation and forward stepwise regression analysis was 
applied to these data sets. Mean lidar height versus NDVI and wetness Tasseled Cap showed the 
best correlation coefficients (ranging between 0.65 and -0.73). The best regression models 
included NDVI and wetness for June and September as dependent variables (adjusted r2: 0.55 – 
0.62). These results showed that lidar data can be used to train Landsat to map forest structure, 
and it should be interesting to further optimize this approach. 
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1. Introduction 
 
Canopy structure can be defined as the organization in space and time, including the position, 
extent, quantity, type and connectivity, of the aboveground components of vegetation (Parker, 
1995; Lefsky et al., 1999). Structure includes vertical (e.g. number of tree layers, understory 
vegetation) and horizontal features (e.g. spatial pattern of trees, gaps) as well as species richness 
(Maltamo et al., 2005). 
 
The mean and standard deviation of lidar-derived height data have shown to be variables that 
synthesise forest structure of the canopy. Zimble et al. (2003) used lidar-derived tree height 
variances to distinguish between single-story and multi-story forest classes. Lefsky et al. 
(2005a) pointed out that mean height and height variability figures derived from lidar data are 
strongly related to canopy indices and thus related to stand structure. These authors consider 
these variables to represent the same kind of enhancement of lidar data that the Tasselled Cap 
indices represent for optical remote sensing. Pascual et al. (2008) found that mean, median and 
standard deviation of height derived from lidar could be used to distinguish horizontally 
heterogeneous forest structure types.  
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Small footprint airborne laser scanners provide detailed information on the vertical distribution 
of forest canopy structure (Hyyppa et al., 2008), but over a limited spatial extent and with a 
high economic cost. Landsat data provides useful structural information in the horizontal plane 
and is much more accessible (Cohen & Spies, 1992). Therefore the integration of optical remote 
sensing imagery and lidar data provides improved opportunities to fully characterize forest 
canopy attributes and dynamics (Wulder et al., 2007).  
 
Hudak et al. (2002) developed spatial extrapolation of lidar data over Landsat images. Methods 
for the combination of lidar-derived metrics and optical images has been also devised (Chen et 
al., 2004; Lefsky et al., 2005b). In addition, two coincident lidar transects, representing 1997 
and 2002 forest conditions in the boreal forest of Canada, were compared using image segments 
generated from Landsat ETM+ imagery (Wulder et al., 2007).  
 
Given the relationship between mean and standard deviation of height derived from lidar and 
forest structure, the objective of the present work is to evaluate the relationship between 
summaries derived from lidar and spectral information from the Landsat satellite. The final aim 
of this work is to establish whether Landsat data can be used to predict lidar forest canopy 
height (mean and standard deviation). 
 
2. Methods 
 
2.1 Study area 
 
A 127.10 ha (1293 x 983 m) area, located on the western slopes of the Fuenfría Valley (40º 45´N, 
4º 5´ W) in central Spain, was selected as the study area. The Fuenfría Valley is located in the 
northwest portion of the Madrid region (Figure 1). The predominant forest is Scots pine (Pinus 
sylvestris, L.) with abundant shrubs (Cytisus scoparious (L.) Link., C. oromediterraneus Rivas 
Mart. et al., Genistaflorida (L.)) in some areas.  
 

 
Figure 1: Study site. Fuenfría Valley, in the village of Cercedilla, northwest of Madrid (Spain). 

 
There are small pastures on the lowest part of the hillside. In the northern sector of the study site 
there is an extensive rocky area. The site has a mean annual temperature of 9.4ºC and 
precipitation averages 1180 mm per year. Elevations range between 1310 m and 1790 m above 
sea level, with slopes between 20% and 45%. The general aspect of the study site is east. 
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2.2. Lidar data 
 
A small footprint lidar dataset was acquired by TopoSys GmbH over the study area in August, 
2002. The TopoSys II lidar system recorded first and last returns with a footprint diameter of 
0.95 m. Average point density was 5 points m-2. The raw data (x, y, z-coordinates) was 
processed into two digital elevation models by TopoSys using the company’s proprietary 
software. The digital surface model (DSM) was processed using the first pulse backscatters and 
the digital terrain model (DTM) was constructed from the last returns. Filtering algorithms were 
used to identify canopy and ground surface returns for an output pixel resolution of 1 m 
horizontally and 0.1 m vertically. According to TopoSys calculations the DSM and DTM 
positional accuracy was 0.5 m horizontally and 0.15 m vertically.  
 
To obtain a digital canopy height model (DCHM), the DTM was subtracted from the DSM. 
Both the DTM and DCHM were validated before use by land surveying with a total station and 
ground-based tree height measurements. The vertical accuracies, calculated as Root Mean 
Square Error (RMSE) obtained for the DTM in open areas and the DCHM under forest canopy 
were 0.30 m and 1.3 m, respectively (Pascual, 2006). These accuracies were acceptable for this 
study, and were in agreement with previous studies. For example, Clark et al. (2004) reported 
RMSEs for DTMs ranging from 0.06 to 0.61 m and for DCHMs ranging from 0.23 m to 2.41 m 
in tropical landscapes. 
 
2.2. Image data and preprocessing 
 
In this study we used three Landsat ETM+ images from scene path/row (201/32) corresponding 
to three different dates (March 15th, 2000, June 6th, 2001 and September 10th, 2001). The 
Landsat images were georeferenced and radiometrically calibrated.  

June and September’s Landsat images were co-registered, at the Alcalá University’s Geography 
Department, using digital highway maps of the Madrid region (E 1:50.000). RMSE was less 
than 30 m (1 pixel); the projection system was UTM (Datum Europeo 1950) with a pixel 
resolution of 30 m. We validated the image co-registration in the study area using a set of easily 
recognisable points.  

From the March Landsat image, a subset area of 30 x 30 km was orthorectified. Control points 
were selected, taking as reference September’s georeferenced image. The source of altitudinal 
information was a 20 m pixel DTM of the Madrid region. We used 38 control points, 
homogenously spread out over the subset image. RMSE was 11.49 m (0.4 pixels). The COST 
absolute radiometric correction model of Chavez (1996) was applied to each image to convert 
digital counts to reflectance.  

 
2.3. Lidar DCHM summaries (mean and standard deviation) and spectral indices 
 
The DCHM lidar (1 m pixel) was degraded to 30 m cell blocks, providing a 30 m grid of 32 
rows and 41 columns. The mean and standard deviation of the 900 lidar height values contained 
in each 30 x 30 m block were calculated. Two new 30 m pixel images of the mean and standard 
deviation of lidar height values were thus obtained. 
 
NDVI and Tasseled Cap (TCAP) were calculated for the March, June and September Landsat 
images. TCAP transformation was obtained using coefficients for brightness, greenness and 
wetness derived by Crist (1985). According to Cohen et al. (2003), no published transformation 
exists to convert atmospherically-corrected ETM+ spectral data into Tasseled Cap indices. 
However, the authors have verified that Landsat TM and ETM+ are similar enough to assume 
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that any differences in Tasseled Cap indices derived from data from the two different sensors are 
minor.  
 
2.4. Sample design and statistical analysis  
 
First, we created a mask to exclude bare soil, rocks, pasture and shrubs from subsequent 
analysis (Figure 2) performing unsupervised classification of the September Landsat image. In 
addition, systematic sampling was used to reduce the spatial autocorrelation inherent in remote 
sensing imagery. The sampling procedure was designed based on semivariograms of the lidar 
DCHM mean height and wetness Tasseled component. Semivariograms were calculated using 
the free distribution software Variowin 2.2. (Pannatier, 1996). Mean lidar height was selected 
based on previous work (Pascual, 2006) and wetness TCAP component because is often related 
to forest structure (Cohen & Spies, 1992). The semivariance tends to stability at 130-150 m. 
Therefore, two samples were obtained, each using one out of every four or five pixels, one for 
statistical model building and the other to independently validate the model.  
 

 
Figure 2: 0.5 m pixel digital orthophoto of the study area (yellow frame). Different covertures (pasture, 

bare soil, shrubs and Populus sp) were digitalised and labelled. 
 
 
Pearson’s correlation among Landsat spectral indices and lidar statistical descriptors was 
performed. Furthermore, forward step regression analysis (p enter = 0.05; p remove = 0.05) was 
carried out between both variable sets. All statistical analysis was conducted using 
STATISTICA 6.1 software. Before proceeding with regression analysis, the normality of the 
dependent and independent variables was verified and transformed when needed. 
 

Populus sp

Pasture

Bare soil shrubs 
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3. Results and Discussion 
 
Mean lidar height and standard deviation of lidar height provided two images (Figure 3) with a 
gradient from black to white representing spatial variation in canopy height.  
 

 
Figure 3: Mean lidar height image (30m pixel) (left) and Standard deviation of lidar height (right). 
Black to white gradient represent growing height values. Vectorial digitized covertures are included.  

 
Correlations among NDVI indexes (Figure 4) and the square root of mean lidar height 
( hmean ) indicated a moderately strong relationship among these variables (r = 0.65, r = 0.70 y 
r = 68; p = 0.05; n = 47 for March, June and September respectively). Standard deviation of 
lidar height (sd_30) demonstrated an insignificant relationship with all NDVI indices for the 
three dates (Table 1).  
 

Table 1: Pearson’s correlation between lidar-derived metrics and spectral indices (n = 47).  
March 15th 

 NDVI Br Gr We 
hmean  0.65* -0.50*  0.46* 0.64* 
sd_30 0.20 -0.16 0.18 0.20 

June 6th 
 NDVI 1/Br Gr Log(-We) 

hmean  0.70* 0.65* 0.50* -0.72* 
sd_30 0.30* 0.13 0.26 -0.11 

September 10th 
 NDVI 1/Br Gr Log(-We) 

hmean  0.68* 0.59* 0.34* -0.73* 
sd_30 0.29* 0.15 0.17 -0.04 

*significant correlations p < 0.05; Br, Gr and We are brightness, 
greenness and wetness Tasseled components derived from 
ETM+. 

 
Lu et al. (2004) found strong correlations between NDVI and forest attributes derived from field 
measurements. Nevertheless, Hall et al. (1995) and Franklin et al. (1997) do not consider this 
spectral index especially appropriate for the study of forest attributes because of the weak 
correlation that has been shown with certain parameters of vegetation. Regarding this, Lu et al. 
(2004) indicate that conclusions as to its application vary depending on the biophysical 
parameters and the characteristics of the study area.  
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a)   

b)   

c)   
Figure 4: NDVI (left ) and colour composition of the TCAP components (right): brightness in red 
channel; greenness in green channel and wetness in blue channel. a) March 15th; b) June 6th; and c) 

September 10th with the feature digitalized covertures (bare soil, pasture, shrubs). 
 

 
Regarding TCAP transformation, the brightness and wetness of June and September (Figure 4) 
presented moderately strong correlations with the square root of mean lidar height (r = 0.65, r = 
-0.72 y r = 0.59 r = -0.73; p = 0.05; n = 47 respectively) (Table 1). When considering the 
Tasseled Cap components of each date separately, wetness presented higher correlations with 
the square root of mean height. Other authors have also reported strong correlations between the 
wetness component and multiple forest attributes measured in the field such as the dbh 
(diameter at breast height), crown diameter, mean height and basal area (Cohen & Spies 1992; 
Cohen et al. 1995). Wetness is considered the most interesting spectral index to estimate forest 
structure of dense formations (Cohen & Spies 1992; Cohen et al. 1995; 2001). In addition, this 
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component has been revealed as most significant when studying the temporal evolution of 
forests, such as mortality (Collins & Woodcok, 1994), harvesting and silvicultural activities 
(Wilson & Sader, 2002; Healey et al., 2005) or in the evaluation of damage by plagues (Skakun, 
et al., 2003). Standard deviation of lidar height (sd_30) and Tasseled components revealed weak 
and not significant correlations (Table 1). 
 
Regarding regression analysis (Table 2), the three models presented coefficients of 
determination ranging from 0.55 to 0.63. Standard deviation of height derived from lidar 
(SD_30) was excluded from regression analysis due to low Pearson´s correlation (Table 1).  
 
None of the three models presented colinearity problems (i.e. linear relationship among the 
independent variables problems). The variance inflation factor (VIF), as indicator of 
multicolinearity, did not present any variable values close to 5 or 10. According to Montgomery, 
et al. (2002) those are the thresholds that question regression coefficients estimated by 
minimum squares. 
 

Table 2: Forward stepwise regression models 
 

Name Models (forward stepwise regression) r2 
adjusted RMSE 

Mod. 
NDVI 

junNDVImarNDVIhmean _0085.0_0043.0137.1 ⋅+⋅−=  0.55 4.07 

Mod. 
TCAP 

)_(907.0_133.0970.3 sepWeLogmarGrhmean −⋅−⋅+=  0.62 4.58 

Mod. 
Mixed 

junNDVIsepWeLoghmean _140.0)_(666.0832.2 ⋅+−⋅−=  0.59 4.32 

 
 
A validation of regression analysis was performed using an independent sample of 54 pixels. 
Observed versus predicted values were represented in scatterplot graphs (Figure 5). All models 
showed a moderately strong adjustment (r = 0.73, p = 0.000; r = 0.72, p = 0.000 y r = 0.79, p = 
0.000, n = 54 for Mod. NDVI, TCAP and MIXED respectively). Based on validation results, the 
best regression models were Mod. NDVI and Mod. MIXED.  
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Figure 5. Scatterplots of independent (n=54) validation regression models (observed vs. predicted). Left 
(Mod. NDVI); middle (Mod. TCAP) and right (Mod. MIXED). 
 
Conclusions 
 
Mean lidar height derived from lidar for a Scot pine forest in Cercedilla was estimated through a 
combination of spectral indices derived from Landsat images. Wetness TCAP component 
showed higher correlations with square root of mean height derived from lidar. A wetness 
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relationship with forest structure has been reported by different authors. Regression models 
were explicative, because of the relationships among variables. Nevertheless regression models 
presented high variability (r2: 0.55 – 0.62) that diminished their predictive capacity. These 
results show that lidar data can be useful for training Landsat to map mean height. Given the 
relationship between mean lidar height derived from lidar and the forest structure, Landsat data 
can help to characterize forest structure. This approach should be analyzed in future research. 
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	The three elevation profiles were generated by the use of topographic station along each transects line, assemble with GPS located in the extreme of the transect points. Thus, were generated a data sets that describe in suitable accuracy, the elevation profile of each one of the three transect under the study area using Geodesic cartographic base. 
	 
	The Figures 5, 6 and 7 show the elevation profiles of the three transects, from two sources, the reference one that come from geodesic GPS, and other come from LiDAR source. We appreciate the small difference between both sources which is quantified in tables 2, 3 and 4 were it is showed the error distribution in the elevation z exe of the 3D system, where the maximum error distribution of z exe over the three transects is mostly concentrate between 0 to 1 meter. The resume table 5 shows that the 92 % of the data for all distance of the three transects (Table 4) shows an error concentrate between 0 and 1 meter. The 6 % of error is concentrate between 1 and 2 meters and 2 % between 2 and 3 meters. 
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	The results of simple statistical analyses indicate that the results were consistent and well taking. The GPS and topographic data sources are improved its quality because no forest was there at the ground measurement time. In this way we reduce the source of the errors from the ground measurements.   
	Others researchers work find that the effect of vegetation canopy covers which has different structure and several forest canopy levels are presented in the forest. In this case of our research, there was just one forest canopy cover planted at the same season, which has similar management and same plantation density without under canopy cover vegetation presented in there. 
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